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Abstract

A recent neural model of illusory contour formation is based on
a distribution of natural shapes traced by particles moving with
constant speed in directions given by Brownian motions� The input
to that model consists of pairs of position and direction constraints
and the output consists of the distribution of contours joining all
such pairs� In general� these contours will not be closed and their
distribution will not be scale	invariant� In this paper� we show
how to compute a scale	invariant distribution of closed contours
given position constraints alone and use this result to explain a
well known illusory contour e
ect�

� INTRODUCTION

It has been proposed by Mumford��� that the distribution of illusory contour shapes
can be modeled by particles travelling with constant speed in directions given by
Brownian motions� More recently� Williams and Jacobs��� �� introduced the notion
of a stochastic completion �eld� the distribution of particle trajectories joining pairs
of position and direction constraints� and showed how it could be computed in a
local parallel network� They argued that the mode� magnitude and variance of
the completion 
eld are related to the observed shape� salience� and sharpness of
illusory contours�

Unfortunately� the Williams and Jacobs model� as described� has some shortcom	
ings� Recent psychophysics suggests that contour salience is greatly enhanced by
closure���� Yet� in general� the distribution computed by the Williams and Jacobs
model does not consist of closed contours� Nor is it scale	invariant�doubling the
distances between the constraints does not produce a comparable completion 
eld of



double the size without a corresponding doubling of the particle�s speeds� However�
the Williams and Jacobs model contains no intrinsic mechanism for speed selec	
tion� The speeds �like the directions� must be speci
ed a priori� In this paper� we
show how to compute a scale	invariant distribution of closed contours given position
constraints alone�

� TECHNICAL DETAILS

��� SHAPE DISTRIBUTION

Consistent with our earlier work��� ��� in this paper we do not use the same dis	
tribution described by Mumford��� but instead assume a distribution of completion
shapes consisting of straight	line base	trajectories modi
ed by random impulses
drawn from a mixture of two limiting distributions� The 
rst distribution consists
of weak but frequently acting impulses �we call this the Gaussian	limit�� The dis	
tribution of these weak impulses has zero mean and variance equal to ��g � The weak
impulses act at Poisson times with rate Rg� The second distribution consists of
strong but infrequently acting impulses �we call this the Poisson	limit�� Here� the
magnitude of the random impulses is Gaussian distributed with zero mean� How	
ever� the variance is equal to ��p �where ��p �� ��g�� The strong impulses act at
Poisson times with rate Rp �� Rg � Particles decay with half	life equal to a param	
eter � � The e
ect is that particles tend to travel in smooth� short paths punctuated
by occasional orientation discontinuities� See ��� ���

��� EIGENSOURCES

Let i and j be position and velocity constraints� �xi� �xi� and �xj � �xj�� Then P � jj i�
is the conditional probability that a particle beginning at i will reach j� Note that
these transition probabilities are not symmetric� i�e�� P �j j i� �� P �i j j�� However� by
time	reversal symmetry� P �j j i� � P ��i j �j� where �i � �xi�� �xi� and �j � �xj �� �xj��

Given only the matrix of transition probabilities� P� we would like to compute the
relative number of closed contours satisfying a given position and velocity constraint�
We begin by noting that� due to their randomness� only increasingly smaller and
smaller fractions of contours are likely to satisfy increasing numbers of constraints�

Suppose we let s
���
i contours start at xi with �xi� Then

s
���
j �

P
i P �j j i�s

���
i

is the relative number of contours through xj with �xj � i�e�� which satisfy two con	
straints� In general�

s
�n���
j �

P
i P �j j i�s

�n�
i

Now suppose we compute the eigenvector�

�sj �
P

i P �j j i�si

with largest� real positive eigenvalue� and take s
���
i � si� Then clearly s

�n���
i � �nsi�

This implies that as the number of constraints satis
ed increases by one� the number
of contours remaining in the sample of interest decreases by �� However� the ratios
of the si remain invariant� Letting n pass to in
nity� we see that the si are just
the relative number of contours through i� To summarize� having started with all
possible contours� we are now left with only those bridging pairs of constraints at
all past	times� By solving �s � Ps for s we know their relative numbers� We refer
to the components of s as the eigensources of the stochastic completion 
eld�



��� STOCHASTIC COMPLETION FIELDS

Note that the eigensources alone do not represent a distribution of closed contours�
In fact� the majority of contours contributing to s will not satisfy a single additional
constraint� However� the following recurrence equation gives the number of contours
which begin at constraint i and end at constraint j and satisfy n� � intermediate
constraints

P �n����j j i� �
P

k P �j j k�P
�n��k j i�

where P ����j j i� � P �j j i�� Given the above recurrence equation� we can de
ne an
expression for the relative number of contours of any length which begin and end
at constraint i�

ci � limn�� P �n��i j i��
P

j P
�n��j j j�

Using a result from the theory of positive matrices���� it is possible to show that
the above expression is simply

ci � si�si�
P

j sj�sj

where s and �s are the right and left eigenvectors of P with largest positive real
eigenvalue� i�e�� �s � Ps and ��s � PT�s� Because of the time	reversal symmetry
of P� the right and left eigenvectors are related by a permutation which exchanges
opposite directions� i�e�� �si � s�i�

Finally� given s and �s� it is possible to compute the relative number of closed
contours through an arbitrary position and velocity in the plane� i�e�� to compute
the stochastic completion 
eld� If � � �x� �x� is an arbitrary position and velocity
in the plane� then

C��� � �
�sT�s

P
i P �� j i�si �

P
j P �j j ���sj

gives the relative probability that a closed contour will pass through �� Note� that
this is a natural generalization of the Williams and Jacobs��� factorization of the
completion 
eld into the product of source and sink 
elds�

��� SCALE�INVARIANCE

Under the restriction that particles have constant speed� the transition probability
matrix� P� becomes block	diagonal� Each block corresponds to a di
erent possible
speed� �� Since the components of any given eigenvector will be con
ned to a single
block� we can consider P to be a function of � and solve�

���� s��� � P���s���

Let �max��� be the largest positive real eigenvalue of P��� and let �max be the speed
where �max��� is maximized� Then smax��max�� i�e�� the eigenvector of P��max�
associated with �max��max�� is the limiting distribution over all spatial scales�

� EXPERIMENTS

��� EIGHT POINT CIRCLE

Given eight points spaced uniformly around the perimeter of a circle of diameter�
d � ��� we would like to 
nd the distribution of directions through each point and
the corresponding completion 
eld �Figure � �left��� Neither the order of traversal�
directions� i�e�� �xi�j �xij� or speed� i�e�� � � j �xij� are speci
ed a priori� In all of
our experiments� we sample direction at �� intervals� Consequently� there are ��
discrete directions and ��� position	direction pairs� i�e�� P��� is of size ���� �����

�The parameters de�ning the distribution of completion shapes are T � Rg�
�

g � ������
and � � ���� For simplicity� we assume the pure Gaussian�limit case described in �	
�
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Figure �� Left� �a� The eight position constraints� Neither the order of traversal� direc�
tions� or speed are speci�ed a priori� �b� The eigenvector� smax��max
 represents the lim�
iting distribution over all spatial scales� �c� The product of smax��max
 and �smax��max
�
Orientations tangent to the circle dominate the distribution of closed contours� �d� The
stochastic completion �eld� C� due to smax��max
� Right� Plot of magnitude of maximum
positive real eigenvalue� �max� vs� log�������
 for eight point circle with d � �	�� �solid

and d � ���� �dashed
�

Figure �� Observers report that as the width of the arms increases� the shape of the
illusory contour changes from a circle to a square��
�

First� we evaluated �max��� over the velocity interval ��	�
��� �	����� using standard

numerical routines and plotted the magnitude of the largest� real positive eigenvalue�
�max vs� log��������� The function reaches its maximum value at �max � �	�����
Consequently� the eigenvector� smax��	�

���� represents the limiting distribution over
all spatial scales �Figure � �right���

Next� we scaled the test Figure by a factor of two� i�e�� d� � ��	� and plotted
��max��� over the same interval �Figure � �right��� We observe that ��max��	�

�x���
� �max��	�

�x�� i�e�� when plotted using a logarithmic x	axis� the functions are
identical except for a translation� It follows that ��max � log��� ���max � �	���max�
This con
rms the scale	invariance of the system�doubling the size of the Figure
results in a doubling of the selected speed�

��� KOFFKA CROSS

The Ko
ka Cross stimulus �Figure �� has two basic degrees of freedom which we call
diameter �i�e�� d� and arm width �i�e�� w� �Figure � �a��� We are interested in how
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Figure �� �a	 Ko
ka Cross showing diameter� d� and width� w� �b	 Orientation and
position constraints in terms of d and w� The normal orientation at each endpoint
is indicated by the solid lines while the dashed lines represent plus or minus one
standard deviation �i�e�� ��	��� of the Gaussian weighting function� �c	 Typically
perceived as square� �d	 Typically perceived as circle� The positions of the line
endpoints is the same�

the stochastic completion 
eld changes as these parameters are varied� Observers
report that as the width of the arms increases� the shape of the illusory contour
changes from a circle to a square���� The endpoints of the lines comprising the
Ko
ka Cross can be used to de
ne a set of position and orientation constraints
�Figure � �b��� The position constraints are speci
ed in terms of the parameters� d
and w� The orientation constraints take the form of a Gaussian weighting function
which assigns higher probabilities to contours passing through the endpoints with
orientations normal to the lines�� The prior probabilities assigned to each position	
direction pair by the Gaussian weighting function form a diagonal matrix� D�

���� s��� � D
�

�P���D
�

� s��� � Q���s���

where P��� is the transition probability matrix for the random process at scale
�� ���� is an eigenvalue of Q���� and s��� is the corresponding eigenvector� Let
�max��� be the largest positive real eigenvalue of Q��� and let �max be the scale
where �max��� is maximized� Then smax��max�� i�e�� the eigenvector of Q��max�
associated with �max��max�� is the limiting distribution over all spatial scales�

First� we used a Ko
ka Cross where d � �	� and w � �	� and evaluated �max��� over
the velocity interval ��	�� �	���� �	�� �	��	�� using standard numerical routines��

The function reaches its maximum value at �max � �	�� �	��
� �Figure � �left���
Observe that the completion 
eld due to the eigenvector� smax��	� � �	��
��� is
dominated by contours of a predominantly circular shape �Figure � �right��� We
then uniformly scaled the Ko
ka Cross Figure by a factor of two� i�e�� d� � �	� and

�Observe that Figure � �c
 is perceived as a square while Figure � �d
 is perceived as a
circle� Yet the positions of the line endpoints is the same� It follows that the orientations
of the lines a�ect the percept� We have chosen to model this dependence through the use
of a Gaussian weighting function which favors contours passing through the endpoints of
the lines in the normal direction� It is possible to motivate this based on the statistics of
natural scenes� The distribution of relative orientations at contour crossings is maximum
at ��� and drops to nearly zero at �� and �����

�The parameters de�ning the distribution of completion shapes were� T � Rg�
�

g �

������� � � ���� �p � ��p�T � ����� and Rp � ���� ����� As an anti�aliasing measure� the
transition probabilities� P �j j i
� were averaged over initial conditions modeled as Gaussians
of variance ��x � ��y � ������� and ��� � ������� See �	
�



Figure �� Left� Plot of magnitude of maximum positive real eigenvalue� �max� vs�
log

�������
 for Ko�ka Crosses with d � ��� and w � ��� �solid
 and d � ��� and w � ���
�dashed
� Right� The completion �eld due to the eigenvector� smax����� ������
�

w� � �	� and plotted ��max��� over the same interval �Figure � �left��� Observe
that ��max��	�� �	��x��� � �max��	�� �	��x�� As before� this con
rms the scale	
invariance of the system�

Next� we studied how the relative magnitudes of the local maxima of �max���
change as the parameter w is varied� We begin with a Ko
ka Cross where d � �	�
and w � �	� and observe that �max��� has two local maxima �Figure � �left���
We refer to the larger of these maxima as �circle� As previously noted� this max	
imum is located at approximately �	� � �	��
�� The second maximum is located
at approximately �	�� �	����� When the completion 
eld due to the eigenvector�
smax��	� � �	������ is rendered� we observe that the distribution is dominated by
contours of predominantly square shape �Figure ��a��� For this reason� we refer
to this local maximum as �square� Now consider a Ko
ka Cross where the widths
of the arms are doubled but the diameter remains the same� i�e�� d� � �	� and
w� � �	�� We observe that ��max��� still has two local maxima� one at approxi	
mately �	�� �	��
� and a second at approximately �	�� �	���� �Figure � �left���
When we render the completion 
elds due to the eigenvectors� s�max��	���	�

�
�� and
s�max��	�� �	������ we 
nd that the completion 
elds have the same general char	
acter as before�the contours associated with the smaller spatial scale �i�e�� lower
speed� are approximately circular and those associated with the larger spatial scale
�i�e�� higher speed� are approximately square �Figure � �d� and �c��� Accordingly�
we refer to the locations of the respective local maxima as ��circle and ��square� How	
ever� what is most interesting is that the relative magnitudes of the local maxima
have reversed� Whereas we previously observed that �max��circle� � �max��square��
we now observe that ��max��

�

square� � ��max��
�

circle�� Therefore� the completion 
eld
due to the eigenvector� s�max��

�

square� �not s�max��
�

circle��� represents the limiting
distribution over all spatial scales� This is consistent with the transition from circle
to square reported by human observers when the widths of the arms of the Ko
ka
Cross are increased�
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Figure �� Plot of magnitude of maximum positive real eigenvalue� �max� vs� log�������

for Ko�ka Crosses with d � ��� and w � ��� �solid
 and d � ��� and w � ��� �dashed
�
Stochastic completion �elds for Ko�ka Cross due to �a� smax��square
 is a local optimum
for w � ��� �b� smax��circle
 is the global optimum for w � ��� �c� s�max��

�

square
 is the
global optimum for w � ��� �d� s�max��

�

square
 is a local optimum for w � ���� These
results are consistent with the circle�to�square transition perceived by human subjects
when the width of the arms of the Ko�ka Cross are increased�

� CONCLUSION

We have improved upon a previous model of illusory contour formation by show	
ing how to compute a scale	invariant distribution of closed contours given position
constraints alone� We also used our model to explain a previously unexplained
perceptual e
ect�
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