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1Université Lyon 1, LIRIS, CNRS UMR5205, F-69622, France

2LIGUM, Dept. I.R.O., Université de Montréal

Abstract

Directional regularization offers great potential to improve the
convergence rates of Monte-Carlo-based global illumination algo-
rithms. In this paper, we show how it can be applied successfully by
combining unbiased bidirectional strategies, photon mapping, and
biased directional regularization.
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1 Introduction and Related Work

While light transport is well described by the rendering equation
[Kajiya 1986], simulating efficiently all global-illumination effects
remains a challenging problem. Several solutions have been pro-
posed, but the category of Monte-Carlo integration methods proves
to be the most general and popular today.

An efficient method for generating path samples for the Monte-
Carlo process is the Bidirectional Path Tracing (BDPT) [Veach and
Guibas 1995b], where random sub-paths are scattered in the vir-
tual scene, starting from light sources and/or camera. To form a
full path, explicit connections between sub-paths are created and
their contributions are weighted accordingly to their probability of
existence. However, highly specular materials, directional lights,
etc., introduce singularities in the light path. These singularities
prevent explicit connections between camera and light paths, ulti-
mately leading to higher variance in the image or worse, to missing
features (e.g., caustics from a point light seen through a mirror).

The sampling strategy of Photon Mapping (PM) methods [Jensen
2001] connects sub-paths within a local spatial range query. Al-
though PM introduces bias through spatial regularization, it is
proved consistent [Knaus and Zwicker 2011], reduces noise in some
complex scenarios (e.g., caustics), and allows the simulation of fea-
tures not handled with unbiased methods. On the other hand, PM
suffers from artifacts and noise in other scenarios (e.g., illumination
on a glossy surface) where unbiased BDPT is more efficient.

Some researchers have explored the possibility of introducing bias
using directional regularization to treat specular surfaces [Kniep
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et al. 2009; Kaplanyan and Dachsbacher 2013] but restrain its ap-
plication only to scenarios not handled by previous methods.

In this paper we generalize the application of directional regular-
ization as a complement of standard Monte-Carlo methods in order
to improve their robustness, not only in particular cases, but also to
reduce noise in early stages of rendering. Our approach is similar
to Vertex Connection and Merging (VCM) [Georgiev et al. 2012]
and Unified Path Space UPS [Hachisuka et al. 2012], where spatial
regularization forms an additional sampling strategy. Unlike them,
we use directional regularization as an additional sampling strategy
weighted with respect to other strategies in the context of multiple
importance sampling (MIS) [Veach and Guibas 1995a].

2 Background and Notations

2.1 Light Transport Estimation

Veach [1995a] expresses the rendering equation as a combination
of path samples drawn by several strategies j:

Î =
1

N

N∑
i=1

wj(x̄i,j)
F (x̄i,j)

Pj(x̄i,j)
, (1)

where x̄i,j represents a path composed of k vertices [v1, . . . , vk]
sampled with probability Pj(x̄i,j) using the j-th strategy. Î is a
measurement on the sensor (i.e., the amount of energy gathered
by a pixel) consisting of N Monte-Carlo samples, and F (x̄i,j) is
the energy associated with the path. F (x̄i,j) is mainly composed
of BRDF terms fm(ωmi , ω

m
o ) representing the energy scattered at

path vertex vm between the direction of vertices vm−1 and vm+1

represented as ωmi and ωmo .

To reduce variance, Veach and Guibas [1995a] propose a MIS
scheme where the final contribution of a random sample x̄i,j is
weighted by (using the balance heuristic):

wj(x̄i,j) =
1

Nj

Pj(x̄i,j)∑s
s′=1 Ps′(x̄i,s′)

, (2)

for s sampling strategies and Nj samples from the j-th strategy.

2.2 Singularities and Regularization

Specular BRDFs (e.g., due to mirror, glass, point light) introduce
singularities. E.g., a mirror BRDF can be modeled at vertex vm as:

fm(ωmi , ω
m
o ) = Frδ(R(ωmi )− ωmo ), (3)

where δ is the Dirac delta function, R is the reflection operator for
incident direction, and Fr includes a geometry term and a reflection
coefficient.

To create an explicit connection in BDPT between two random sub-
paths, [v1, . . . , vp] and [vp+1, . . . , vk], we need to evaluate the sub-
terms of F (x̄i,j): fp(ωpi , ω

p
o)fp+1(ωp+1

i , ωp+1
o ). To ensure that
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Figure 1: A highly glossy torus enclosed in a glass cube and lit by a small area light. The caustics seen through the torus are especially
difficult to reproduce. We render this scene using BDPT with a MLT sampling strategy with and without directional regularization. After
one minute of computation, our strategy (a) reproduces most of the features seen in the reference image (c) while the rendering without
regularization (b) misses most of them. After 25 minutes, our method (d) closely matches the final image while the rendering without
regularization still misses important features (e) or overbrightens them. The bias introduced by our method leads to slighly blurred caustics
(d) (bottom inset) that get sharper in the final image. An associated video illustrates this behavior and supplemental materials gives additional
pixel convergency results for the red dot in the inset of (c). The plot (f) represents the log-based RMS error using high dynamic range images,
as compared to the reference image. We compared our method as well to two runs of BDPT without regularization. Observe that our method
leads to a better and more stable behavior in early stages of rendering. At the end of the rendering, differences between our method and the
method without regularization is mainly stochastic noise barely discernable in low dynamic range images.

the path scatters energy, this term should be non-null. However, be-
cause vp and vp+1 are generated by two independent random pro-
cesses (i.e., generating sub-paths from lights and camera), F (x̄i,j)
is null if the BRDF of vp or vp+1 is singular. A similar constraint
holds in PM but only relies on one BRDF term. As a consequence,
paths with many singularities will have very few or even no bidirec-
tional sampling strategies available, and will therefore miss these
phenomena, or result in noise in rendered images.

Directional regularization [Kaplanyan and Dachsbacher 2013] re-
places δ(R(ωi)−ωo) in singular models by a finite support function

δ̂(R(ωi)− ωo) =

{
1

2π(1−cos ε)
if R(ωi) · ωo > cos ε

0 otherwise
(4)

where ε is the half aperture of a small cone. They only use this
directional regularization to sample specific light paths.

In the following, we introduce this regularization in any sampling
scenario to increase robustness. Our discussion focuses on reducing
noise while keeping a small amount of introduced bias.

3 MIS Directional Regularization

Our formulation is based on the Unified Path Space from Hachisuka
et al. [2012]. When a ray hits a specular surface, the outgoing direc-
tion is normally constrained by Snell’s law. By introducing a direc-
tional perturbation, we allow a scattering direction to be uniformly
sampled within a thin cone aligned with the mirror direction.

Consider a path composed of two unbiased sub-paths, [v1, . . . , vp]
and [vp+1, . . . , vk], connected through a segment between vertices

vp and vp+1. The probabilities of sampling both sub-paths are
−→
Pj

and
←−
Pj . We define the probability of sampling the full path as:

Pj(x̄i,j) =

−→
Pj
←−
Pj

[2π(1− cos ε)]min(Ns,2)−Nr
, (5)

where Nr is the number of specular surfaces involved in the con-
nection (i.e., 2 if both vp and vp+1 are specular, 1 if only one is,
0 if both are non-specular). Ns is the number of specular surfaces
in the entire path. The “min” term ensures that no more than two
regularizations can be introduced (i.e., when connecting two spec-
ular surfaces) and also treats the case where there are less than two
specular surfaces in the path.

If a singularity appears in the evaluation of the connection, direc-
tional regularization (Equation 4) is used to compute the amount of
scattered energy. To reduce the introduced bias, we apply virtual
perturbations where the sampling of a regularized surface always
returns the correct specular scattering direction.

Multiple Importance Sampling Once a path has been sampled
using one strategy (possibly introducing regularization), its proba-
bility density function (PDF) must be evaluated with respect to other
strategies using Equation 5 and weighted using MIS (Equation 2).

Consistency In order to make our method consistent, we must
progressively reduce ε. Kaplanyan and Dachsbacher [2013] provide
the details of this reduction and show that the directional regular-
ization behaves exactly as a spatial regularization (in both cases it
is a density estimation over a 2D surface). [Hachisuka et al. 2012;
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Figure 2: Biased (a) and unbiased (b) contributions for the torus
scene. Except for complex caustics paths, the image is mainly un-
biased. Both strategies contribute to the caustics (bottom insets).

Georgiev et al. 2012] give all the details about the consistency of
MIS between biased 2D regularizations and unbiased samples.

Introduction of Bias Equation 5 shows that the PDF value is
linked to two variable terms:

−→
Pj
←−
Pj and Nr . When the path

does not include regularization (i.e., Nr = 0), this results in a
larger PDF value than when the path includes regularizations (i.e.,
Nr ∈ {1, 2}). Therefore paths created with regularizations have a
lower weight, thanks to MIS (Equation 2). Therefore our method
usually features low bias, except in complex sampling cases where
the term

−→
Pj
←−
Pj shows wide variation between the biased and unbi-

ased strategies. This is where our contribution makes a difference.

Implementation Our method can be easily integrated in the ma-
terial model of a standard bidirectional path tracer without any
change to the MIS computation. This keeps the MIS weight compu-
tation simple and hence eases the implementation process. We de-
tail this in our supplementary material, and show that this approach
takes into account unbiased bidirectional connections, vertex merg-
ing (i.e., spatial regularization or photon density estimation), and
directional regularization in a simpler way than what was proposed
by [Hachisuka et al. 2012; Georgiev et al. 2012].

4 Results

In order to illustrate well our method, we designed four scenes with
simple geometry, but featuring complex light transport scenarios,
such as small area light sources, mirror reflections, perfect refrac-
tions, etc. Our algorithm is implemented in approximately 50 lines
of C++ as a special material inside [LuxRender 2008] without any
other changes in the rendering algorithms. The code is available
and released under the GPL licence. All results are generated using
LuxRender on an Intel i7 950 @ 3 GHz using 8 CPU threads. The
initial half aperture angle is of ε = 0.04 radians.

In Figure 1 a highly glossy torus is enclosed in a glass cube and lit
by a small area light. Although this scene can be rendered using un-
biased BDPT, the small size of the light source makes it really diffi-
cult to sample, even with Metropolis Light Transport (MLT) [Kele-
men et al. 2002]. The directional regularization (used with BDPT
and MLT) shows a better convergence behavior during the early
stages of rendering. However, we observe that after a few hours
of rendering, our method appears to converge a little slower. This
is due to the asymptotic convergence behavior of regularization,
which is equivalent to PM and less efficient than unbiased BDPT.
However, at this rendering stage, the differences between methods
correspond to a small amount of bias and noise that is hardly vis-
ible in low dynamic range images. Figure 2 shows the weighting
between biased and unbiased strategies for the torus scene.

Our method does not affect simple light paths and results in no ad-
ditional bias in such configurations. Similarly to [Kaplanyan and
Dachsbacher 2013], the directional regularization allows BDPT to
sample a new category of paths, previously impossible to sample
with unbiased BDPT, as depicted in Figure 3.

(a) Weighted unbiased (b) Weighted biased (c) All strategies

Figure 3: A perfect mirror ring lit by a point light source ren-
dered by BDPT and our MIS regularization. The scene contains
a transparent green lens that prevents standard BDPT explicit con-
nections to the camera. (a) The contribution of unbiased strategies
where features are missing. (b) The weighted contribution of bi-
ased strategies, which only contribute to the missing parts and do
not add bias in other parts of the image. (c) The sum of the weighted
strategies in the final image, exhibits no bias in simple features and
depicts complex features that BDPT cannot usually sample.

Note that the torus scene can be rendered with unbiased methods
only, although with slow convergence as depicted in Figure 1. This
scene shows the differences between our approach and the single
directional regularization [Kaplanyan and Dachsbacher 2013]. Be-
cause they only focus on paths that cannot be sampled with unbi-
ased methods, they do not improve the converging behavior of this
scene. We show that using directional regularization even on paths
that can be sampled by unbiased methods improves the converging
behavior. In Figure 4 we show that using many biased strategies
instead of one leads to a better variance reduction.

Finally we compare our strategy to PM. In many complex cases,
the density estimation of PM is really efficient to reduce variance.
Even though, we show in Figure 5 that in some scenes directional
regularization is a better sampling scheme than PM.

5 Discussion

Directional regularization is an efficient variance reduction scheme
with BDPT, MIS, and MLT. Our goal is not to show that it is bet-
ter than unbiased BDPT or PM, but that it is an efficient sampling
strategy worth using in combination with these other strategies.

(a) Single regularization (b) MIS regularization (ours)

Figure 4: Comparison between single regularization [Kaplanyan
and Dachsbacher 2013] (a) and our MIS regularization (b). They
select only the bidirectional strategy that introduces the minimal
amount of bias. For this scene it is the strategy that connects a light
path to the camera, but it exhibits high variance. In our case, we
exploit all available strategies, including connecting a camera path
to the light, which is a more efficient sampling scheme here and
results in less noise in the image.



(a) VCM (b) Regularized BDPT (c) Reference

Figure 5: A mirror ring lit by a distant directional light. The floor
is a mix between two materials: a green diffuse and a red glossy.
The scene extent is 100× larger than the cylinder, hence paths sam-
pled from the light have low probability of reaching the camera and
camera paths cannot sample the caustics. VCM is then inefficient
because neither PM or bidirectional strategies are efficient. The di-
rectional regularization is able to create a connection between the
mirror and the distant light. Both methods ran for one hour.

Rendering Engine Vertex size Memory footprint
LuxRender [2008] ≈ 250 bytes 1900 MB
SmallVCM [2012] 120 bytes 920 MB

Table 1: Approximate memory overhead of PM (VCM) at a 1920×
1080 resolution. This approximation only takes into account the
photon data (position, direction, BSDF, probabilities) and not the
data structure overhead for storage. This memory footprint is not
compatible with constrained renders (such as GPU) and increases
with resolution. On the other hand, directional regularization in
BDPT does not have this memory requirement and therefore can be
used on GPU and high resolution renders.

Recently, [Georgiev et al. 2012; Hachisuka et al. 2012] have shown
that merging different sampling methods, such as PM and un-
biased BDPT, leads to a robust rendering algorithm. However,
some light phenomena can only be rendered with directional reg-
ularization [Kaplanyan and Dachsbacher 2013]. Following their
work, we show that directional regularization can outperform these
other strategies in some complex cases. Directional regularization
can be easily implemented inside any BDPT, and therefore inside
VCM/UPS. This leads to a robust and holistic hybrid algorithm
combining the sampling strengths of BDPT, PM, and directional
regularization, able to handle all kinds of light phenomena.

Directional regularization without PM is even useful in some cases.
First the engineering task of implementing BDPT is easier than im-
plementing VCM (which needs to combine BDPT and PM). More-
over there are cases where the additional memory usage of PM (de-
tailed in Table 1) is problematic, for example in GPU rendering
where the amount of memory is limited. Additionally, motion blur
and light dispersion can also suffer from correlated sampling, as
demonstrated in Figure 6. This leads to the conclusion that direc-
tional regularization can be used by itself inside BDPT.

Conclusion We proposed a simple yet powerful extension to path
space regularization. The originality of our approach consists in
combining multiple importance sampling with directional regular-
ization. We show that directional regularization is an efficient sam-
pling strategy for complex lighting scenarios and, when coupled
with BDPT and/or PM, that it leads to more robust rendering meth-
ods. In future work, we will focus on building a better heuristic
for setting an initial value for the aperture ε, which is currently set
by the user. We would also like to find a new weighting term wi
designed to precisely control the amount of introduced bias.
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Figure 6: A highly dispersive lens without directional regulariza-
tion. After a few seconds of rendering (two photon passes), PM
(VCM) has only sampled two wavelengths, because photons and
gathering rays must sample the same wavelength to allow connec-
tions. Although less noisy, the VCM image suffers from important
banding artifacts, but not BDPT. Depending on the rendering con-
text, avoiding banding in early stages of rendering is an important
property of algorithms without caches, such as BDPT.
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