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Abstract

In this paper, we propose a new method to cross-media semantic-based information retrieval,
which combines classical text-based and content-based image retrieval techniques. This semantic-
based approach aims at determining the strong relationships between keywords (in the caption) and
types of visual features associated with its typical images. These relationships are then used to re-
trieve images from a textual query. In particular, the association keyword/visual feature/characterization
may allow us to retrieve non-annotated but similar images to those retrieved by a classical textual
query. It can also be used for automatic images annotation. Our experiments on two different
databases show that this approach is promising for cross-media retrieval.

I. INTRODUCTION

In general, image retrieval can be either text-based or image-based. In the first case, a user submits a
textual query and the system searches for images with similar keyword(s) in its captions. In the latter,
the system tries to determine the most similar images to a given query image by using low level visual
features such as color, texture or shape. Some recent approaches have tried to go a step further and has
proposed a semantic-based approach in order to assign a semantic meaning to the whole image or to its
regions. This approach can be also used for automatic images annotation. In this paper, we investigate
a similar approach to image retrieval. In our approach, we try to characterize a given (key-)word by the
most discriminant and representative visual feature(s) associated with it (i.e., color, texture or shape)
and then by one or several descriptions (descriptor or feature vector) of the selected feature.

Among the semantic-based approach, but only image content-based, different kinds of methods have
already been investigated. We can cite, for example, the approach used in [1] which consists in grouping
images into semantically meaningful categories. This system was applied on ������� vacation photographs
to obtain a classification such indoor/outdoor, city/landscape, etc. This classification is performed by a
Bayesian classifier under the constraint that the test image does belong to one of the classes beforehand
established by human subjects. We can also cite the approach used in [2] which clusters the image regions
into �	� clusters (cloud, grass, etc.) and uses a probabilistic approach to define a semantic codebook
of every cluster. Nevertheless, some recent studies [3] have tried to automatically create associations
between visual features and keywords. The basic idea is to use a set of annotated images as a set
of learning examples, and to extract strong associations between annotation keywords and the visual
features of the images. In particular, a segmentation algorithm, such Blobword[4] or Normalized-cuts
[5] is used to produce segmented regions, then for each region, feature information (color, texture,
position and shape) is computed. The set of computed features are clustered into regions which are



called “blobs” which define the vocabulary for the set of images. Finally images are annotated by the
means of a cross-media relevance model.

Instead of using pre-segmented image regions, described by multiple features (color, texture, shape,
etc), our approach uses the whole image content and try to find out the most representative clusters of
images and the associated visual feature(s). Compared to [3], our approach has the advantage of not
being dependant of a specific segmentation and can take into account relationships between regions
(e.g., airplane-sky, animal-grass,boat-sea, etc). Besides, some (key)words are best represented by one
feature than by considering several features (e.g., airplane with shape, sea with texture, cathedral with
contours). Our approach tries to identify such strong associations between words and visual features.

The rest of the paper is organized as follows: In section II, we will present the image processing
techniques developed for this retrieval system; i.e., the considered visual features (texture, contours and
shape) as well as their corresponding similarity measures. In section III, we will describe the way that
relationships between keywords and visual features are extracted by the means of a learning procedure.
In section IV, we will present some experimental results on the annotated imageCLEF and Corel c

�
databases and we conclude.

II. IMAGE PROCESSING RETRIEVAL TECHNIQUES

Edge, texture and shape (including color) informations are important cues for pattern recognition and
retrieval purposes in large image database. In our approach, we have considered these cues as the three
fundamental classes of visual characteristics, which we will call features in this paper. For each of the
features, we consider a descriptor that will allow to define a discriminant measure for each considered
feature.

Edge Descriptor: Wavelet-based measures have often been used in content-based image retrieval
(CBIR) systems because of their appealing ability to describe the local texture and the distribution of
the edges of a given image at multiple scales. In this study we use the Harr wavelet transform [6] for
the gray-level component of the image (because one of the test dataset contains mostly black and white
images). The procedure of image decomposition into wavelets involves recursive numeric filtering. It is
applied to the set of pixels of the digital image which is decomposed with a family of orthogonal basis
functions obtained through translation and dilatation of a special function called mother wavelet. At each
decomposition scale, we obtain four sub-bands, which we refer to as LL, LH, HL and HH according
to their frequency characteristics (L : Low and H : High). The LL sub-band is then decomposed into
four sub-bands at the next scale. Three sales of transformation are considered here. For decomposition
of each scale, we compute the mean and the standard deviation ( ��� and ��� ) of the energy distribution
in each (of the ��� �	� ) sub-band. This leads to an edge descriptor
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where �-,.� � / and �-,4��� / are the standard deviations of the components � � and ��� respectively over
the entire database.

Texture Descriptor: Tamura and al.[7] have proposed to characterize image texture along the dimen-
sions of contrast, directionality, coarseness, line-likeness, regularity and roughness. The directionality
is a global texture property which measures the sharpness of the peaks in the oriented edge histogram.
Coarseness refers to the average of the best representative sizes of the textons (i.e., texture resolution
representation). To describe the texture feature, we use the coarseness and directionality histograms.
We make two adjustments to the well known coarseness algorithm [7]: 1). We set some predefined
texture resolutions

� �  �  ���  � �  � �  � �  � � � instead of
����� ���

with 	 � �  � ������  � ; 2). We deal
with homogeneous regions bigger than the maximum of texture resolutions taken in account. After
thresholding, the oriented edges are quantized into an

�
-bin histogram. Finally the dimension of the

texture descriptor is ��
 and histograms are compared by the Jeffrey divergence [8].

Shape and Color Descriptor: Extraction of shapes contained in an image remains a difficult task.
One can use a contour detection algorithm (such as the Canny or Sobel edge detector) as a preliminary
step in the shape extraction. However, these methods remain highly dependent on some parameters
as thresholds. Instead, ollowing [9], we first estimate a segmented image from which we extract the
contours of different regions. The segmented image defines a set of connected pixels belonging to a
same class. In this procedure, the noise is taken into consideration, edges are always connected, and
the only parameter adjustment is the number of regions used in the segmentation procedure. Then, for
each edge pixel, we define a direction (horizontal, vertical, first or second diagonal) depending on the
disposition of its neighboring edge pixels and compute a � -bin histogram. We complete this information
by computing a � �

-bin color histogram by using the HSV color space. The final ��� -bin histogram is
then exploited for a distance measure, similar to the one used for the wavelets.

III. ASSOCIATING WORDS WITH REPRESENTATIVE IMAGES AND FEATRES

Given a set of training images with caption, we try to automatically determine one or several clusters
of images representative for each word, together with the most discriminative feature(s), i.e. texture,
edge and shape-color. The principle is as follows: For each word, we try to group the images associated
with it into several clusters (at different scales) According to each feature. Using one cluster as a visual
query, if we can find many images annotated with the word among the most similar images According
to the associated feature, then the cluster and he feature are considered to be characteristic For the word.
In ths way, each word can be ssociated with zero, one or several clusters and features.

More precisely, let us define some notations : let � and �� be respectively the set of all images in
the training dataset and the set of all images that are annotated with the keyword � . �(��� will designate
the cardinal or the number of elements of a considered set: By applying the three visual features
characterizations to �� , we obtain three set of descriptors � t �������������� , � e �� !�� � and � s "�#%$��� � . We will use the

notation � f �&#'�����'�� � to refer to each of these descriptors.
For a fixed number of regions (we consider 1, 2, 4, ?? regions in our case), we use the Generalized

LLoyd [10] algorithm to cluster each set � f �&#'�����'�� � in ( partitions, thus, we obtain several ) *+� f �&#,���-�'�� �



clusters, where ( denote the number of partitions used in the clustering and � the � � " cluster in this
( -clustering. The error-distance used in the clustering of � f �&#'�������� � is the similarity measure of the
feature

�������	��
��
. For each value of ( , this clustering allows us to approximate the distribution of the

set of samples �� � #'�������� � by ( spherical distributions with identical radius. The centers (centroids) of
these approximated spherical distributions are then considered as prototype vectors and are denoted by
) *�� f �&#'�������� � . Several values of ( are used to take in account the fact that a given word may be associated
to many images classes. For example, the word BOAT may be associated with images with small shape
of boat in sea, or with a closer view of boat, and so on. For each cluster ) * � f �&#'���������� , its associated
centroid is used as a descriptor vector of a virtual image representative of the word. The virtual image
will be used to query the whole training database � to get the closest descriptors (or images) according
to the similarity measure associated to the feature f

��������
��
. The training process is as follows: � First, in

order to associate each (key-)word � with the most discriminant class of visual characteristic � ��������
�� ,
we use the following strategy;

For each considered cluster ) * � f �&#'�����'�� � , we count the number of images annotated by the word � that

are retrieved among the first � ( � � � in our case) retrieval result for each � �����	��
�� . Let
����� � f �&#,���-�'�

be this number. We count the sum of the
�	��� � f �&#,���-�'� resulting from the query by all corresponding

prototype vectors. We then consider the class of visual feature for which this sum is maximal.

� Second, in order to define a set of prototype vectors associated to the pre-estimated class of visual
feature, we adopt the following strategy;

We characterize a given cluster ) * � f �&#'�����'�� � by three measures: its proportion � within �� (simply, � �
� ) * � f �&#'�������� � ��� � �  � ), its standard deviation � (computed according to the similarity measure of f

��������
��
),

and an empirical measure � which represents the number of images, not annotated by the word � , for
which the euclidean distance between its descriptor vector and the prototype vector ) * � f �&#'�����'�� � is less

than the pre-estimated standard deviation � , namely � � � �� �! �  �#" �	$ � , ) * � f �&#'����������  ) *�� f �&#'���������� /&%� � ��� �  � .
Once one feature or several weighted features are fixed, we choose representative prototype vectors

regarding to � , their proportion and their standard deviation as follows: We use a first criterion to
exclude prototype vectors for which �(' � � � 
 and �)% � � � 
 . If there is no remaining prototype vector,
then we ignore this criterion. The second criterion is to retain prototype vectors for which �*� � is less
than a threshold.

The result of the training process is that a word may be associated with zero, one or several clusters
of representative images, together with an associated feature to each cluster.

IV. EXPERIMENTAL RESULTS AND CONCLUSION

The experimental results are based on the historical image database ‘St Andrews University Library
Photographic Collection’ provided by ImageCLEF 2004 [11]. This database contains

���  � ��� images
with caption. The caption text associated to each image contain approximatively ten (key)words. Our
goal was to improve textual and multi-words queries by extending words to their associated visual
features but our experiments in this context are extremely difficult due to the poor quality of the images



of this database and also the presence of some (key)words used in the request with an abstract concept.
(“Scotland”, “north”, “tournament”, etc.).

We have also extended the results of this semantic-based image retrieval system to a set of
� �������

images extracted from the Corel c
�

database where each image is annotated by a few concrete and
significant keywords. To test the relevance of our approach, we have taken the set of images annotated
by a word w and we remove hfe word from the caption of 
 ��� of images of this set. We use these
images as reference. We try to see how our approach is able to retrieve these images with a query made
of the removed word. We will emphasis on two aspects of our results: the retrieved references images
and the non-annotated images retrieved.

Table 1 shows some words with the estimated weights for each class of visual feature. Most asso-
ciations have a significant meaning : animal is associated to shape and texture features, ocean is most
described by shape (probably due to the presence of boats), tiger is described by texture and contours,
zebra is associated to texture, etc. However, some words have almost the same weights for the three
features, for example water, sky, garden and tree. This may be due to the high number of learning
vectors. The word texture is strangely associated with shapes and contours.

By choosing clusters with high value of � , we can guess to obtain more images that are not annotated
by the word, but which are related to this word. In other hand, low values of this measure may yield
to more images that are really annotated by the word; this may be useful in the case of queries with
multiple words, so to eventually improve the text retrieval result. 2 shows two query result for the words
flower and animal : the algorithm described in III was used to produce this result. Even if the reference
images (randomly deannotated images) were not retrieved successfully, we can see that most of images
are related to the query word.
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�
top20 over all clusters associated weights

word texture contours shape texture contours shape Number of
training vectors

water 61 74 65 0.30 0.37 0.32 2550
sky 65 66 60 0.34 0.34 0.31 2323
tree 85 79 72 0.36 0.33 0.305 2242
people 60 76 51 0.32 0.40 0.27 1908
grass 27 35 28 0.30 0.38 0.31 1061
flower 16 51 61 0.12 0.39 0.47 934
wild 15 17 15 0.31 0.36 0.31 707
bird 24 12 9 0.53 0.26 0.20 595
plant 8 13 10 0.25 0.41 0.32 439
garden 14 14 14 0.33 0.33 0.33 301
sunset 8 15 19 0.19 0.35 0.45 260
ice 6 8 5 0.31 0.42 0.26 240
ocean 15 26 44 0.17 0.30 0.51 231
animal 7 3 11 0.33 0.14 0.52 204
ski 0 4 1 0.00 0.80 0.20 153
texture 8 10 17 0.22 0.28 0.48 126
rural 3 7 3 0.23 0.53 0.23 124
insect 1 10 7 0.05 0.55 0.38 123
tiger 14 10 9 0.42 0.30 0.27 73
zebra 13 9 8 0.43 0.30 0.26 26

Fig. 1. A list of words with their relative measures of the sum of their associated top20; they are classified by the
number of the training vectors.
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Fig. 2. A semantic query result for the words flower and animal; the identification number is shown above each image,
and the similarity distance is reported below the image. Two others informations are eventually reported above an image
: U-A stands foe Un-Annotated image by the word and Ref which stands for a reference image. Negative values of
distances are due to the zero mean and unit standard deviation normalization
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refX annX ref sunbj
word ann10 ann20 ann50 ann100 ref10 ref20 ref50 ref100 subj10 subj 20 subj 30
flower 1 2 3 7 2 3 5 8 9 17 28
animal 1 1 2 3 0 0 0 0 6 9 16
birds 1 1 4 5 1 1 3 5 3 7 9
ice 0 0 0 1 0 0 0 1 0 0 0
grass 0 0 0 5 0 1 1 4 9 15 26

Fig. 3. Some statistics about the top retrieved un-annotated images which are related to the word (subject judgement)
and the top annotated and retrieved images and the top of reference retrieved images. //a reformuler


