
Hermite approximation for o�set curve computation

Victor Ostromoukhov
Peripheral Systems Laboratory
Swiss Federal Institute of Technology
IN-F Ecublens, CH-1015 Lausanne, Switzerland

Abstract. The present paper proposes a new method for calculating the G1-
continuous o�set curve to a cubic B�ezier curve, based on the Hermite approxima-
tion technique. This method is improved by preliminary curvature estimation and
is intended for use in cpu-time sensitive CAGD applications.

Keywords: B�ezier curve, Hermite approximation, o�set curve, maximum curva-
ture, computer-aided geometric design (CAGD).

1. Introduction

Cubic B�ezier curves are widely used in CAGD applications such as page-description
languages (PDLs) and font design tools. Very often a standard set of primitives for
such systems consists of points, straight line segments, and cubic B�ezier curves. All
other types of element (e.g. circular segments) are expressed in terms of basic prim-
itives. This is the case in the PostScript page-description language [Adobe '85], the
Metafont font generation system [Knuth '79] and the RastWare font manipulation
system [Hersch '87]. Scan-conversion of a shape outlined by a set of standard basic
elements has been described in detail (see [Rogers '85], [Hersch '88]). As regards
systems which can draw with a �nite pen, the situation is a little more complicated:
it is a well-known fact that, in general, the o�set curve to a cubic B�ezier curve is
not a cubic B�ezier itself. Some systems introduce a simple shortcut: they do not
calculate the outline shape of the o�set curve analytically; instead, they simply
�ll a pen shape moving along a generator (we use the term generator to indicate
the trajectory of the center of a circular pen, see [Knuth '86], [Hobby '89]). This
approach is not suitable in applications where strokes may intersect clipping shapes.

The simplest analytical solution for �nding the o�set curve is a linear approximation:
a generator is subdivided into a set of small straight lines; then two parallel lines
are found at distance �d from them. Although it is relatively simple, this approach
generates an o�set curve with a cumbersome large set of segments, especially at
high resolution.

1

It is natural to look for an approximation to the o�set curve in the same class
of functions as the generator. This approach is developed in [Hoschek '85]. The
least-squares method with iterative reparametrisation used in [Hoschek '88] is very
precise, but very time-consuming. In the present paper, we propose in section
1 another alternative for �nding the analytic o�set curve based on the Hermite
approximation technique. It is a fast method, but it only works correctly on regular
smooth curves which have convex control polygons with non-parallel lateral edges.
Consequently, a preliminary analysis of the generator is needed.

In section 2, we describe a method for preliminary maximum curvature estima-
tion, in order to locate and eliminate from our approximations all cusp and return
points of the o�set curve. Such non-smooth subsegments are computed by a linear
approximation.

2. Hermite approximation for o�set curves

In the general case, a basic parametric curve of degree 3 has an arbitrary control
polygon leading to 4 main classes of curves: arch (regular), cusp, 1-inection-point
curve and 2-inection-point curve [De Rose, Stone '89].

Let us consider a simpli�ed task: �nding the o�set curve of a regular parametric
curve which have a convex control polygon.

A generator curve G(t) with a control polygon having control vertices at V0;V1;V2

and V3, is given by

G(u) =
3X

i=0

B3
i (u)Vi

where B3
i (u) are the Bernshte��n polynomials of degree 3.

The corresponding o�set curve Gd(u) can be expressed as

Gd(u) = G(u) + dn(u)

where d is a diameter of the pen and n(u) is a unit vector normal to curve G(u) at
point t.

We call Q(t) a cubic B�ezier approximation to the Gd(u) curve. We will look for
Q(t) in the G1-continuous class:

Q0(t) = �G0(u); t = 0; 1 u = 0; 1: (1:1)

It is natural to expect Q(t) to be as close to Gd(u) as possible. The method de-
scribed in [Hoschek '89], using a least-squares method, is rather precise, but very
cpu-expensive because it needs to reparametrize the obtained curve iteratively to
estimate an error.

2

0.5 1
x

0.5

1
y

Generator curve

Hermite approximations

Offset curve

Fig. 1 A family of Hermite approximations passing through G d(
1
3).

0.5 1
x

0.5

1
y

Generator curve

Hermite approximations

Offset curve

Fig. 2 A family of Hermite approximations passing through G d(
2
3).

The main idea of the present method is to use a Hermite approximation, i.e. to
�nd a cubic approximation curve Q(t) such that its derivatives Q0(0) and Q0(1)
are parallel to the derivatives of the generator, G0(0) and G0(1) respectively. By
choosing the appropriate absolute values of jQ0(0)j and jQ0(1)j, Q(t) can be forced
to pass through 2 points of the exact o�set curve Gd(u):

QH(t
�

1) = Gd(u1) (1:2)

QH(t
�

2) = Gd(u2)

3

where QH(t) is the Hermite representation of Q(t) (see [Farin '90, p.75]):

QH(t) = p0H
3
0 (t) +m0H

3
1 (t) +m1H

3
2 (t) + p1H

3
3 (t) (1:3)

where p0 = Gd(0), p1 = Gd(1), m0 = G0

d
(0), m1 = G0

d
(1).

In general, t�1 6= u1, and t�2 6= u2. For u1 and u2, it is possible to choose any values
between 0 and 1, e.g., u1 = 1=3; u2 = 2=3.

From (1.1) and (1.3), we can reformulate the problem as follows:

p0H
3
0 (t

�

1) + �1G
0(0)H3

1 (t
�

1) + �2G
0(1)H3

2 (t
�

1) + p1H
3
3 (t

�

1) = Gd(1=3) (1:4a)

p0H
3
0 (t

�

2) + �1G
0(0)H3

1 (t
�

2) + �2G
0(1)H3

2 (t
�

2) + p1H
3
3 (t

�

2) = Gd(2=3) (1:4b)

It is a (non-linear) system of 4 equations with 4 unknowns: �1; �2; t
�

1 and t�2.

Let us try to develop an algorithm to solve (1:4) based on simple geometric con-
siderations. First, we take only part (1:4a) of system (1:4). If we �x t1, then all
H3
i (t1) are known and (1:4a) is a linear system of 2 equations with 2 unknowns �1

and �2. As mentioned above, �1 and �2 determine the absolute value of jQ0(0)j and
jQ0(1)j, and, therefore, the B�ezier control polygon for Q(t) becomes de�ned. The
solution of (1:4a) with �xed t1 gives a cubic curve, passing exactly through point
Gd(1=3). Fixing t1 to another value, gives another cubic curve passing through
point Gd(1=3). A family of such curves is presented in Fig. 1.

Similar considerations are applicable to (1:4b) using a set of t2: see Fig. 2. It is
clear that from these 2 families of cubic curves we can select 2 curves with t�1 and
t�2 satisfying (1:2).

4

0.2 0.3 0.4 0.5
t10.5

Fig. 3 Topographic map of the deviation funcion D(t1; t2) and a typical path from the

starting point (t
(0)
1 ; t

(0)
2) to the solution (t�1; t

�

2).

Therefore, the algorithm will operate separately on (1:4a) and (1:4b) performing
alternately \left-step" around point Gd(1=3) and \right-step" around pointGd(2=3).
At the beginning, during the initial set-up, t1 is assigned to 1=3 and t2 to 2=3. At
each step, new values of t1 and t2 are sought, thus minimizing the deviation function
D(t1; t2) de�ned as

D(t1; t2) = DL(t1; t2) +DR(t1; t2);

where DL(t1; t2) is a distance between points Gd(2=3) and QH(t2) during \left-step"
with �xed t1, and DR(t1; t2) is a distance between points Gd(1=3) and QH(t1) during
\right-step" with �xed t2.

Fig. 3 shows a typical topographic map of such a deviation function and a typical

path from (t
(0)
1 ; t

(0)
2) to (t�1; t

�

2). The solution will converge to (t�1; t
�

2) when starting
not far from the minimum point (the choice of (1=3; 2=3) as a starting point seems
reasonable). Our method is based on hypothesis that the function DL(t1; t2) is
linear on t1 and DR(t1; t2) is linear on t2, which is not always true; the degree of
linearity of these functions will determine convergence speed. A detailed description
of the algorithm is given in appendix A. Fig. 4 gives an illustration of the iterative
Hermite approximation process.

As mentioned above, this method gives us a G1-approximation passing through 2
points Gd(1=3) and Gd(2=3); its behaviour is not guaranteed in the middle segment
of the 3 segments (Gd(0);Gd(1=3)), (Gd(1=3);Gd(2=3)) and (Gd(2=3);Gd(1)). We
use the sum of the distances betweenGd(t) and QH(t) (only their normal component)
at the 3 midpoints to estimate the error in the approximation process. If the error
is greater than the admitted tolerance, generator curve G(t) must be subdivided
and our method applied to both subsegments.

5

-1 -0.5 0.5 1
x

0.2

Fig. 4 Successive Hermite approximations.

3. Curvature analysis

Farouki has shown in [Farouki '89] that the o�set curve of a regular plane curve of
degree 3 has the same number of special points as a generator curve plus all the
points corresponding to the points which have curvature � = �1=d on the generator,
where d is the diameter of the pen. These latter points will produce cusps and return
points on the o�set curve (see Fig. 5).

(a) (b)

Fig. 5 O�set curves having 2 return points (a) and a cusp (b).

Our approximation algorithm of an o�set curve by B�ezier curves works only on
rather regular, smooth segments. Consequently, we have to exclude from our ap-
proximation process all non-smooth points corresponding to points which have cur-
vature � = �1=d. One possible solution is to subdivide the generator curve Q(t)
exactly at points where � = �1=d. Unfortunately, it is not possible to solve the
following equation analytically

�(Q(t)) =
_Q(t)� �Q(t)

j _Q(t)j3
= �

1

d
(2:1)

for a cubic B�ezier curve Q(t).

Standard numerical methods for �nding roots are particularly complicated in this
case, because as shown in Fig. 6, the generator curve G(t) can have 0, 1, 2, 3 or 4
points t� such that �(G(t�)) = �1=d. Although we tried to estimate at least the
number of roots from the B�ezier control polygon, we did not �nd any straightforward
relationships between the shape of the control polygon and the number of roots.

For practical purposes, we have adopted a mixed technique: all smooth segments
having curvature j�j < 1=d are approximated by the technique described in the

6

previous chapter; all segments whose maximum curvature exceeds the value of j�j =
1=d, are separated into smooth and non-smooth parts (j�j � 1

d
and j�j>�

1
d
), and the

approximation is carried out separately. The smooth subsegments are approximated
just like smooth segments; the non-smooth subsegments are approximated linearly.

4. Conclusions

The method for o�set curve computation introduced here can be used e�ciently
in applications where it is desirable to express strokes and o�set curves using the
same class of curves as the generator. Preliminary maximum curvature estimation
is required in order to avoid incorrect results in special cases when cusps and return
points appear on an o�set curve. In such cases, the o�set curve must be described
by a combination of B�ezier curves and polysegments. Such a description provides
a reasonable trade-o� between quality and e�ciency.

References

1. Adobe Systems Inc. PostScript language reference manual. Addison-Wesley,
1985.

2. G. Farin. Curves and surfaces for computer aided geometric design. Second
edition. Academic Press, 1990.

3. R.T. Farouki. Hierarchical segmentation of algebaic curves and some applications.
Mathematical methods in CAGD, Academic press, pp. 239-248, 1989.

4. R.D. Hersch. Character generation under grid constraints. SIGGRAPH'87, ACM
Computer Graphics, 21(4), 1987.

5. R.D. Hersch. Vertical scan-conversion for �lling purposes. Proceedings CGI'88,

Springer Verlag, pp. 318-327, 1988.

6. J.D. Hobby. Rasterizing curved lines of constant width. J. ACM, 36(2), 1989.

7. J. Hoschek. O�set curves in the plane. Computer Aided Design, 17(2), 1985.

8. J. Hoschek. Spline approximation of o�set curves. Computer Aided Geometric

Design, 5(1), 1988.

9. D.E. Knuth. TEX and Metafont. New directions in typesetting. AMS and Digital
Press, 1979.

10. D.E. Knuth. Computers and typesetting. Vol. C, D. Addison-Wesley, 1986.

11. D. Rogers. Procedural elements for computer graphics. McGraw-Hill, 1985.

7

12. M.C. Stone, T.D. DeRose. A geometric characterization of parametric cubic
curves. ACM Transactions on graphics, 8(3), 1989.

8

Appendix A. Algorithm Find Hermite O�set.

Globals: tprev1 ; tcurrent1 ; tprev2 ; tcurrent2 .

Initial setting: tprev1 = 1
3 ; t

current
1 = 1

3 + �; tprev2 = 2
3 ; t

current
2 = 2

3 + �;

where � is a small number (for example, 1
20).

Procedure Left step

Given: t
(1)
1 = tprev1 ; t

(2)
1 = tcurrent1 ; t2 = tcurrent2 ; Gd(

1
3); Gd(

2
3)

� Find Q
(1)
H (t) and Q

(2)
H (t): solve equations (1:2)

Q
(1)
H (t

(1)
1) = Gd(

1

3
)

Q
(2)
H (t

(2)
1) = Gd(

1

3
)

Q
(2)
H (t2)

Q
(1)
H (t2)

Gd(
1
3)

� Find the point Znear on straight line (Q
(1)
H (t2), Q

(2)
H (t2)), nearest to Gd(

1
3).

� Find the next approximation for t1: t
0

1 (supposition of linearity):

t01 � t
(1)
1

t
(2)
1 � t

(1)
1

=
jZnear �Q

(1)
H (t2)j

jQ
(2)
H (t2)�Q

(1)
H (t2)j

Q
(2)
H (t2)

Znear

Q
(1)
H (t2) Gd(

2
3)

� Re-assign the variables tcurrent1 ; tprev1 :

tcurrent1 = t01; t
prev
1 = t

(2)
1

� Estimation of error during left step:

Err left step = jtcurrent1 � tprev1 j

9

Procedure Right step

Given: t
(1)
2 = tprev2 ; t

(2)
2 = tcurrent2 ; t1 = tcurrent1 ; Gd(

1
3); Gd(

2
3)

� Find Q
(1)
H (t) and Q

(2)
H (t): solve equations (1.2)

Q
(1)
H (t

(1)
2) = Gd(

2

3
)

Q
(2)
H (t

(2)
2) = Gd(

2

3
)

Q
(2)
H (t1)

Q
(1)
H (t1)

Gd(
2
3)

� Find the point Znear on straight line (Q
(1)
H (t2), Q

(2)
H (t2)), nearest to Gd(

1
3).

� Find the next approximation for t2: t
0

2 (supposition of linearity):

t02 � t
(1)
2

t
(2)
2 � t

(1)
2

=
jZnear �Q

(1)
H (t1)j

jQ
(2)
H (t1)�Q

(1)
H (t1)j

� Re-assign the variables tcurrent2 ; tprev2 :

tcurrent2 = t02; t
prev
2 = t

(2)
2

� Estimation of error during right step:

Err right step = jtcurrent2 � tprev2 j

Procedure Calc Error

� Error = OrtoDist(16 ;
tcur
1

2)+ OrtoDist(12 ;
tcur
1

+tcur
2

2)+ OrtoDist(56 ; 1�
1�tcur

2

2),

where OrtoDist(u; v) is the component of the vector (QH(v)�Gd(u)), perpendicular
to the vector G(u)

Procedure Find Hermite O�set.

� Initial setting

� Iterations
DO

Left step
Right step

WHILE (Err left step + Err right step > t tolerance)

� Calc Error
� IF (Error > Q tolerance) THEN

Subdivide And Find Hermite O�set.

10

