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ABSTRACT 
Dictionary-based approaches to query translation have been 
widely used in Cross-Language Information Retrieval (CLIR) 
experiments. Using these approaches, translation has been not 
only limited by the coverage of the dictionary, but also affected by 
translation ambiguities. In this paper we propose a novel method 
of query translation that combines other types of term relation to 
complement the dictionary-based translation. This allows 
extending the literal query translation to related words, which 
produce a beneficial effect of query expansion in CLIR. In this 
paper, we model query translation by Markov Chains (MC), 
where query translation is viewed as a process of expanding query 
terms to their semantically similar terms in a different language. 
In MC, terms and their relationships are modeled as a directed 
graph, and query translation is performed as a random walk in the 
graph, which propagates probabilities to related terms. This 
framework allows us incorporating different types of term relation, 
either between two languages or within the source or the target 
languages. In addition, the iterative training process of MC allows 
us to attribute higher probabilities to the target terms more related 
to the original query, thus offers a solution to the translation 
ambiguity problem. We evaluated our method on three CLIR 
benchmark collections, and obtained significant improvements 
over traditional dictionary-based approaches.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Retrieval models 

General Terms 
Design, Algorithm, Theory, Experimentation 

Keywords 
Query Translation, Query Expansion, Cross-Language 
Information Retrieval, Markov Chain, Random Walk 

1. INTRODUCTION 
Cross-Language Information Retrieval (CLIR) has attracted a 
large number of studies, and a variety of methods for query 
translation have been proposed [1, 5, 10, 34, 16, 30, 31].  Many of 
these methods rely on dictionaries for query translation due to the 
simplicity of the methods and the increasing availability of 
machine readable bilingual dictionaries [10, 11, 14, 15, 33].  
Some studies have shown that dictionary-based approaches can  
 

 
produce very good CLIR results. However, several problems have 
also been repeatedly observed in them, and remain unsolved:  On 
the one hand, translation is strongly limited by the coverage of the 
dictionary, and a manual extension of the dictionary coverage is 
difficult.  On the other hand, even when a dictionary contains all 
the possible translations for a word, we are still faced with the 
problem of translation ambiguities.  A selection should be made in 
order to reduce noise (i.e., inappropriate translation candidates).  
However, dictionaries do not provide any translation reliability 
measure or context information that can help select the 
appropriate translations. In most previous studies, dictionaries 
have been used as the only resource to suggest translation 
candidates. Although this may result in reasonable suggestions in 
many cases, it is not sufficient for query translation in CLIR. In 
fact, unlike other translation tasks such as  full text machine 
translation, a CLIR query can be translated not only by literal 
translation words (e.g., words that are stored in a dictionary), but 
also by semantically similar words.  These latter have been found 
to be very useful to produce a desired query expansion effect [16]. 
For example, a literal Chinese translation of the English term 
“program” is “程序”, but the Chinese term “算法” (algorithm) is 
semantically related to “program” and is also useful for retrieving 
more relevant documents about “program”. 
In order to enhance the expansion effect, several studies have used 
explicit query expansion before and after translation using 
pseudo-relevance feedback [1, 20].  However, in all the previous 
studies, the translation step and the expansion step(s) are 
performed separately, i.e., they are only loosely connected to the 
IR model. Many parameters have to be set heuristically. In such a 
case, it is difficult to determine automatically the best settings of 
these separate steps so as to maximize their global effectiveness. 
A better method is to define a single model in which both 
translation and expansion work together to determine semantically 
related target words, and to use a principled method to determine 
the parameters automatically.  
In this paper we deal with these problems all together using 
Markov Chain (MC) models. Both monolingual (e.g. co-
occurrences) and cross-lingual (e.g. dictionary translation) term 
relations are integrated into an MC model which is represented as 
a directed graph.  The “translation” of a query is formulated as a 
random walk in the MC, where monolingual and cross-lingual 
term similarities are propagated among terms in both languages.  
This framework has several advantages: (1) It allows us to 
integrate both translation relations and monolingual relations such 
as co-occurrence statistics, by which the suggested terms can be 
translation terms or related target terms.  Thus we are able to 
overcome the limitation by the coverage of the dictionary and to 
produce a query expansion effect; (2) The multi-step random walk 
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of MC allows us to extend similarity relations from query terms to 
other indirectly connected similar terms, which further extends the 
effect of query expansion; (3) The iterative training of MC will 
result in a stationary probability distribution, which represents 
better relations between terms than a coarse initial distribution. 
Truly related target terms are expected to receive higher 
probabilities after training. (4) There are several methods for 
automatic tuning of the parameters of MC [21, 29]. Therefore, the 
MC models provide a solution to all the problems mentioned 
above. 
MC has been used in several recent studies for query expansion 
[19, 4]. The principle is similar to our work.  However, in 
previous work, the MC was limited to monolingual terms, while 
we also integrate translation relations. To our knowledge, this 
study is the first attempt to apply MC to modeling cross-lingual 
query expansion. 
We evaluated our approach on three TREC and NTCIR 
collections for English-Chinese CLIR. The experiments show 
that: (1) the use of MC can indeed lead to better translations than 
with the traditional approaches; (2) The integration of 
monolingual word relations can bring further improvements.  
This paper is organized as follows.  Section 2 describes the 
background of our method.  Section 3 presents the MC models for 
query translation. Section 4 presents the estimation of model 
parameters.  The experiments are presented in Section 5.  Section 
6 compares our approach with previously proposed methods. 
Conclusions and future work will be given in Section 7. 

2. Background 
Traditionally CLIR has been considered as a two–step procedure: 
query translation by an external component, and monolingual 
retrieval [10, 14]. Recent studies show that the separation of the 
two steps does not allow us to take into account effectively the 
uncertainties in each step, and an integrated approach is preferred 
[16, 34]. Language modeling has been shown to be an appropriate 
framework for such integration [16]. In this paper we follow the 
same principle, and consider query translation as a step embedded 
in the construction of the final query model in a language 
modeling setting. We use negative KL-divergence as the basic 
document ranking function [19], defined as follows:      
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where q and d are query and document respectively, and θq and θd 
are respectively the parameters of query and document models. 
By integrating query translation, the above equation is extended to 
the following one: 
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where c is a term in document language (Chinese) and e a term in 
query language (English).  
Equation (2) defines a general language modeling framework for 
CLIR. The key problem is the estimation of the translation 

probability P(c|e).  It is this estimation that makes our approach 
different from the others. 
Due to the lack of the measurement of translation reliability in a 
dictionary, most previous studies based on dictionary used two 
naïve methods:  
(1) P(c|e) is assigned uniformly over all the candidates stored in 
the dictionary;  
(2) P(c|e)=1 if c is the first translation of e in the dictionary and 0 
for all other translations.   
In some more recent studies, P(c|e) is determined according to 
more sophisticated criteria such as the coherence between 
translation candidates [1, 10, 9].  However, as we mentioned 
earlier, in all the dictionary-based methods, the estimation of 
P(c|e) is limited to the translation candidates stored in the 
dictionary.  In order to produce an effect of query expansion, we 
argue that P(c|e) should not be merely the literal translation 
probability of c given e, but a cross-lingual semantic similarity 
between c and e. 
If P(c|e) is estimated by a statistical translation model, such as one 
of IBM models [3], trained on a parallel corpus, it reflects cross-
lingual term similarities implicitly [16].  However, the reliability 
for the model to represent such similarities depends on a large 
degree upon the quality and size of the parallel corpus.  Two 
terms would not be considered as similar terms if they never 
appear in any parallel sentence pair.  Nevertheless, the terms that 
often co-occur with a literal translation word in parallel texts will 
receive a small translation probability of the source word. 
Therefore, a statistical translation model has a capability of 
producing query expansion effect during translation, by 
distributing a part of the translation probability to the words that 
co-occur with the true translation(s). 
However, parallel corpora are not widely available for many 
language pairs (e.g. Chinese-English).  Although it is possible to 
mine parallel materials on the Web for some language [16], 
dictionaries still remain the most available resources for most 
language pairs.  Therefore, we will use dictionaries in our study. 
Notice that the ability of connecting related words in a translation 
model is a side effect rather than the desired goal of a statistical 
translation model – the translation model aims to capture literal 
translation relations. Its training process tries to limit the 
possibility of connecting related non-translation words rather than 
to favor it.  This is contrary to our goal of query “translation” in 
CLIR, in which we would like to favor the connections to related 
non-translation terms as well. Therefore, it is desirable to include 
related words into query “translation”.  
Pre- and post-translation query expansions have been exploited as 
a means to perform such an extension [1, 11]. In pre-translation 
expansion, the original query is first expanded using a set of 
feedback documents retrieved in the source language. The 
expanded query is then translated (e.g. with the help of a 
dictionary). In post-translation expansion, the translation of the 
query is used to retrieve a set of feedback documents, which are 
then used to expand the translated query. In previous studies, both 
expansion processes have shown some effect on the retrieval 
effectiveness. However, the expansion steps have been considered 
to be separated from the retrieval process. They have been used as 
a means to produce a more appropriate “translation” of the initial 
query. In these steps, we have to set several parameters manually: 
the number of feedback documents to be used, the number of 
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terms to be added into the query (or translation), and the weights 
to be attributed to the additional terms (with respect to the original 
terms).  
In addition to the above practical problems, pre- and post-
translation expansion can only consider part of the term relations. 
As shown in [32], both global and local analyses can suggest 
useful terms to expand queries. Using pre- and post-translation 
expansions, we are indeed using a local analysis, which can 
suggest related terms appearing in the feedback documents, either 
in the source or the target language. As shown in [32], it would be 
beneficial to add global analysis in the expansion step. Following 
[32], the global analysis could be used as yet another external 
component outside the retrieval model. However, as we stated 
earlier, such a combination is highly dependent on the manually 
setting of parameters. An alternative is to integrate the term 
relations extracted from global analysis directly into the model, so 
that their parameters can be optimized together with those of the 
translation relations. This means that we extend the methodology 
of statistical model training to further extending the function  
P(c|e) from term translation to term similarity relations. To 
achieve this goal, in this paper we propose to integrate explicitly 
different types of terms relation into a MC model.  
The utilization of MC for query translation in CLIR is not new. 
[22] used MC to determine the best translation terms. However, 
only translation relations stored in a dictionary are modeled by the 
MC. In our case, we integrate other types of term relation in 
addition to translation relations. 
In the following section we will describe the details of the model. 

3. Query Translation as a Random Walk 
3.1 Principle 
Instead of considering query translation as a traditional translation 
process, now we view it as a process of finding cross-lingual, 
semantically similar terms. The latter terms can be not only 
translation terms, but also semantically related terms. Similarly to 

the principle of pre- and post-translation expansion, related terms 
can be determined in two ways: they can be target language terms 
that are related to some translation terms (similar to post-
translation expansion), or they can be terms that are translations of 
related terms in the source language (similar to pre-translation 
expansion). For example (see Figure 1), given an English (source 
language) query term “program”, besides its literal translation “程
序” in Chinese, the Chinese word “计算机” (computer) related to

程 序 ” is also a useful Chinese query term. Similarly, the 

translation “ 语 言 ” (language) of a related English term 
“language” can also be added. 
The MC model that we propose tries to integrate the above 
relations within the source and target languages with translation 
relations. Our model follows the same principle as pre- and post-
translation expansion; but we implement the idea in a very 
different way. Indeed, we try to determine the related terms in the 
source and the target languages using a global analysis, i.e. we 
make use of a global analysis of the whole document corpora, 
instead of relying on feedback documents which can only be 
determined on the fly during the retrieval process. As [32] showed, 
it is beneficial to combine global and local term relations. 
Therefore, even when global term relations are integrated with 
translation relations in our MC model, it is still possible to use 
blind feedback to perform local analysis, similarly to pre- and 
post-translation expansion. 
Another major difference between the previous approaches using 
pre- and post-translation expansions and ours is the integration of 
the expansion and retrieval processes. In our case, both processes 
are integrated within the same framework, making it possible to 
optimize their parameters together. 
An additional advantage of using MC is that, given a query, the 
word relations (either within one language or between two 
languages) that are strongly related to the query will be reinforced 
by each other. The final probability distribution after the iterative 
adaptation of MC is expected to be better for the query than the 
initial distribution. For example, suppose that the original English 
query is “articles about program design”. A part of the MC is 
shown in Figure 1. The two key terms in this query “article” and 
“program design” can be respectively translated by the following 
words in Chinese: 

article: 冠词 (determinant), 论文 (paper), 物品 (object), etc. 

program design: 程序设计 

In Figure 1, we also show some term relations within the same 
language (co-occurrence – coc and contain, see next section). We 
can see that through monolingual term relations, the correct 
translation candidates 论 文  (paper) for the ambiguous word 
“article” is more tightly connected to the original query terms. 
Through the iterative updating, this term will be assigned a higher 
probability than the other irrelevant translation candidates. On the 
other hand, the probability of the words which are less related to 
the original query, such as “节目” ([TV] program), “电视” (TV), 

“冠词” (determinant) and “determinant”, is reduced.  

The above example shows that MC also offers a possible solution 
to the translation ambiguity problem. Indeed, the principle of 
mutual reinforcement during random walk is used (although to a 

 
Figure 1 : Illustration of Query Translation via Random Walk 
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very limited degree) in some previous approaches to query 
expansion. For example, [28] proposed to determine the 
expansion terms not according to the strength of their relation 
with one of the original query terms, but according to their 
relations to all the query terms. An expansion term having relation 
with several original query terms will likely be preferred to 
another one related to only one query term (assuming that their 
strengths are similar). This approach has proven to be effective. 
Transferring the same principle to CLIR, we want to favor 
translation candidates that are related to more original query terms. 
In Figure 1, we can see that the translation candidate “论文” 
(paper) is related to both original query terms (via direct or 
indirect links). Therefore, its probability is higher than another 
candidate, “冠词”, which is related to only one of the original 
query terms. This preference is, however, not imposed by using 
heuristics. Rather, the updating process of MC [2] can naturally 
reinforce the more related translation candidates. This is another 
major advantage of using MC as our model. 

3.2 Representing Word Relationships with a 
MC Model 
In this section we describe the principle of modeling term 
similarity in a MC. Each MC model defines a set of states. A state 
is linked to other states by transitions with different probabilities. 
Two states are transitional if and only if the transition probability 
between them is non-zero. A MC model is usually represented as 
a weighted directed graph G as illustrated in Figure 1.  It consists 
of a set of nodes and a set of weighted, directed edges. We use the 
following notations: 
1. A node is denoted as v. We use nodes to represent terms.  
2. An edge from vi to vj with a label (or relation type) l 

represents a transition of type l, denoted as: 
j

l
i vv ⎯→⎯ . Each 

type of edge corresponds to a type of term relation, which 
will be described later in this section. 

3. Each edge 
j

l
i vv ⎯→⎯ is also assigned a probability P(vj|vi,l). 

This probability will be determined according to different 
criteria described in Section 4.1.  

If only translation relations are represented in a MC, the MC 
model can only assign a translation probability to the translation 
candidates stored in the dictionary. To extend translation to 
broader cross-lingual similarity relations, we incorporate two 
additional monolingual relations: co-occurrence and contain.  The 
former connects frequently co-occurring terms. It has been shown 
to be useful for CLIR [1, 10].  The latter considers the relation 
between a longer term (e.g. “program design”) and a shorter 
constituent term (e.g. “program”).  This relationship is particular 
useful for Chinese, which does not have any space between words. 
Therefore variable word segmentation can be produced for the 
same character sequence. For example, the sequence “程序设计” 
(program design) can be segmented either as a single word (in fact 
a phrase) or as two shorter words “程序” (program) and “设计” 
(design), depending on circumstances and segmentation programs. 
If “program design” is translated to “程序设计”, it matches 

directly neither “ 程 序 ” nor “ 设 计 ” (for the latter will be 
considered as different indexes).  By considering the contain 

relation, we can link “程序设计”, and thus “program design”, to 

“程序” and “设计”. This is a way to propagate the translation 
relation to the constituent terms in the target language.  
More types of relation can be integrated in this framework, but we 
limit our investigation in this paper to the three relations: 
translation, co-occurrence and contain. We will denote them by 
trans, coc and contain, respectively. The trans relations are 
defined between terms in different languages, the coc and contain 
relations between terms of the same language.  
Given an MC model, random walk is a process that adjusts the 
transition probabilities iteratively as follows.  In each iteration, we 
assume a 2-step process of moving from a node to another.  First, 
from a node vi one can select an edge (i.e., relation) l with 
probability P(l|vi).  We assume here that this selection is 
independent of vi, so P(l|vi)=P(l).  Second, vj is chosen by 
P(vj|l,vi). Considering a set L of all possible edge labels (i.e., 
relations), the probability to arrive at vj  from vi is 

)(),|()|( lPvlvPvvP
Ll ijij ∑∈

=                                             (3) 

with 1)( =∑ ∈Ll
lP . 

For example, there are two relations between the terms “program 
design” and “program” in Figure 1: coc and contain. The 
similarity between them is then determined by: 
    P(program|program design) =  

P(program|contain, program design) ×  P(contain) + 
P(program|coc, program design) ×  P(coc) 

The estimation of ),|( ij vlvP and )(lP will be described in Section 

4. 
3.3 Random Walk for Query Translation 
This section describes how query translation is performed 
as a random walk in an MC model. 
The query translation process can be stated as follows. Let 0

qθ  

denote the distribution of an original English query, i.e., 0
qθ gives 

non-zero probabilities to the nodes corresponding to the English 
query terms (words or phrases). The translation process 
corresponds to the propagation of these probabilities, through 
random walks, to other terms, especially in the target language. 
First, a term v0 is chosen according to the initial distribution 0

qθ . 

Then one can decide whether to stay in this state (with 
probabilityγ ) or to transit to another state (with probability 1-γ ).  
The first choice retains the partγ of the probability in v0, while the 
second choice transfers (1- γ ) of its probability to the related 
nodes, according to the transition probability (similarity) to them. 
The process continues in this manner. After k steps of walk, we 
get a new probability distribution k

qθ on terms.  This latter can be 

interpreted as the measure of similarity of terms to the original 
query terms.  In particular, the probabilities assigned to target 
language words are the cross-lingual similarities to the original 
query.  
We notice that the above process interprets the procedure to 
construct a query-oriented MC model instead of a global MC 
considering all terms. We call the nodes having non-zero 
probability in k

qθ  active nodes. Each active node must either be a 
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directly similar node to at least one node corresponding to a term 
in the original query, or be linked to a node in the query via 
intermediate nodes. The query-oriented MC model has at least 
two advantages comparing with the global MC model constructed 
independently from the query. First, it is much easier to manage 
and faster to update because the number of active nodes is much 
smaller than the number of all nodes (the sum of the number of 
English and Chinese terms). The time required to perform a 
random walk is thus much shorter. In our experiments, it only 
takes a few seconds to update the probabilities and to translate one 
query. Second, the query-oriented MC model can reduce noise to 
some degree because it only considers the nodes related to the 
query so that it avoids distributing probabilities to non-related 
nodes. 
More specifically, let Mij be the probability of being at node vj at 
step t+1 given that one is at vi at step t in the walk, we have: 

⎩
⎨
⎧

=
≠−

= ∑ ∈

ji
jilPvlvP

M Ll ij
ij                                           

    )(),|()1(
γ

γ                    (4) 

where L={trans, coc, contain} is the set of relationships. If we 
take k-step random walk, the similarity between terms is denoted 
by M(k), then we have:  

( )
ij

k

t
tk

ij MM ∑ =
−=

0
)( )1( γγ                                                      (5)

 where M is the matrix consisting of Mij.  If we set k to be infinite, 
the MC will reach a stationary distribution, which is considered to 
be optimal [21, 29, 19].  Since 0 < γ < 1, M(k) is guaranteed to 
converge. In our experiments, we only consider at most 4 
iterations, as the convergence is very fast. 

Assume that 0
qθ  is the initial probability distribution of the nodes, 

then the distribution after a k-step walk is proportional to  
)(0 k

q
k
q Mθθ =                                                                              (6)  

The document ranking formula for CLIR, i.e., Equation (2), can 
be re-written as: 

∑ ∈
=

Vc d
k
q cPcPdqscore )|(log)|(),( θθ                                       (7) 

where k
qθ  is given by Equation (6) and 0

qθ is the original 

parameter setting of query model, i.e., θq, in Equation (2). 
Now, let us illustrate the mutual influence between similar terms 
during the random walk. Given the MC model in Figure 1, we 
assume the initial query terms to be “program design” and 
“article”. The literal translations of these terms are “程序设计” 

(program design) and “论文” (thesis). Other words enclosed in 
circles are related terms (through mono-lingual relations). In the 
figure, we see that “article” has two translations “冠词” (article - 

in linguistics sense) and “论文” (thesis/paper).  As “冠词” (article) 
does not have any other similar terms except “article”, its 
probability will stay low during the random walk.  On the other 
hand, the probabilities of “程序设计”, “论文”, “程序” and “设
计 ” will be increased, because they will receive probabilities 
transmitted from related terms. These terms are strongly related to 
the query, so the effect is desired. This example shows that MC 
models naturally integrate query expansion and translation.  

4. Parameter Estimation 
In this section we describe in detail how we estimate the 
parameters of the MC models. We have seven parameters to 
estimate, i.e., three probabilistic models P(vj | vi, l), with l∈{trans, 
coc, contain}, each for one of the three types of relationship, the 
three corresponding type selection probabilities P(l), and the 
stopping rate γ .  In section 4.1, we will describe how to estimate 
the three probabilistic models, and then in Section 4.2, we use line 
search algorithm to estimate the other parameters. 

4.1 Probabilities of Relationships 
In this study, we use a bilingual dictionary as the translation 
resource. The probability P(vj|vi, trans), i.e., the translation 
probability between two terms can be estimated in several ways 
given the bilingual dictionary: 
(1) Uniform distribution: we assign equal probabilities to all 

candidates, that is: 

| ofon  translatia  ||
1),|(

ikk
ij visvv

vtransvP =                      (8) 

where |{.}| is the number of unique elements in a set. This is one 
of the simple methods used in previous studies, but it may 
introduce much noise.  
(2) Assignment by translation model (GIZA++): a bilingual 
dictionary can be treated as a parallel corpus: Each English word 
(or phrase) is aligned to the set of its translations, which is 
considered as a sentence. We thus can train a statistical translation 
model using tools such as GIZA++ [24].  We only trained IBM 
model 1 [3]. This method tries to determine translation 
probabilities so as to maximize the likelihood of the given 
sentence alignments. A translation that is appears in more aligned 
“sentences” will be assigned a higher probability than the one that 
appears in less aligned “sentences”. Thus the probability 
indirectly reflects how often a translation is frequently used 
between two languages. It is usually more reasonable than the 
uniform assignment. 
The estimation of contain relation is similar to the uniform 
translation model.  We count the number of terms vj which can be 
a part of the term vi, and assign the probability uniformly: 

| ofpart  a  ||
1),|(

ikk
ij visvv

vcontainvP =                                    (9)         

Monolingual co-occurrence relations can be estimated on large 
monolingual corpora by counting the number of windows of a 
fixed size containing the two terms.  The English corpora we used 
are AP88-90 and the Chinese corpora are the document collection 
that we use for CLIR experiments (see Section 5). For two terms 
vi and vj let M(vi, vj) be a measure of closeness of the two terms. 
Then the relation between vi and vj is defined as follows:  

∑
=

k
jk

ji
ij vvM

vvM
vcontainvP

),(
),(

),|(
                                                (10)                           

M(vi, vj) can be any statistical metric measuring the association 
between the two terms such as relative frequency, mutual 
information, information gain and log-likelihood ratio [8].  We 
use log-likelihood ratio because it produced the best results in our 
experiments.  To filter noise, we only keep the 30 strongest co-
occurring terms for each term.  
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4.2 Parameter Tuning 
We estimate the probability of selecting each of the three 
relationships, i.e., P(l) and },,{ containcoctransl∈  and the 
stopping rate γ. For estimating these parameters, various methods 
can be used, such as Gradient descent-like approaches [7, 29], 
Boosting algorithm [21], and so on.  However, the objective 
functions used in these methods only are loosely related to the 
Mean Average Precision (MAP) which is used to measure the 
effectiveness of IR systems.  Here we choose an alternative 

approach based on line search to optimize the parameters so as to  
maximize the MAP on training data directly. This approach has 
been used in [9, 23] and proven to be very effective. Let us denote 
the four parameters by a vector )}(),(),({ containPcocPtransP∈θ  , 
and each dimension of the model θ is denoted as 4,3,2,1, =iiθ . 

Given a test collection with relevance judgments for a set of 
queries, the MAP resulting  
from θ is denoted by MAP(θ). The learning approach can thus be 
formulated as: 

)(maxarg* θθ θ MAP=                                                              (11)                                                        

The optimization problem can be cast as the multi-dimensional 
function optimization algorithm [25, 9]. The procedure works as 
follows:  4,3,2,1, =iiθ  are taken as a set of directions. Line search 
moves along the first direction while keeping the other 
unchanged, so as to maximize the MAP; then it moves from there 
along the second direction to maximize the MAP, and so on.  
Cycling through the whole set of directions as many times as 
necessary, until the MAP stops to increase, we obtain the values 
of the parameters. This method is intuitive and efficient, but it 
may converge to different local maxima with different start points. 
Therefore, we perform the procedure multiple times with random 
start points, and select the parameters that produce the best MAP. 
P(l) is normalized to become a probability.   

5. Experiments 
5.1 Experimental Setting 
We evaluated the MC models with three benchmark English to 
Chinese CLIR collections: TREC5&6, TREC9 and NTCIR3. 
Table 1 shows the statistical information of these collections. 
 We conducted our experiments using cross-validation: The 
models evaluated on the TREC9 collection were learned on 
TREC5&6 datasets; the models evaluated on TREC5-6 
collections were trained on the TREC9 dataset; the models 

evaluated on NTCIR3 were trained on both TREC9 and 
TREC5&6.  
All Chinese documents and the translated queries are segmented 
using dictionary-based approach. The Chinese dictionary was 
compiled by UC Berkeley, which contains 137,613 words. When 
indexing document collections, we used all possible words in the 
dictionary and all single Chinese characters as indexing units [18]. 
All English queries are stemmed with Porter stemmer and the stop 
words are removed. Since we do not have a phrase recognizer, we 
only recognize phrases stored in our bilingual dictionary. Each 
query in TREC and NTCIR collection has three fields: title, 
description and narrative. We used two versions of queries: short 
queries that contain only titles and long queries that contain all the 
three fields.  
We defined different window sizes to extract term co-occurrences 
from English and Chinese corpora, respectively. The window 
width is 8 words for English, and 10 characters for Chinese.    
The bilingual dictionary we used is a combination of two human 
compiled bilingual lexicons, including the LDC English-Chinese 
dictionary and a bilingual lexicon generated form a parallel corpus. 
The dictionary contains 123,747 English entries, including 
108,799 words and 1,4948 phrases. 
We have developed an experimental IR system based on Lemur 
4.2 [26]. The main evaluation metric is the Mean Average 
Precision (MAP). Different from TREC evaluation, NTCIR uses 
two relevance judgments: rigid relevance which only considers 
highly relevant documents, and relaxed relevance which also 
considers partially relevant documents. We use rigid relevance for 
our evaluation. T-test is also conducted for significance test. 

5.2 Does the MC Model work? 
In this section we present comparison results of the MC models 
with other traditional CLIR models. Tables 2, 3 and 4 show the 
main results on the three collections using short and long queries. 
Two variants of the MC models are tested, in which the initial 
translation probability is respectively the uniform probability and 
the translation probability generated by applying GIZA++ on the 
dictionary. To evaluate the effectiveness of the MC model, four 
baselines are compared: 
ML (Monolingual). In this model, the documents are retrieved 
with the manually translated Chinese query set provided in the 
collections. Its performance is usually considered as the upper 
bound of CLIR.  
UM (Uniform Model). This model assigns a uniform distribution 
of translation probability to all the translation candidates stored in 
the dictionary. When translating an English query, if we encounter 
an English phrase in the query that exists in the dictionary, then 
the phrase translations are used; otherwise, translation of single 
words are used.  
FM (First-one Model). The total translation probability is 
distributed to the first translation candidate. As UM, phrase 
translation is used in preference to word translation.  
The above two methods may be too simplistic to serve as baseline 
methods. Nevertheless, we include them in the tables. A more 
reasonable baseline method is the following one: 
GizaM (GIZA Model). The translation probabilities in this model 
are obtained with the GIZA++ toolkit, which extracts a statistical 
translation model from the bilingual dictionary, considered as a 

Coll Description Size (MB) #Doc #Qry 

TREC5&6 
People’s Daily (1991-1993) & 
Xinhua News Agency (1994-
1995) 

162 164,789 54 

TREC9 
HongKong Commercial Daily 
News, HongKong Daily News 
and Takungpao News 

260 127,938 25 

NTCIR3 
Chinese Times, Central Daily 
News, China Daily and United 
Daily News 

508 381,681 50 

Table 1: Statistical Information of Dataset 
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parallel corpus. GizaM model considers the frequency of 
translation of one word. If a translation appears several times, 
either as a translation item for the given word alone, or as a part of 
a translation of a compound term containing the given word, then 
the translation word will be assigned a higher probability. Some 
previous studies [12] have exploited the frequency of translation 
terms in a document collection in order to select the most frequent 
translation word. The GizaM model exploits a similar principle, 
by assuming that the more a translation word corresponds to a 
source word in the dictionary, the more it is a frequent one and 
thus should be favored. As we can see in Tables 2-4, this model is 
a reasonable baseline because it results in retrieval effectiveness 

comparable to most of the previous studies on the same test 
collections [10, 11, 13, 33, 34]. 
Once the translation model is trained on the dictionary, we select 
the top 10 translations for each term for the short queries and top 

3 for long queries. These same numbers are selected for the 
following two MC models. 
UM+MC. The queries are translated with MC model. The initial 
translation probabilities are obtained from UM.  
GizaM+MC. This model is similar to UM+MC, but the initial 
translation probabilities are obtained from GizaM. 
 From Tables 2, 3 and 4, we find that UM performed the worst 
among all the methods. This is because it treated all translation 
candidates of a query term equivalently and introduced much 
noise (irrelevant translation terms). FM performed slightly better 
than UM in almost all runs except for short queries of NTCIR3. 

The reason is that FM only selects the first candidate, which can 
avoid including noise translation candidates to some degree. 
However, this “aggressive” selection can also remove relevant 
translation terms. GizaM can assign a translation probability 
between two terms according to how often one appears as a 
translation of another. The translation probabilities have been 

 
Model Short Query Long Query 

 MAP % of 
ML 

Imp. Over UM Imp. Over 
GizaM 

MAP % of 
ML 

Imp. Over UM Imp. Over 
GizaM 

ML 0.3754  ----- ----- 0.4929 ----- ----- ----- 

UM 0.1281 34.12% ----- ----- 0.2708 54.94% ----- ----- 

FM 0.1325 35.03% 3.43% ----- 0.2734 55.47% 0.96% ----- 

GizaM 0.3414 90.94% 166.5%** ----- 0.4341 88.07% 60.30%** ----- 

UM+MC 0.2918 77.73% 127.8%** -17.45% 0.4463 90.55% 64.80%** 2.81% 

GizaM+MC 0.3720 99.09% 190.3%** 8.96%* 0.4594 93.30% 69.64%** 5.82% 

Table 2: Compare Different Model for TREC5&6 Collection 

 

Model Short Query Long Query 

 MAP % of 
ML 

Imp. Over UM Imp. Over 
GizaM 

MAP % of 
ML 

Imp. Over UM Imp. Over 
GizaM 

ML 0.2819 ----- ----- ----- 0.2961 ----- ----- ----- 

UM 0.0976 34.62% ----- ----- 0.1110 37.49% ----- ----- 

FM 0.1220 43.28% 24.99% ----- 0.1354 45.73% 21.98% ----- 

GizaM 0.2542 90.17% 160.5%** ----- 0.2693 90.95% 142.6%** ----- 

UM+MC 0.2750 97.55% 181.7%** 8.18% 0.2622 88.55% 136.2%** -2.63% 

GizaM+MC 0.2897 102.77% 196.8%** 13.97%* 0.2730 92.20% 145.9%** 13.74%* 

Table 3: Compare Different Model for TREC9 Collection 
 

Model Short Query Long Query 

 MAP % of 
ML 

Imp. Over UM Imp. Over 
GizaM 

MAP % of 
ML 

Imp. Over UM Imp. Over 
GizaM 

ML 0.2222 ----- ----- ----- 0.2840 ----- ----- ----- 

UM 0.0626 28.17% ----- ----- 0.1212 42.68% ----- ----- 

FM 0.0611 27.50% -2.40% ----- 0.1460 51.41% 20.46% ----- 

GizaM 0.1422 63.99% 127.1%** ----- 0.1800 63.38% 48.51%** ----- 

UM+MC 0.1442 64.90% 130.3%** 1.41% 0.1987 69.96% 63.94%** 10.38% 

GizaM+MC 0.1489 67.01% 137.8%** 4.71% 0.2130 75% 75.74%** 18.33%* 

Table 4: Compare Different Model for NTCIR3 Collection 
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trained using the EM algorithm [6] to maximize the likelihood of 
translating each English term by its Chinese translations (the 
parallel sentence in the dictionary). The advantage of GizaM is 
that it can assign a strong probability to a translation term if the 
latter is a specific and unambiguous translation term of the former. 
However, in GizaM, the whole translation probability is still 
distributed only to the translations stored in the dictionary. In the 
above tables, we can see that GizaM performed fairly well. Its 
effectiveness is around 90% of that of ML in four runs (both short 
and long queries) of TREC5&6 and TREC9.   
For MC models, we observe that the two MC variants are all 
promising: UM+MC model outperformed UM significantly in all  

the six runs. GizaM+MC outperformed GizaM in all runs, and it 
even outperforms the ML for short queries of TREC9. This result 
confirms the advantages of our MC approach. To see better where 
the superior effectiveness comes from, let us analyze the example 
shown in figure 2 for the query “forest railway in Mount Ali”. 
In this example, mount is translated by FM incorrectly as a verb. 
For the UM model, we only list the translations of “forest” and we 
can observe that many translations are unrelated to the query. 
GizaM seems to be able to distribute strong probabilities to related  
translation terms. Compared with UM and GizaM, the 
probabilities assigned by MC models seem generally more 
appropriate. In addition, they can also suggest some non-
translation but related words such as 蒸汽 (steam) and 嘉义 (Jiayi) 

which is a city connecting Mount Ali. The example confirms the 
two advantages of MC that we expected: 
1. The integration of more term relations can extend translation 

to broader similar terms, thus producing larger query 
expansion effect; 

2.  The iterative probability adjustment process can produce a 
better probability distribution. 

The above results are produced with a random walk of 4 steps for 
UM+MC and 2 steps for GizaM+MC. We observed that the 
performance was improved when increasing the steps. This 
indicates that iterative adjusting similarities between terms are 
useful for retrieval. We also observed that UM+MC outperformed 

GizaM in four runs (i.e., long query of TREC5&6, short query of 
TREC9 and two runs of NTCIR3) and achieved comparable 
results with UM+MC in the other two runs. This shows that MC 
models can capture the same characteristics as GizaM. Indeed, 
both models work with similar principles: They use an iterative 
learning procedure to assign a high probability to strong 
translation candidates. Therefore, UM+MC and GizaM performed 
similarly. However, GizaM+MC can further improve the 
performance of GizaM in most of the cases. The difference 
between them is directly attributed to the addition of more 
relations in GizaM+MC.  

5.3 The impact of Different Relationships 
In this section we investigate the impact of different relationships 
on the retrieval effectiveness. Tables 5 and 6 show the results of 
MC models with uniform translation probability (UM+MC) on the  

three collections. In the tables, UM is the uniform model 
mentioned in section 5.2; T represents the MC model only using 
translation relation; T+C represents model using translation 
relation plus co-occurrence relation; T+Con represents  the model 
using both translation relation and contain relation; T+C+Con 
represents the model using all three relations. The T model is 
indeed equivalent to the one used in [22]. The tables show that the 
T model outperforms UM substantially. This can be explained by 
two reasons. First, after propagating the similarity via a random 
walk, the translation distribution in the T model is changed from 
uniform distribution to the one which assigns a higher probability 
to a term if it is connected to many query terms. Second, we only 
select the top m terms as query translation. This helps filter out 
some noise (which typically has a low probability).  
Indeed, as we mentioned earlier, UM is too simplistic to serve as a 
baseline method. However, T is a reasonable baseline method, 
which corresponds to the state of the art [22]. 
We observed that when more relationships are added into the MC 
model, the effectiveness is further improved. The best model is 
the one that uses all the three relationships.  

English query: Forest Railway in Mount Ali 

ML:      阿里 山 森林 火车 

FM:     森林 (forest)  0.5; 林 (woods) 0.5;路线 (road) 0.5; 轨道  (rail)  

            0.5;  登上  (go up) 0.5 …. 

UM:    森林 (forest) 0.5; 造林 (plant trees) 0.5; 山林 (forest in the mountain)  

            0.5; 植树 (plant trees) 0.5 ; 野 (wild) 0.5...  

GizaM:    林 (woods) 0.657819;森 (forest)0.161144; 铁 (iron)  

      0.455182;铁路 (railway) 0.295346; 装 (set up)  

      0.395038; 安 (install) 0.222885; 阿里(Ali) 0.293588... 

UM+MC: 铁路 (railway) 0.0565199; 森林 (forest) 0.0528217;  

                 经铁路 (via railway) 0.0508112; 铁道 (railway)    

                 0.0508112;阿里 (Ali)0.049161; 蒸汽 (steam) 0.0241262... 

GizaM+MC:  林 (woods) 0.10024;铁路 (railway) 0.0651897; 阿里  

                      (Ali) 0.0606648; 森 (forest) 0.0403337;森林  

                     (forest)0.0367658; 嘉义 (Jiayi) 0.021745... 

Figure 2:  Translation obtained by Each Models for One Query 
(Note: The probability of translations in FM is 0.5 because we 

used the first translations from two different dictionaries.)  

Relation TREC5&6 TREC9 NTCIR3 

 MAP Imp. 
Over T 

MAP Imp. 
Over T 

MAP Imp. 
Over T 

UM 0.2708 ----- 0.1110 ----- 0.1212 ----- 

T 0.4372 ----- 0.2431 ----- 0.1904 ----- 

T+C 0.4458 1.97% 0.2618 7.69% 0.1927 1.21% 

T+Con 0.4391 0.43% 0.2578 6.05% 0.1987 4.36% 

T+C+Con 0.4463 2.08% 0.2622 7.86% 0.1987 4.36% 

Table 6: Different Relation Combinations for long queries 

Relation TREC5&6 TREC9 NTCIR3 

 MAP Imp. 
Over T 

MAP Imp. 
Over T 

MAP Imp. 
Over T 

UM 0.1281 ----- 0.0976 ----- 0.0626 ----- 

T 0.2761 ----- 0.2616 ----- 0.1257 ----- 

T+C 0.2902 5.10%* 0.2719 0.11% 0.1431 13.84% 

 T+Con 0.2829 2.46% 0.2746 1.10% 0.1267 7.95% 

T+C+Con 0.2918 5.68%* 0.2750 1.25% 0.1442 14.71% 

Table 5: Different Relation Combinations for short queries 
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On the other MC model, GizaM+MC, we have observed a similar 
behavior. Due to the space limitation, we do not present the 
details here.  
The experimental results confirm our hypotheses: 1) Integrating 
more term relations than translation can improve query translation 
in CLIR; 2) Using an iterative random walk process in MC leads 
to a more reasonable probability distribution. 

6. Related Work 
The MC model we used here integrates both query translation and 
query expansion in a unified framework. Query expansion has 
been investigated in the context of CLIR in a number of previous 
studies. Ballesteros and Croft [1] explored query expansion 
methods for CLIR by combining pre- and post-translation 
expansion, and they found that the method can effectively 
improve retrieval effectiveness. McNamee and Mayfield 
conducted a series of experiments to compare CLIR query 
expansion techniques [20]. They also found similar results to [1]. 
The pre- and post-translation expansions are conceptually similar 
to our addition of more term relations. Thus our experiments 
confirm their observation. 
However, our work is different from the above two in the 
following aspects: 
1). Pre- and post-translation expansions have been separated from 
translation. In fact, as illustrated in [20], their models are divided 
into three phases (pre-translation expansion, query translation, and 
post-translation expansion), that have been handled independently. 
In contrast, our MC model incorporates the three phases together 
within the same framework. 
2). Comparing to the expansion process, our MC model-based 
approach is theoretically more sound, and easier to extend.  We 
also used a principled way to optimize all parameters.  
MC models have been used for many other tasks. [21] used the 
random walk model to disambiguate person’s names in e-mails, 
but the relationships in their model are binary. In IR, infinite 
random walks have been used for document or webpage re-
ranking [17, 27].  The idea of representing semantic similarities 
by a graph has also been used in NLP and IR.  [19, 4] used a 
random walk model for monolingual query expansion.  But they 
only use one type of relationship.  [29] presented a MC model for 
pp-attachment disambiguation. [22] used MC for query translation 
in CLIR. However, the MC is built on a dictionary, so translation 
suggestions are bounded by the dictionary. In our case, we 
extended the translation relations to cross-language semantic 
similarity relations. In so doing, we can create more effect of 
query expansion.  
7. Conclusion  
Dictionary-based approaches are widely used for CLIR because of 
their simplicity and the availability of machine-readable 
dictionaries. However, we are faced with several problems: 
limited coverage and lack of a measurement for the reliability of 
the translation candidates. In this paper we proposed a method 
based on MC models, which integrate several types of 
monolingual term relation, in addition to the translation relation.  
As a result, query translation is extended to cross-lingual query 
expansion. 
The MC models also adjust the probabilities of terms 
automatically through a random walk. We showed in our 
experiments that the final distribution produces higher retrieval 

effectiveness than the original one.  This shows that the random 
walk can effectively adjust terms’ cross-lingual similarity to the 
query so that strongly related target terms are assigned higher 
probabilities.  
In this paper we only investigate three types of relation: 
translation, co-occurrence and containment.  However, the method 
can be easily extended to include more types of relations. Among 
other useful relations are synonymy, hyponymy and hypernymy.  
A possible way of improving our approach is to consider 
dependency between terms. In our current model the resulting 
translation candidates are considered independently once they 
have been generated.  In fact, other criteria, such as the coherence 
between the candidates, can also be useful to help select better 
candidates [10]. We leave it to future work to integrate these 
criteria into MC models.  Currently, the estimation of transition 
probabilities is made according to the whole collection.  It might 
be more reasonable to estimate them using local contexts related 
to a given query. This leads to a query-dependent MC model – 
another area of our future work. 
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