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Abstract

We present a new approach to synthetic (computer-aided) drawing
with patches of strokes. Grouped strokes convey the local intensity
level that is desired in drawing. The key point of our approach is
learning by example: the system does not knowa priori the dis-
tribution of the strokes. Instead, by analyzing a sample (training)
patch of strokes, our system is able to synthesize freely an arbitrary
sequence of strokes that “looks like” the given sample. Strokes are
considered as parametrical curves represented by a vector of ran-
dom variables following a Markovian distribution. Our method is
based on Shannon’sN-gramapproach and is a direct extension of
Efros’s texture synthesis models [EL99; EF01]. Nevertheless, one
major difference between our method and traditional texture syn-
thesis is the use of such curves as a basic element instead of pix-
els. We define a statistical metric for comparison between different
patches containing various layouts of strokes. We hope that our
method performs a first step towards capturing a very difficult no-
tion of style in drawing – hatching style in our case. We illustrate
our method by varied examples, ranging from typical hatching in
traditional drawing to highly heterogeneous sets of strokes.

1 Introduction

Non-photorealistic rendering (NPR) is a domain of computer
graphics that has grown very rapidly during the last five years. In
the present contribution, we shall focus our attention on one par-
ticular trend in NPR that simulates traditional artistic media and
rendering techniques. More specifically, we will explore an aspect
of freehand drawing: the relation between strokes in various tech-
niques of hatching that convey particular tone values and that obey
a freely-defined notion of hatching style. Some commercial pro-
gram for computer-aided illustration (e.g. Illustrator or FreeHand)
offer rudimentary tools for generation of fields of hatching strokes
using user-defined global parameters, like mean density, length and
randomness of strokes etc. Our system for hatching by example
offers a further step in sophistication and flexibility of hatching in
computer-aided hatching for drawing.

Our ultimate long-term goal can be formulated as follows: we
would like to be able to generate combinations of strokes that “look
like” a set of strokes in a given sample patch that contains a “train-
ing set” of strokes. The sample patch can originate either from
existing artwork, or can be interactively created by a user. The gen-
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erated patch conveys, with more or less fidelity, the tone value de-
sired in a synthetic drawing. The synthetic drawing system can
manipulate two- or three-dimensional objects. In the case of a
three-dimensional drawing system, the strokes can be seen as two-
dimensional object attached to three-dimensional surface. Figure 1
illustrates this concept.

1.1 Previous Work

Several attempts have been carried out in the past in order to provide
computer graphics support for drawing. Let us enumerate some of
them that are directly related to the present work.

Winkenbachet al. and SalisburyVT al. in their pioneering work
[WS96; WS94; SABS94; SALS96; SWHD97] introduced a com-
prehensive system for computer-aided pen-and-ink illustrations. In
the most advanced version, sets of pen strokes are defined accord-
ing to a user-defined vector field of orientations combined with ran-
dom variations. Elber [Elb95; Elb99] and Hertzmannet al. [HZ00]
explored geometrical properties of surfaces in order to determine
automatically the direction and the spacing of the strokes in stroke-
based illustrations. Sousa and Buchanan [SB99] proposed a system
for simulation of the process of interaction between pencil and pa-
per in drawing. The system produces visually plausible results; it
is mainly focused on the rendering quality of the drawing process.
This system does not support the higher level “style of drawing”.

Durandet al. [DOM�01], introduced an interactive system for
digital drawing with control of tonal fidelity. In their system, the
user has to place each individual stroke manually. A rudimentary
system for semi-automatic grouped stroke placement was proposed,
but is clearly insufficient. The technique introduced in the present
contribution may considerably improve the system proposed in
[DOM�01]. Praunet al. [EPF01] proposed a real-time system
that enables hatching 3D objects using a set of user-defined hatch-
ing rules producing an appearance very close to drawing. Hamel
and Strothotte [HS99] introduced theNP-templatesmethod used to
transfer a drawing style from a 3D model to another one. Although
theoretically such a system allows defining hatching rules of arbi-
trary complexity, in practice it is very hard to define a general style
of hatching by example. Example based line art has also been ad-
dressed by Freemanet al. [FTP99] and Chenet al. [CXS�01]
but none considered the strokes as being component of a MRF. We
hope that our present contribution will help to open a way towards
simpler and more intuitive ways to define the style of hatching in
drawing.

Many other important references related to artistic rendering
with strokes can be found in [GG01a] as well as on well-known web
sites maintained by Craig Reynolds [Rey01] or by Amy and Bruce
Gooch [GG01b] and in [DC90; Hae90; SPR�94; RK00; TF00].

We built our research on recent work done in the field of texture
synthesis [WL00; WL01; Ash01] and particularly on Efros’s con-
tributions [EL99; EF01], as it will be explain in the next sections.

1.2 Problem Statement

As formulated before, our long-term goal is almost intractable be-
cause it involves many difficult problems. First, reliable detection
of individual strokes in a freehand hatching image is a very difficult
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Figure 1: Our long-term goal can be formulated this way: from a given training artwork patchZt (or from a user-defined set of strokes
gathered from an artwork, step X), generate a 2D synthetic stroke patchZg that ”looks like” Zt (step Y) . The generated strokes could then be
used in a 2D and/or a 3D scene (step Z). In the present contribution, we shall focus only on step Y.

computer vision problem when the information about the sequenc-
ing of individual strokes is not available. Second, the criterion of
similarity between the training set of strokes and the synthetic one is
highly subjective by its very nature. Although some mechanisms of
low vision are well understood by experimental psychologists, the
interpretation of higher levels of perception – namely, the mecha-
nisms of cognition – are far more difficult to grasp and to manipu-
late.

For these reasons, we will consider a simplified version of the
problem statement. We shall consider only an interactive version
of a one-dimensional training set of strokes that naturally imposes
the sequence of the strokes through the order in which individual
strokes in the training set are drawn. Let us reformulate the problem
statement for the task that will be explored in the present paper (see
Figure 2):

1. Given a training setZt , generate a new set of strokesZg that
“looks like” it.

2. With the help of an objective visual cost function, evalu-
ate the “visual distance” between the sets. This cost func-
tion can be statistically approximated by astatisti-
cal distance(Zt,Zg), as presented in Figure 3.

Training sequence : Zt Generated sequence : Zg

Figure 2: The objective of this paper can be formulated this way:
given a training set of strokes, we want to generate a second stroke
set that “looks close to it”.

The way we intend to generate the stroke setZg is by implement-
ing a method inspired of Efros’s 1999 paper on texture synthesis
[EL99]. This approach is based on Shannon’sN-gramand thus is
suitable for the problem of one-dimensional stroke sequence syn-
thesis. The visual cost function will be a complementary tool to the
stroke synthesis algorithm since it will provide an indication of the
overall quality of the generated stroke setZg. Furthermore, because
that metric will be used in parallel of the synthesis process, it will
be able to indicate if and where the generated sequence diverges.

Even if many visual metrics are currently known and widely
used, they are not well suited to fit our specific needs. Instead,
we will characterize the pen stroke setsZt and Zg via their den-
sity functionPt�x� andPg�x� and find astatisticalmetric based on
these values. Despite its limitations, this metric provides a tractable
framework for the first-approximation evaluation of differences be-
tween sets of strokes. In order to validate our approach, we will
illustrate how that statistical metric fits human perceptual quality
appreciation (see Figure 3). We shall discuss the advantages and
the limitations of our approach in the appropriate sections.

1.3 Model Description

Let us consider a stroke sequenceZt similar to the one presented on
Figure 2. This sequence can be formally represented by the setZt �
fx0�x1�x2� ����xng � xn

0 wherexi is a stroke defined by a vector of
parameters associated with a random variableXi . We considerZt to
be a realization of a Markov Random Field (MRF). In other words,
we consider that the conditional probability of a random variableXi
associated with a stroke depends on its close neighborhood:

pt�Xi � xi jxi
0� � pt�Xi � xi jxi�1

i�N� (1)

wherexi�1
0 is the set of all strokes appearing beforexi andxi�1

i�N is
the sequence ofN�1 strokes located beforexi . Equation (1) is a
Markovian model of orderN� 1 [Ben99]. The stroke setZg that
we want to generate needs to be different fromZt while having the
same conditional probability:

pt�Xi � xi jxi�1
i�N� � pg�Yi � yi jyi�1

i�N� (2)

where Yi is the random variable associated with the generated
strokesyi � Zg. Because of this, we made the decision to base
our model on Shannon’sN-gram[Sha51] which is a simple marko-
vian approach that was recently use in the context of texture syn-
thesis [EL99; EF01; WL00; WL01]. The main advantage of Shan-
non’s method is its algorithmical simplicity combined with a fairly
good overall visual quality of the results. Nevertheless, theN-gram
method is not perfect and, as Efros has mentioned [EL99], it has
a tendency to diverge after a few iterations. When it diverges, the
difference between the generated setZg and the training setZt is
clearly visible. For this reason, we need to implement an objective
metric that will indicate how visually different the generated stroke
set is from the training set. This tool will also help us locate where
the method starts to diverge. We made the assumption that if Shan-
non’s method is an appropriate one for the problem we are trying



to solve, the generated set’s conditional distributionPt�XnjXn�1
n�N�

should be statistically “close” to the training set’s conditional distri-
butionPg�YnjYn�1

n�N�. The distance between these two distributions
will give us an indication of how well suited our method is. In other
words, we intend to make a relation between this statistical metric
and the human visual appreciation of the difference between the
stroke sequences.

1.4 Our Contribution

Zg:

Zg:

Zg:

Zt:

Zt:

Zt:

Zg is moderately similar to Zt

statistical_distance(Zt,Zg)=2.1

Zg is visually similar to Zt
statistical_distance(Zt,Zg)=0.1

statistical_distance(Zt,Zg)=0.5

Zg is visually different from Zt

Figure 3: This illustrates the relationship between the statistical
metric and the visual impression.

This paper has two main contributions:

1. Propose anN-grambased method to synthesize a sequence of
strokesZg that “look like” a given training setZt . By doing
this, we are approaching the notion of style of hatching in
drawing.

2. Find a statistical metric that correlates the human visual per-
ception in the context of stroke synthesis. This metric will be
used to evaluate the overall quality ofZg compared toZt while
detecting if and when the method diverges.

The remainder of this paper is organized as follows. In section 2,
we will formalize the problem by elaborating the statistical basis of
our approach. Section 3 shows some results while section 4 makes
reference to the method limitations. Section 5 discusses conclusion
and future work.

2 Underlying Statistical Theory

2.1 The Generation Model

Let us considerZ � fx0�x1�x2� ����xk�1g � xk�1
0 a given sequence

of strokes wherexi is a stroke and its associated random variable
Xi follows a conditional probabilityp�Xi jXi�1

i�N�. Each strokexi is
defined as a parametrical curve and is represented by a vector of
dimensiond whered depends on the complexity of the curve. Be-
cause of the specific needs of our algorithm, all strokes inZ has to
have the same dimensiond. As shown in Figure 4, the objective is
to find a strokexk that would best fit at the end of the sequence.

In the 1940’s, Shannon studied the problem of language pre-
diction which is, in many respects, similar to the stroke synthesis
problem. According to a statistical knowledge of the English lan-
guage, his objective was to predict the next letter of a text when
the previousN�1 ones are known. He came up with a solution by
introducing the famousFN measure called theN-gram entropy. It
measures the averageuncertainty (conditional entropy) of the next
letter when the preceding N�1 are known[Sha51]. In the present

xkBad xkGoodx =?k

Z: Z’: Z’’:

Figure 4: According to a given stroke sequence Z, the goal of our
method is to find the best strokexk to put at the end of it. A good
stroke is one that respects the preceding stroke pattern.

contribution, we replace the letters by strokes and the English sen-
tences by stroke sets. In that context, theFN measure is given by

FN ��∑
v

p�xk�1
k�N�xv� log p�xvjxk�1

k�N� (3)

wherexk�1
k�N are the lastN�1 strokes so far generated,p�xk�1

k�N�xv�

the joint probability of the N-gram sequence (xk�1
k�N�xv) and

p�xvjxk�1
k�N� the conditional probability of having strokexv given

the lastN�1 strokes.p�xk�1
k�N�xv� can be understood as being the

“word frequency”, which is (in English prediction), the relative fre-
quency of a given word in the English language. For example, the
most frequent English word “the” has probability 0.071 while the
second most frequent word “of” has probability 0.034 [Sha51]. In
the context of stroke synthesis, we do not have a dictionary of words
that could inform us of the probability of having a certain sequence
of strokes. For this reason, we consider all stroke sequences of size
N to be equally probable. This leads us to a simpler N-gram entropy
measure

FN ��∑
v

1
TN

logp�xvjxk�1
k�N� (4)

where the constantTN is the total number of stroke sequences hav-
ing lengthN. Intuitively, we might want to find thebeststroke for
which p�xvjxk�1

k�N� is maximal. Doing this would be appropriate if
the training set was very large. But in a context where that set is
relatively small, using only thebeststroke would turn our problem
into a deterministic one. To avoid that, instead of finding only one
best stroke, we shall consider S, the set of allplausiblestrokes

S� fxi jp�xi jxk�1
k�N�� c AND xi � Zg (5)

wherec is a constant andxk�1
k�N are the lastN� 1 strokes so far

generated. As Efros previously suggested, we linked the local con-
ditional probability with theEuclidean distancebetween the two
neighborhoodsxk�1

k�N andxi�1
i�N via the following Gibbs probability:

p�xi jxk�1
k�N� ∝ e�kd�x

k�1
k�N�xi�1

i�N�k (6)

whered��� is the Euclidean distance betweenxk�1
k�N (the lastN�1

strokes in the sequence) andxi�1
i�N (theN�1 strokes precedingxi).

The new strokexk is taken randomly from S. Here is an algorithm
that schematically describes how the generated setZg is synthesize
from the training setZt :

Function GENERATE STROKES(Zt,St ,Sg,N):
. Allocate Ztemp, a temporary array of strokes having size
St �Sg
. AllocateZg, an array of strokes having sizeSg
. Ztemp� Zt
. For i from 1 to Sg Do
. S� GET PLAUSIBLE STROKES(Zt,N)
. xi � pick randomly one stroke from S



. Appendxi to Ztemp

. Appendxi to Zg

. Return Zg

Function GET PLAUSIBLE STROKES(Zt,N):
. AllocateS, the list of plausible strokes
. zl � the lastN�1 strokes ofZt
. For all sequenceszc of lengthN�1 in Zt Do
. dst� EUCLIDEAN DISTANCE(zc,zl )
. If e�jjdstjj � c AND zc �� zl Do
. Appendzc to S
. Return S

2.2 Statistical Distance Between the Training and
Generated Sets

Now that we have a method to generate the stroke sequenceZg from
a training sequenceZt , we want to know how “far” these two se-
quences are from each other. In other words, does the sequence
generated by theN-gramalgorithm have the same statistical prop-
erties as the training one? To compute that “distance”, we use the
respective conditional distributionsPt�XkjXk�1

k�N� and Pg�YkjYk�1
k�N�

and calculate theirKullback-Leibler distance KL��� (or asymmetric
divergence[Bis95])

KL1 : KL�Pt�xkjxk�1
k�N�jjPg�ykjyk�1

k�N�� �

�
Z ∞

�∞
Pt�xkjxk�1

k�N�ln
Pg�ykjyk�1

k�N�

Pt�xkjxk�1
k�N�

dx (7)

BecausePt��� is the training set distribution, we hope thatPg��� is as
close as possible to it. In fact, it can be easily shown that equation
(7) reaches its minimum whenPt��� � Pg��� and gets bigger when
Pg��� differs fromPt���

2.3 The Curse of Dimensionality

The conditional distributionsPt�XkjXk�1
k�N� andPg�YkjYk�1

k�N� are gen-
erally not knowna priori. To compute these functions, we have to
empirically estimate them from the training strokes setZt and the
generated setZg. With an N-gramwindow width N and a stroke
dimensiond, the density estimation process will have to deal with a
total of D � N�d dimensions. A serious problem calledthe curse
of dimensionality[Bis95; Bel61] arises when D reaches large val-
ues. For instance, if we divide each dimension into a discrete set
of M bins, the strokes will be located in a world ofMD bins. This
implies that the number of bins grows exponentially with the stroke
complexity and the window width. In this way, if we have a small
number of strokes dispersed intoMD bins (whereD is large), most
of the bins will be empty and the density estimation process will fail
to accurately estimate the density function. Consequently, a reason-
able estimation forPt�XkjXk�1

k�N� andPg�YkjYk�1
k�N� would require an

enormous stroke database and would bring our problem towards in-
tractable solutions. To work around that dead-end, we decided to
replace the conditional distributionsPt�XkjXk�1

k�N� andPg�YkjYk�1
k�N�

by thea priori distributionsPt�X� andPg�Y�. The Kullback-Leibler
distance then becomes

KL2 : KL�Pt�x�jjPg�y�� ��
Z ∞

�∞
Pt�x�ln

Pg�y�
Pt�x�

dx (8)

From a formal point of view, making such a simplification may
appear clumsy and inappropriate since equation (8) is not an ap-
proximation of equation (7). Furthermore, knowing thatKL1 is the

true conditional distance between the two stroke sequences, we may
wonder howKL2 can give any good information onKL1.

We stated at equation (2) that the generated strokes inZg need to
be sequenced the same way they are inZt . To be true, one inher-
ent condition is to have two similara priori distributions. In other
words, the two sequences need to use the same strokes and at the
same rate. Consequently, whenKL1 is small, it implies thatKL2 is
small too:

KL1 is small�� KL2 is small (9)

But because of the forward direction of this statement, having a
smallKL2 implies nothing aboutKL1’s value. On the other hand,
we can say that whenKL2 is largeKL1 has to be large too:

KL2 is large�� KL1 is large (10)

In other words, whenKL2 is large, it tells us that the strokes in
Zt are generally not the same as those found inZg. Under these
conditions, there is no wayZg can be similar toZt . KL2 is thus only
meaningful when its value is large since it provides an indication of
what thetrue conditional distance between the setsZg andZt is.

We mentioned earlier that our algorithm has a tendency to di-
verge. When testing our method, we empirically observed that the
first generated strokes were generally well chosen. But when the
system starts to diverge, it often loops over and over on the same
stroke subset. This frequent problem is one that can be efficiently
detected by the metricKL2 because wheneverKL2 is large, it im-
plies thatKL1 is too. In other words, when the method starts to
reuse the same strokes over and over,KL2 reaches large values
telling us thatKL1 (thetrue distance) is also getting larger.

2.4 Density Estimation

The a priori distribution P�x� of a stroke setZ is not known at
first and thus needs to be estimated. We know from the theory of
probability that if a random variable X has a density functionG�X�
and a probability q(x), then

G�x� � lim
h�0

1
2h

q�x�h� x� x�h� (11)

Given a list of points and a given window h, we can computeq�x�
h � x � x� h� using anaive estimator[Sil86] by calculating the
number of pointsxi falling into the interval�x�h�x�h� as follows:

Ĝ�x� �
1

2hn
� no. ofxi falling in �x�h�x�h� � (12)

where n is the total number of points in the list. We can rewrite
equation (12) using akernel function K(known as theParzen win-
dow [Bis95; Sil86])

Ĝ�x� �
1
nh

n

∑
i�1

K�
x�xgi

h
� (13)

where h is called thesmoothing parameterand K satisfies the con-
dition

Z ∞

�∞
K�x�dx� 1 (14)

A common choice for that kind of kernel is the Gaussian function.
This leads to

Ĝ�x� �
1
nh

n

∑
i�1

1p
2π

expf� �x�xpi �
2

2h2 g (15)



Combining equation (15) to the stroke density estimation problem
gives us

P�x�� 1
n

n

∑
i�1

1

�2πh2�d�2
expf�kx�xik2

2h2 g (16)

wherexi � Z is a stroke of dimensiond. If Z contains normally
distributed data with unit variance, we can compute the optimal
smoothing parameter hopt [Sil86] instead of using a constanth

hopt � �
4

2d�1
�

1
d�4 �n�

1
d�4 (17)

wheren is the size ofZ andd is the dimension of the strokes. The
density estimation process can be summarized by the following
pseudo-code:

Function DENSITY ESTIMATION(Z)
. d� the dimension of the strokes inZ
. n� the number of strokes inZ
. If the strokes are normally distributed with unit varianceThen
. h� COMPUTE OPTIMAL H(d,n) /* eq.(17) */
. Else
. h� a constant value
. Pg�x�� ESTIMATE DENSITY(d,n,h,X) /* eq.(16) */
. Return Pg�x�

3 Implementation and Results

3.1 Requirements and Implementation

As we stated previously, our implementation contains two comple-
mentary parts: theN-gramalgorithm and the statistical cost func-
tion KL2 that comes with it. While testing our program, we found
out that the stroke generation algorithm is very sensitive to the
choice of the window widthN, the form of the strokes and their
layout. In fact, as a rule of thumb, there are two things we can say.
First, the more complex the strokes are, the bigger the training se-
quence needs to be. Secondly, highly correlated sequences such as
those presented on Figure 7 always require a largeN. Fortunately,
most of the time when one of these two conditions is not respected,
the cost functionKL2 reaches large values and warns us that some-
thing goes wrong. In such a case, the synthesis process is stopped
and the problematic curves are eliminated. The process can then
be restarted over the last strokes so far generated with a new set of
parameters (typically, a larger window sizeN).

Its important to understand that thisKL2 “large value” is not
a universal and absolute threshold above which the resulting se-
quence isalways visually bad. This threshold depends on the
stroke’s form and the sequence complexity. Typically, a simple se-
quence such as the one on Figure 2 will have a threshold around
0.4. On the other hand, a more complex one such as Figure 7 (a)
will have a threshold located near 0.25. After all the tests we have
made, we can say that for a majority of stroke sequences, the related
threshold is located somewhere between 0.2 and 0.5.

This threshold concept is fuzzy because it is directly related to
the subjective appreciation of the user. An acceptable result for one
may not be it for another. TheKL2 threshold evaluation is thus left
to the user.

Our implementation is simple and straightforward. Depending
on the choice of the user, the strokes can be Bezier curves or straight
lines. In either case, a stroke is always represented as a vector of
variables and the stroke sequences as an array of vectors. As shown
in functionGENERATE STROKES(.), during the synthesis phase,
the generated strokes are always picked up in the training setZt and
copied in the generated setZg.

3.2 Results and Applications

In the present section, there are three major questions we intend to
answer:

1. DoesKL2 correspond to the human visual perception?

2. Using theKL2 metric, is it possible to detect when the algo-
rithm starts to diverge?

3. How can we generalize this technique to two-dimensional
drawing?

In order to answer the first two questions, we manually created sev-
eral stroke sequencesZt and launched our algorithm over them. We
then closely observed the relation between the result quality ofZg
and the value ofKL2.

At first, we generated three sequencesZg from a single training
sequenceZt . As shown in Figure 5, we kept constant the size ofZg
andZt but varied the window widthN. We can clearly see that a
window width of 4 is inappropriate regarding the visual quality. The
value ofKL2 also corroborates this observation since it is nearly 10
times larger than it was for the first sequence.

We then generated long sequences and tried to detect when and
where the method starts to diverge. As presented in Figure 6, we
first drew a series of 41 strokes by hand. From this set, we gen-
erated 20 consecutive sequences of 50 strokes and calculated their
respectiveKL2 values. The resultingZg size is thus 1000 strokes.
We realized that the 19th sequence (containing strokes 900 to 950)
had a very largeKL2. This was because the algorithm started to
loop over the same stroke subset. A close inspection showed that
the method started to diverge around stroke 910.

We also generated highly correlated sequences where the order
in which the strokes are placed is crucial. As shown in Figure 7,
our method was able to successfully generate words made out of
strokes as well as a cloud of small crosses.

All stroke generation were done interactively and required a
small amount of memory. Typically, from a training set of 50
hatches, our method requires no more than 2 seconds and 50KB
of memory to synthesize 500 strokes. We made these tests on a
1.4GHz Athlon processor.

The last question to answer is more tricky since our method was
built to generate linear sequences of strokes and do nota priori
address the problem of 2D drawing. Nevertheless, we overcame
that limitation by carefully incorporating the artist in the drawing
process. That drawing process is simple : when a stroke based
image is to be rendered, the artist is asked to use a brush to specify
where the linear sequences of strokes are to be placed in the image.
This idea was already explored by [DOM�01] who showed that
this approach brings successful results. The linear stroke sequences
are generated on the fly by our method using a given training set
of strokesZt . That way, the artist is not evicted from the creation
process and have an intuitive way to freely distribute the strokes
on the 2D image. A concrete example of that drawing process is
shown in Figure 8. Such a tool manages the ”mechanical” aspect of
the stroke generation process and leave the artist in control of the
aesthetic aspect of the artwork. More drawing examples using this
method are presented in Figure 9.

4 Limitations

Our method suffers from two inherent limitations. The first one
comes from the fact that our method is not a “true” stroke genera-
tion algorithm in the sense that no strokes are really generated. This
N-grambased method picks up strokes from the training set and du-
plicates them in the generated set. Consequently, whenZg is very
much bigger thanZt , it contains a large number of strokes but with
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Figure 5: Starting fromZt , we generated three different sets all having size 50. The first one was computed using a window width of 10, the
second one 6 and the last one 4. It can be seen that the third sequence is visually different fromZt and its relatedKL2 is large.
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Generated set Zg
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Zg size = 100

Zt size = 41
Zg size = 950

2KL = 1.03...
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Figure 6: From a short hand-drawn sequenceZt of size 41, a longZg sequence is synthesized one block of 50 strokes after the other. After
generating 2 blocks,KL2 is not large and the result is visually similar toZt . On the other hand, after synthesizing 950 strokes (19 blocks),
KL2 gets very large telling us something wrong is going on with the result. A closer inspection showed that the method started to generate
the same stroke subset over and over around stroke 910.

Training set Zt Generated set Zg

...
KL = 0.14

2

Training set Zt Generated set Zg

...
KL = 0.038

2

Figure 7: Highly correlated sequences generated successfully using our method.

(a)

(b)

(c) (d)

Training set : Zt

Figure 8: Image (a) is the scene the user wants to draw and (b) is the
training set of strokes. (c) illustrates some drawing paths entered by
the artist and (d) is the final result.

a limited variety of form. This leads to the situation where equation
(2) fails to be true andKL2 loses its meaning. In other words, the
KL2 value makes sense only when the two sequences have similar
number of strokes. This limitation is not crucial in computer-aided
drawing since generation of longXg sequences can be made block
by block as shown in Figure 6. That way,KL2 is always meaningful
while bringing a solution to the divergence problem.

The second limitation comes with the meaning of the statistical
metric KL2. As we said earlier, this metric represents the statis-
tical distance between two density functions that do not take into
account the conditional aspect of the stroke sequences. It pays at-
tention only to the general distribution of strokes and not to how
they are put together. Consequently, a lowKL2 value does not im-
ply that the visual distance between the two sets is small.KL2 is
rather anegativeindicator that underlines visually unpleasant re-



sults when it gets large. Fortunately, degenerated cases where the
statistical metricKL2 does not fit the visual perception are rare.
KL2 have been useful for the majority of examples we have tried
and we believe that this approach provides a first step towards a
more versatile metric for comparison between visual objects.

5 Conclusion

In this paper, we have presented a new approach to synthetic
computer-aided hatching, engraving and similar artistic techniques.
The goal here was to grasp the notion of style from typical hatch-
ing. We believe that the style of a stroke sequence is given by the
form, the orientation and the layout of the strokes. Thus, the ma-
jor difference between our method and traditional texture synthesis
comes with the use of parametric strokes as a basic element instead
of pixels.

From a given hand-drawn training sequence, our method at-
tempts to generate a new sequence that has the same visual prop-
erties. To achieve this task, we came up with anN-gram based
method close to the one presented by Efros [EL99] in 1999. Our
method considers stroke sequences as being a realization of MRF
and tries to generate a sequence of strokes having the same condi-
tional probability as the training set – see equation (2). This method
is simple, fast and does not require a lot of memory. On the other
hand, it has an unpleasant tendency to diverge and is very sensitive
to its parameters.

To overcome these inherent limitations, we looked for a visual
cost function that would provide us with an objective quality mea-
sure. We came up with the idea of using a statistical cost function
that would evaluate how “far” visually the generated set is from the
training set. We made the choice of theKullback-Leiblerdistance
(KL1) between the conditional distribution of the two sequences.
However, we showed in section 2.3 that this measure falls uncon-
ditionally into theCurse of dimensionalityand that for this reason,
it could not be kept. We bypassed that problem by replacing the
conditional distributions by thea priori distributions. The condi-
tionalKullback-LeiblerdistanceKL1 became thea priori Kullback-
Leibler distanceKL2. This last measure provided useful informa-
tion on the overall quality of the results and helped us locate when
and where the method diverges.KL2 is a measure that indicates
how far statistically the two sequences are from each other but gives
no clue on the visual closeness of the sequences.

The proposed method can be used in programs for computer-
aided illustration and/or drawing where the user provides interac-
tively a training set of hatching or make reference to a library of
hatchings and automatically applies this style on a selected area of
a synthetic drawing. Our method can also be immediately used as
a brush feature by graphic programs such as Gimp, Photoshop, Il-
lustrator or by any other applications going beyond this spectrum.

6 Future Work

While writing this paper, we came to realize that our contribution
raises more questions than it solves. For instance, we do not know
what the mathematical relation between thewindow widthN, the
training set size, the generated set sizeand the stroke dimension
really is. We thus intend to encompass this relation in order to be
able to further stabilize the algorithm.

We also are looking for an innovative method that would gener-
ate new strokes instead of reusing the same ones over and over as is
presently the case. Such a solution would fully satisfy equation (2),
whatever the size of the generated stroke set.

In the actual version of our work, we do not control the tone of
the strokes. We only fix it to a constant value, whatever the shape or
the position of the strokes may be. We thus are currently working

to link the tone of the strokes with a given input picture in order
to help smooth out the shades. Varing the width of the strokes and
using a method inspired of the one proposed by Praunet al.[EPF01]
are amoung the possibilities.

As we stated in the introduction, one of our long-term goals is
to be able to extract the style of a work of art in order to apply it
in a 2D or 3D scene. Understanding what the drawing style is, ex-
tracting it from a sample of artwork and transferring it into a scene
are still problems for future work. In this perspective, the present
contribution represents only one piece of the puzzle. Nevertheless,
we believe that it is a useful first step in the right direction.
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