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Abstract: In this paper, we propose a novel method to generate Delaunay-triangulated point sets from a given density
function in 2D. In order to accomplish this, we employ a Penrose-tiling-based importance-sampling strategy,
which not only provides a good sampling point pattern with a local blue-noise distribution, but also provides
a balanced base geometric structure from which we can efficiently derive a Delaunay triangulation of the
underlying point set. We observe linear execution time with respect to the number of points. There are many
areas in computer graphics that can benefit from our fast triangulated point set generator. Typical applications
include terrain rendering, 3D geometry processing, and image compression.

1 INTRODUCTION

In this paper, we address a general problem which can
be stated as follows. Given a 2D density function,
we want to tessellate the plane with a triangle mesh
which has the following properties: first, the vertices
of the mesh should have a local density that is propor-
tional to the input importance function at their posi-
tion. Furthermore, we expect these vertices to follow
a local blue-noise distribution (Ulichney, 1988; Hiller
et al., 2001), which is similar to a Poisson-disk pat-
tern. Also, we want to have the triangles of the mesh
follow a Delaunay triangulation of its vertices. This
constraint imposes that no vertex be contained in the
circumcircle of any triangle in the mesh. Finally, we
want the whole process to be fast and to scale well
with the number of vertices.

This is a problem that arises in many applications
in computer graphics. Often, it is desirable to have
a mesh in which the triangle density can be modu-
lated according to some importance metric, either for
reasons of efficiency and/or visual quality. Although
many regular mesh subdivision strategies can be used
to this end, such as the quadtree or

√
3-subdivision

(Kobbelt, 2000) schemes, these tend to permit only
large, discrete steps in density, whereas we would

like to have a smooth gradation. Also, the inherent
regularity of these methods creates heavy alignments
which are often undesirable, whereas a blue-noise dis-
tribution of the vertices would preclude such align-
ments. Another concern that often arises is the prob-
lem of narrow triangles, or ‘slivers’, which are not
only inefficient, but can often lead to visual ‘glitches’.
This is why a Delaunay triangulation can be desir-
able, for it has the property of maximizing the min-
imum angle of the triangles. Finally, generating these
meshes must be quick, in order to permit the interac-
tive rates that are required in many computer graphics
applications.

We propose a novel method of solving this prob-
lem. Our method has its foundations in the Penrose-
tiling-based importance-sampling system proposed in
(Ostromoukhov et al., 2004). The idea is to use a reg-
ular triangle subdivision scheme based on the Penrose
tiling in order to obtain an overly dense set of initial
points, and then to threshold these points against the
importance function in order to obtain the required
density. To break the structures and alignments in the
point set, precalculated correction vectors are applied
to each vertex. In our new tessellation system, we ex-
ploit the underlying hierarchical triangle subdivision
scheme to build the triangulation of the resulting point



set in a very efficient manner. We also harness the dis-
tribution properties of the original sampling system
in order to enforce a Delaunay constraint on the re-
sulting triangulation, at a minimal computational cost.
We observe that our system can build the desired De-
launay triangulated point sets in O(n) with regards to
the number of vertices and gives very fast results in
practice.

There are a few instances in computer graphics lit-
erature in which this specific problem is faced, albeit
indirectly. One case is in (Davoine et al., 1996), where
an image is tessellated into a Delaunay triangulation
with a higher density of triangles in the regions with
a higher variance, which serves as a basis for fractal
image compression. They use an incremental inser-
tion approach based on weighed barycenters, which
is fairly expensive and would not scale well with
many vertices. In (Alliez et al., 2003), a similar prob-
lem arises in the context of 3D geometry remeshing.
Their approach consists of using a weighed Lloyd re-
laxation process, which is very time consuming. At
the other end of the spectrum are methods employed
in many terrain visualization algorithms, such as in
ROAM (Duchaineau et al., 1997), which rely on reg-
ular subdivision strategies in order to be very fast and
tend to show strong alignments as a result, as well as
only permitting large steps in triangle density.

We expect that the reader is familiar with the
abundant litterature on Voronoi diagrams and De-
launay triangulations, which have been heavily stud-
ied and surveyed (Fortune, 1992; Bern and Eppstein,
1992). Non-randomized incremental insertion algo-
rithms with unsophisticated point location can ex-
hibit Θ(n2) running time, where n is the number of
vertices. There are more efficient algorithms that
can run in O(n log n) worst case, such as Clark-
son and Shor’s algorithm (Clarkson and Shor, 1989),
or the Shamos and Hoey’s divide-and-conquer ap-
proach (Shamos and Hoey, 1975), Fortune’s sweep-
line algorithm (Fortune, 1987), or a randomized incre-
mental algorithm augmented with a search structure,
such as in (Devillers, 1998). In some cases, when the
vertices exhibit “nice” distribution properties, e.g. as
defined in (Talmor, 1997), some general Delaunay tri-
angulation algorithm may run in linear time (Dwyer,
1991). The algorithm presented in this paper belongs
to the latter family of Delaunay triangulation of the a
priori well-distributed point sets.

The rest of the paper is organized as follows. The
sampling system which our method extends is briefly
explained in Section 2. Our Delaunay triangulation
algorithm is presented in Section 3. Results are pre-
sented in Section 4. Conclusions and future work fol-
low in Section 5.

2 SAMPLING SYSTEM

In order to explain how our triangulation algorithm
works, we must first make a brief review of the sam-
pling system, which is based on Fast Hierarchical Im-
portance Sampling with Blue-Noise Properties, as in-
troduced in (Ostromoukhov et al., 2004). The sys-
tem shall henceforth be referred to as ‘Penrose-tiling-
based sampling system’ or simply ‘sampling system’.
The three basic steps that the system takes are illus-
trated in Figure 1.

First, an adaptive tile subdivision scheme is used
to build an initial structure (see Figure 1-right). This
results in a subdivision tree in which the spatial den-
sity of the leafs is modulated by the objective impor-
tance function. The subdivision rules are based on
the Penrose tiling (Penrose, 1979); the tiles are all tri-
angular (‘c’ to ‘f’ in Figure 2-left) save for a pair of
infinitesimal pentagonal tiles (‘a’ and ‘b’ in Figure 2-
right). This makes for a hierarchic structure that can
be built only out of triangular subdivisions. Also, the
subdivision rules are such that all angles are multi-
ples of π

10 , so the trigonometric operations can be tab-
ulated for speed. Each tile has a number of attributes:
a pair of orthogonal vectors shown in Figure 2-left,
and a binary code (F-code) that can be interpreted as
a number in the Fibonacci number system (Knuth,
1997) and (Graham et al., 1994). Each subdivision
left-concatenates two binary symbols to the parent’s
F-code, according to the following scheme:

PPenrose :=



a∗ 7→ {b00∗}
b∗ 7→ {a00∗}
c∗ 7→ { f00∗,c10∗,a10∗}
d∗ 7→ {e00∗,d10∗}
e∗ 7→ { f00∗,c10∗,e01∗,a10∗}
f∗ 7→ {e00∗,d10∗, f01∗,a01∗},

(1)

where xy means a tile of type x having F-code y. The
symbol ‘∗’ replaces the parent’s F-code of a tile be-
fore subdivision.

As they are created, the vertices of this struc-
ture are numbered using the Fibonacci number system
(Knuth, 1997; Graham et al., 1994). In a process akin
to digital halftoning, the numbers are used as a thresh-
old against the importance function in order to obtain
the desired local density of points. The numbering
of the vertices reflects their position in the hierarchy,
and the ordinal numbering of the vertices ensures a
linear response of point density with regards to the
importance values. We call the sampling points active
when they are selected according to the thresholding
process defined in (Ostromoukhov et al., 2004).

Finally, the system applies precalculated correc-
tion vectors to the active points. This tends to ‘relax’
the points with respect to their neighbors and breaks
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Figure 1: Left: Subdivision rules for modified Penrose tiling. The Golden Ratio φ = 1+
√

5
2 ≈ 1.61803. Pairs of orthogonal

vectors form the basis for each tile. Right: Sampling system outline. Active (selected) points are shown as blue dots. Red dots
are corrected active points. Correction vectors are shown as yellow lines that connect blue and red dots.

the inherent structures in the point set. But no prox-
imity queries are required, as the vectors are applied
to each point independently of its neighbors. The cor-
rection vectors are stored in a table, which is obtained
using an offline optimization process which involves
Lloyd’s relaxation scheme (Lloyd, 1983). This makes
the process very fast and deterministic.

We are left with a discrete sample distribution, in
which the local point density is proportional to the
importance density function. The resulting tree struc-
ture also determines a tringular mesh defined by the
edges of the Penrose tiles. As the adaptive subdivi-
sion process operates locally, such a tringular mesh
may contain T-edges.

The local distributions of points have a blue-noise
spectral profile (Ulichney, 1988; Hiller et al., 2001),
which equates to a low anisotropy and no principal
directions or alignments. This kind of distribution
can be very effective in computer graphics, especially
considering the fact that the human visual perception
system is particularly sensitive to such alignments.

Several existing methods can be used to gener-
ate point sets with blue-noise properties. The tech-
niques that give good quality results, such as Lloyd’s
relaxation-based techniques, tend to be slow, whereas
the faster techniques generally fail to meet the blue-
noise requirements. Our sampler is a fast approxi-
mation, yet it is among the best in terms of quality.
The possibility of generating these good distributions
at such a high speed opens the door to many applica-
tions that require fast generation of high quality trian-
gular meshes. But, as is, the system generates a cloud
of points, without the connectivity information that is
useful in many applications. We solve the connectiv-
ity issue in this paper.

3 Our Triangulation Algorithm

In order to extract connectivity and proximity in-
formation from a point set, it is often useful to build
a Delaunay triangulation of the set. For a set S of
points in the Euclidean plane, the Delaunay triangula-
tion can be defined as the unique triangulation DT (S)
of S such that no point in S is inside the circumcir-
cle of any triangle in DT (S). It can also be defined
as the dual of the Voronoi diagram of S, as illustrated
in Figure 2. The Delaunay triangulation is the tar-
get of our algorithm, and can be built very quickly by
harnessing certain intrinsic properties of the sampling
system. The main ideas behind our triangulation al-
gorithm follow.

This structure can be transformed into a proper tri-
angulation by making sure that no T-edges remain.
Since a strict set of rules is used to build this struc-
ture, it is possible to create such a triangulation in
linear time with regards to the number of triangles.
Second, not all vertices in the structure will be consid-
ered as active sampling points after the thresholding
process, so these must be eliminated from the trian-
gulation . We assume that the connectivity of the tri-
angulation of the final point distribution will be very
similar to the connectivity of the structure mentioned
above. The sampler displaces the points with correc-
tion vectors, which can leave us with an invalid topol-
ogy, but we suppose that this can be corrected in con-
stant time at the local (edge) level. Finally, we can
observe that the connectivity information that stems
from the original structure is very close to the Delau-
nay connectivity after the points are displaced. After
a finite number of conditional edge flips, every edge
is in the Delaunay set.

Let us outline the main steps of our algorithm.



Figure 2: An example of our triangulation shown in blue,
with its dual in red. These are respectively equivalent to the
Delaunay triangulation and the Voronoi diagram.

Figure 3: T-edge elimination. Before on the left, after on
the right. The edges that have been added are shown in red.

3.1 Initialization

The preliminary step is the initialization of the sam-
pler over the given importance density function, as
shown in Figure 1. Instead of simply using the output
points, we will use the tile subdivision tree structure
which the system employs internally, in the manner
described in section 3.2.

3.2 Base Triangulation

The next step is to create a valid triangulation from
the underlying sampling structure, meaning there
should not be any T-edges in the mesh. An effi-
cient way of obtaining such a triangulation is to iter-
ate through the tile subdivision tree of the sampler in
a width-first manner; this has the effect of enforcing
the following rule: no two adjacent triangles, which
are slated to be subdivided at a subsequent level, will
ever be at more than one level of subdivision apart, at
any time during the traversal of the tree. This way,
whenever a new vertex needs to be added to the cur-
rent triangulation, it is assured that we only need to
split two triangles along their common edge, which
is a trivial operation. Also, on the borders of areas

Figure 4: Inactive vertex extraction. Before on the left, af-
ter on the right. Blue vertices have passed the thresholding
process.

at different levels of subdivision, the triangulation re-
mains valid because the triangles on both sides are
split. This holds true no matter how many levels of
subdivision this border jumps. An example of this
operation is shown in Figure 3.

3.3 Inactive Vertex Removal

The triangulation obtained at this point includes ev-
ery vertex in the tiling. The second step consists
in the extraction of the inactive vertices, the poten-
tial sampling points that have failed the thresholding
step. This process is fairly straightforward; we iterate
through all the ‘sampling’ tiles, and those that have
failed the thresholding test are marked for extraction.
Finding these vertices in the triangulation is simple,
because we have stored reference to the latter. The re-
moval of a vertex from the triangulation involves the
re-triangulation of the hole it generates, which can be
done with or without enforcing a Delaunay constraint.
We have opted for a simple greedy re-triangulation
because the end result is the same, while less compu-
tationally intensive because we avoid the circumcir-
cle tests. When this greedy approach is chosen, spe-
cial attention must be brought to collinear points in
the re-triangulated area. The original Penrose tiling
has alignments in the 10 principal directions but, de-
pending on the numerical precision chosen for the
point representation, some collinear points might ap-
pear slightly non-collinear, which can result in trian-
gle slivers. These triangles have an unstable orienta-
tion, and can be problematic for the predicates used in
further operations on the triangulation. Fortunately, a
simple collinearity test avoids these situations, using a
numerical precision based on the level of subdivision
at the offending point.

This decimated triangulation will serve as the
foundation for our final triangulation. An example of
this step is shown in Figure 4.

Our implementation uses the half-edge data struc-
ture (Eastman and Weiss, 1982) in the Computational



Figure 5: Sampler correction vectors. Before corrections on
the left, after on the right. Notice the invalid topology of the
displaced triangulation in certain areas (circled in blue).

Figure 6: Comparison of our triangulation after two edge-
flip operations with a Delaunay triangulation (in blue). Red
edges are not in the Delaunay set. After edge-flip opera-
tions beeing performed, our triangulation is identical to De-
launay’s, in this example.

Geometry Algorithms Library (CGAL) (Boissonnat
et al., 2002), which supports triangle splits and edge
flips in O(1) time, and vertex removal in O(d2) time,
where d is the degree of the vertex.

The vertices of the resulting triangulation will
need to be displaced by the correction vectors pro-
vided by the sampling system; this can cause an in-
valid topology at certain vertices, as shown in Fig-
ure 5. This leads us to the next step in the algo-
rithm, which is a finite number of conditional edge
flips of the current triangulation. In our implementa-
tion, we use a standard edge flip algorithm (Lawson,
1972; Bern and Eppstein, 1992). In order to obtain
a proper Delaunay triangulation, a certain number of
these edge-flip operations must be made successively.
An example of such a process is shown in Figure 6.

Figure 7: (Top) Gradient ramp importance density function.
(Middle) Sampler output points. (Bottom) Triangulation
obtained with our algorithm.

4 Results

4.1 Qualitative Results

An example of using our triangulation algorithm on
a gradient ramp is shown in Figure 7. In Figure 9, a
high dynamic range image is used as the importance
density function. The quality of the results of our tri-
angulation are intrinsically tied to the quality of the
Delaunay triangulation. Whether this is a ‘good’ tri-
angulation or not depends of course on the applica-
tion, but the fact that the Delaunay triangulation max-
imizes the minimum angles of the triangles gives it
many useful properties. Obviously, the quality of the
triangulation is also tied to the quality of the distribu-
tion of the points generated by the sampler. Given that
the points follow a local blue-noise (or Poisson-disk)
distribution, the dual of the triangulation, called the
Voronoi diagram (see Figure 2), is very close to what
is called a centroidal Voronoi tessellation, which con-
fers on it some interesting properties (Du et al., 1999).

4.2 Case Study: Terrain Rendering

In order to illustrate the potential of our system in the
field of computer graphics, we present a simple-use
case, the rendering of terrain maps. Once reserved
for high-end flight simulators and scientific visual-
ization, the rendering of large terrain maps is now a
mainstream computer-graphics task, with a prominent
place in video games. Because of the sheer size of
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Figure 8: Performance comparison: (a) Incremental inser-
tion. (b) Devillers’ algorithm. (c) Our algorithm. The
source function is a non-trivial HDR image. Times are on a
P4, 2.6 GHz system.

these data sets, the challenge is to quickly generate a
set of triangles that can efficiently portray the land-
scape, given its topological features and the position
of the observer. The goal is to obtain better-quality
images out of the triangle budget imposed by the ren-
dering sub-system. An outline of how our triangula-
tion system could be exploited in this context is shown
in Figure 10.

Most fast terrain rendering algorithms, such as
ROAM (Duchaineau et al., 1997), rely on regular
triangle-subdivision schemes that give rise to highly
regular structures, which can be detrimental, espe-
cially when these structures are aligned with topo-
logical features in the map. Our system has the ad-
vantage of generating the vertices of the mesh in a
blue-noise distribution pattern, which not only avoids
any alignments, but also avoids triangle ‘slivers’. Of
course, there are many other issues in terrain render-
ing that transcend the triangulation, most of which are
related to the constraints and capabilities of the under-
lying graphics hardware, but these are well beyond
the scope of this paper. Let us simply note that our
system could be used in conjunction with many re-
cent advances in the field, such as Geometry Clipmaps
(Losasso and Hoppe, 2004).

4.3 Quantitative Results

In order to compare our algorithm’s performance with
others in real-world applications, we have timed the
triangulation algorithms on an increasing number of
points. The results are shown in Figure 8. For fair-
ness’ sake, all three algorithms use the same triangu-
lation data structure. Also, the implementations of the

two compared algorithms are provided by the CGAL
library (Boissonnat et al., 2002), known for its good
performance. As the graph shows, a naive algorithm
such as the incremental insertion method, is no match
for our algorithm. The brute force approach, in O(n4),
is not even shown because it is substantially slower
than all other methods. Devillers’ algorithm (Dev-
illers, 1998) uses an efficient search structure, which
gives a nearly linear performance on the point sets
generated by the sampler, given their blue-noise dis-
tribution. This makes for an algorithm that performs
in the same order as ours. Nevertheless, our algorithm
manages to run at least twice as fast, and this is while
adhering to the highest-quality standards.

5 Conclusions and Future Work

We have addressed an important problem in com-
puter graphics, which is to generate well-distributed
point sets along with their Delaunay triangulations,
given an importance density function in 2D. To this
end, we employ a Penrose-tiling-based importance-
sampling strategy described in (Ostromoukhov et al.,
2004). The sampling system provides a good sam-
pling point distribution with blue-noise property; it
also provides a base geometric structure from which
we efficiently derive a Delaunay triangulation of the
underlying point set.

We have observed that our algorithm runs in lin-
ear time. Even in comparison with the best known
Delaunay triangulation algorithms which can run in
almost linear time in the expected (average) case, we
can observe a speedup by a factor of at least two.

As future work, we plan to extend the algorithm
in order to generate 3D Delaunay tetrahedrizations,
and possibly n-D polyhedrizations. Of course, this
depends on whether an appropriate sampler will be
available in such dimensions. This is a question that
we are looking into. Some operations on triangula-
tions are simple in the 2D case, but become more
complex in higher dimensions.

Another extension to explore is the case of a dy-
namic importance function, where temporal coher-
ence of the function could be exploited to save com-
putation time, as opposed to simply rebuilding the tri-
angulation at each frame. Given that our sampler is
expected to return coherent point sets across frames
(which is not the case in most other similar systems),
the time savings could be considerable. Since the pro-
posed method is hierarchical by construction, a lot of
work could be saved between frames by exploiting
the previous subdivision and trying to keep changes
incremental.



Finally, we plan to develop applications of the
algorithm for promising uses in computer graphics.
One such application is image compression, where an
image would be partitioned into a triangulation which
has a local density proportional to the image complex-
ity. Another application is isotropic remeshing of 3D
surfaces, in a manner similar to (Alliez et al., 2003),
which could be made more interactive with our fast
system.
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Figure 9: HDR map sampled with the Penrose-tiling-based sampling system (background image), then triangulated using
our algorithm (foreground image). The total running time was 0.094 seconds on a P4 at 2.6 GHz. Running time is linearly
proportionnal to the number of vertices. HDR image source: Paul Debevec.
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