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Figure 1: A high dynamic range 1024×512 environment map [Debevec 98] sampled with 3000 point lights. In this image, importance density
is represented by the lightness of the background. It took 0.064 seconds on a 2.6 GHz P4 to generate this point set. Similar results using
a hardware accelerated Lloyd relaxation [Hoff et al. 1999] required 1 second, while Structured Importance Sampling [Agarwal et al. 2003]
took 1393 seconds.

Abstract

This paper presents a novel method for efficiently generating a good
sampling pattern given an importance density over a 2D domain.
A Penrose tiling is hierarchically subdivided creating a sufficiently
large number of sample points. These points are numbered us-
ing the Fibonacci number system, and these numbers are used to
threshold the samples against the local value of the importance den-
sity. Pre-computed correction vectors, obtained using relaxation,
are used to improve the spectral characteristics of the sampling pat-
tern. The technique is deterministic and very fast; the sampling
time grows linearly with the required number of samples. We illus-
trate our technique with importance-based environment mapping,
but the technique is versatile enough to be used in a large variety
of computer graphics applications, such as light transport calcula-
tions, digital halftoning, geometry processing, and various render-
ing techniques.
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1 Introduction

Sampling is ubiquitous in computer graphics. Many researchers
have studied how the properties of sampling may affect the qual-
ity of the achieved results in applications such as ray tracing,
Monte Carlo path tracing, motion blur, geometry processing, digi-
tal halftoning, etc. Nowadays, it is generally accepted that isotropic
two-dimensional sampling with blue noise Fourier spectrum is well
suited for a large range of applications – see [Cook 1986], [Ulich-
ney 1988], [Shirley 1991], [Mitchell 1991], [McCool and Fiume
1992], [Glassner 1995], [Hiller et al. 2001], [Kollig and Keller
2002], [Kollig and Keller 2003].

Often, these graphics applications need distributions of samples
proportional to an importance that results from a prior treatment
(e.g., BRDF of a surface, distribution of light energy, and geometri-
cal properties). The problem of 2D importance sampling with blue
noise can be stated as follows:

• Given the importance density I on a domain D, as an ana-
lytical function or in the form of an array of discrete values.
Without loss of generality, I can be normalized in such a way
that 0≤ I(x,y)≤ 1 ∀(x,y) ∈ D.

• Find a set of discrete samples, whose local density of sam-
ples (the number of samples per unit area, calculated locally)
is proportional to the importance density I, and whose Fourier
spectrum exhibits the following properties: (a) low angular
anisotropy, and (b) characteristic blue noise profile of the ra-
dial component, i.e., a low-magnitude disk around the DC
term, a high-magnitude annulus that corresponds to the mean
distance between the samples, and a surrounding medium-
magnitude background exterior to the annulus (see more de-
tails in [Ulichney 1987], [Hiller et al. 2001]).

Many different techniques have been developed in order to solve
this problem. Some of them, known as relaxation techniques, can
produce solutions of remarkable quality. In particular, Lloyd’s re-
laxation [Lloyd 1983] and its variants lead to centroidal Voronoi
tessellations [Du et al. 1999]. Unfortunately, the price paid for this
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quality is high: relaxation techniques are fundamentally slow be-
cause they have to solve, often iteratively, the problem of neighbor-
hood determination of each point with respect to all others. Even
the most advanced and optimized implementations remain slow.
The hardware-assisted implementation of Lloyd’s relaxation [Hoff
et al. 1999] is faster but is limited by the resolution of the frame
buffer. Some techniques use a form of stochastic sampling (dart
throwing), such as the method proposed in [McCool and Fiume
1992], where random points are added or rejected according to the
proximity to previous points. Due to the low convergence rate of
these methods, their running times are at best in the same order as
Lloyd’s. These methods are strictly descending and can be very
sensitive to the initial point set.

Other approaches employed in digital halftoning, known as error-
diffusion techniques (see [Ulichney 1987], [Ostromoukhov 2001],
[Zhou and Fang 2003]), are considerably faster because only a very
limited neighborhood of each point is examined. An example of ef-
ficient usage of error-diffusion in geometry processing has been ex-
ploited in [Alliez et al. 2002]. The main drawback of error-diffusion
is the discrete nature of the elements on which it operates: they must
be rectangular tiles with fixed spatial resolution. This limits con-
siderably the use of error-diffusion as a general-purpose sampling
technique for computer graphics, where multi-resolution sampling
is often needed. This drawback has been explicitly mentioned in
[Surazhsky et al. 2003] where Lloyd’s relaxation was preferred to
error-diffusion.

Another fast sampling technique that could compare to ours in
terms of running times would be to use a cumulative density func-
tion (CDF), generated from the probability density, and to sample
it with a stratified Monte-Carlo technique. Although such an ap-
proach can generate points that reflect the required local density,
they do not follow the desired blue-noise distribution, as shown in
Figure 13. Recently, [Secord et al. 2002] have used a similar ap-
proach, using some well-known low-discrepancy sequences such
as Halton and Sobol sequences (see [Niederreiter 1992] combined
with CDF, in order to distribute graphics primitives at interactive
rates, in an NPR context. Although this deterministic approach is
very promising, the convincing multi-purpose results have yet to be
seen (see Figure 13).

In this paper, we introduce a novel Penrose tiling-based importance
sampling technique that presents certain advantages over existing
techniques. It belongs to the family of point sampling, that is, each
point is processed independently of other points. The treatment
for each point is simple and computationally inexpensive, which
guarantees the very high speed of our algorithm. Moreover, thanks
to off-line optimization and to a specially designed lookup table,
the quality of the sampling is high, approaching the quality of cen-
troidal Voronoi tessellations. The size of the lookup table is reason-
ably small (typically, less than 1K of data). No data-dependent pre-
calculation is needed. Our technique is multi-resolution and can be
successfully applied on high dynamic range images (we illustrate
this in Section 5).

The rest of the paper is organized as follows. In Section 2, we recall
some historical facts and properties of Penrose tiling. In Section 3
we describe the core of our sampling system. In Section 4, we en-
rich the basic technique with an advanced relaxation that produces
an almost perfect blue noise Fourier spectrum at all importance lev-
els. In Section 5, we apply, as a case study, the proposed technique
to importance-based environment mapping. Finally, in Sections 6
and 7, we discuss future work and draw some conclusions.

2 Penrose Tiling

The history of Penrose tiling is fascinating. It goes back to the work
of Johannes Kepler, a 17th-century astronomer and mathematician.

Figure 2: Left: Kepler’s drawing from Harmonice Mundi published
in 1619. This tiling inspired Roger Penrose to discover his ape-
riodic tiling composed of two marked rhombs (top right). Tiles
from his original 1979 article contain arrows as matching rules that
force the aperiodicity of the tiling. Bottom right: Optical Fourier
transform of the vertices of Penrose tiling obtained in 1982 by Alan
Mackay.

Figure 3: Left: Original Penrose tiling with two kinds of rhombs.
Right: An alternative representation of the same tiling, where the
rhombs are split in two halves, and the pentagons of two kinds are
placed at the vertices of the original tiling.

In his book Harmonice Mundi, he published an atlas of various
tilings with regular polygons. One of them, shown in Figure 2
(left), excited the imagination of many mathematicians over a long
period. Is it possible to tile the plane only with regular pentagons,
decagons, and five-pointed stars? According to Kepler’s drawing,
it was possible if one permitted also strange peanut-shaped figures
(“monsters”), such as the one visible underneath the label “Aa”.

In the early 1970s, a modern physicist and mathematician, Roger
Penrose, was mesmerized by Kepler’s drawing. He modified it in
such a way that he was able to tile the plane non-periodically with
a similar set of tiles. And he did much more: he found that intro-
ducing special matching rules such as marks on the edges of the
tiles will preclude any periodic arrangements of the tiles. Still, the
tiling shows a clearly identifiable local order. This tiling belongs
to the family of aperiodic structures, i.e., structures whose non-
periodicity is forced by the matching rules. Penrose published a
first account of his discovery in [Penrose 1974]. Later, Penrose
published a paper where he presented three different but tightly re-
lated aperiodic tiling systems with matching rules [Penrose 1979].
One of them, shown in Figure 2 (top right), has only two extremely
simple shapes, two different rhombs with matching rules. In 1977,
Martin Gardner published in his column in Scientific American, an
enthusiastic account of Penrose’s discovery [Gardner 1977]. After
Gardner’s publication, Penrose tiling became well-known to a large
number of mathematicians, physicists, and chemists.

The Penrose tiling with rhombs shown in Figure 2 (top right) and in
Figure 3 (left) has attracted special attention, due to its simplicity.
In the early 1980s, Alan Mackay generalized the Penrose tiling to
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Figure 4: Subdivision rules for modified Penrose tiling, as shown
in Figure 3 (right). The Golden Ratio φ = 1+

√
5

2 ≈ 1.61803. Pairs
of orthogonal vectors form the basis for each tile.

three dimensions. He also performed an optical Fourier transform
of the pattern of holes perforated at the vertices of Penrose tiling
(see Figure 2 (bottom right), reproduced from [Mackay 1982]).
This picture caused a sensation. In fact, it looks like a Bragg diffrac-
tion pattern, but it clearly violates a well-established principle, the
so-called crystallographic restriction, which states that a diffraction
pattern of a crystal may have only a two-, three-, four-, or six-fold
rotational symmetry. The pattern obtained by Mackay in fact had
ten-fold rotational symmetry! A new science of quasicrystallogra-
phy was born. In 1984, Shechtman and his colleagues synthesized
a new matter, a quasicrystal, that had a diffraction pattern close to
that predicted by Mackay. It was the first time in human history
that a new kind of matter was predicted and analyzed before being
physically synthesized in the laboratory. Since then, hundreds of
papers on quasicrystals have been published. A corpus of funda-
mental papers on the physics and mathematics of quasicrystals can
be found in [Steinhardt and Ostlund 1987]. Grünbaum and Shep-
hard, in their theory of tiling bible [Grünbaum and Shephard 1986],
devote a whole section to Penrose tiling, where they provide a de-
tailed analysis.

Alternatively, Penrose tiling with rhombs can be represented as a
tiling with six shapes: both “fat” and “thin” rhombs are split into
two triangular halves, as shown in Figure 3 (right). In addition, reg-
ular pentagons of two kinds, which we also call “sampling tiles”
are placed at each vertex of the original Penrose rhombs. The pen-
tagons play the role of matching rules that enforce aperiodicity. The
tiling can be achieved by applying on each tile the subdivision pro-
cess as shown in Figure 4 (Grünbaum and Shephard call this sub-
division “inflations”). Geometrical proportions for all sides during
the subdivision process are shown in Figure 4. Note that the size of
the pentagons with respect to the triangles does not matter. Without
loss of generality the pentagons can be taken to be infinitesimal,
and the half-rhombs are triangular. The positions and orientations
of tiles, schematically represented in Figure 4 by pairs of orthogo-
nal vectors that form the basis for each tile, are important for our
construction.

Penrose tiling has attracted our attention for several reasons. First,
it is obvious from a glance at Mackay’s optical Fourier transform

shown in Figure 2 (bottom right) that it is surprisingly close to the
blue noise spectrum, a goal we fixed for our sampling system. In
fact, annuli of spectral peaks around the DC term are clearly visible.
Second, it can be easily observed that the pentagons obtained at one
level of subdivision are enriched by the pentagons of the next level,
which are placed between the pentagons of the previous level (see
Figure 5).
Although another famous aperiodic tiling, Wang tiling, has recently
been successfully exploited in computer graphics for the generation
of Poisson distributions of points [Hiller et al. 2001], [Cohen et al.
2003], Penrose tiling has been used only in the context of visualiza-
tion of decorative properties of the tiling (see for example [Glassner
1998]).

Level n Level n+1Levels n & n+1
Superimposed

Figure 5: Two consecutive subdivision levels of Penrose tiling. Red
dots mark sampling tiles of level n, blue dots – that of level n+1.

3 Two-dimensional Penrose-based Hierar-

chical Importance Sampling

Let us consider the Penrose subdivision process shown in Figure 4
as a recursive subdivision process. A special binary code called
F-code is assigned to each tile. This subdivision process can be
described by the following production rules:

PPenrose :=



























a∗ 7→ {b00∗}
b∗ 7→ {a00∗}
c∗ 7→ { f00∗,c10∗,a10∗}
d∗ 7→ {e00∗,d10∗}
e∗ 7→ { f00∗,c10∗,e01∗,a10∗}
f∗ 7→ {e00∗,d10∗, f01∗,a01∗},

(1)

where xy means a tile of type x having F-code y. The symbol ‘∗’
replaces the F-code of a tile before subdivision. Each subdivision
left-concatenates two symbols to the current F-code. Thus, after
n subdivisions, the F-code will have the length of 2n symbols. F-
codes can be interpreted as integer numbers in the Fibonacci num-
ber system as described in [Knuth 1997] and [Graham et al. 1994].
Appendix B provides some basic facts about the Fibonacci number
system, together with the pseudo-code of the routine FIBOTODEC-
IMAL that converts F-codes to the conventional decimal representa-
tion.
Figure 6 shows the first three subdivisions applied to a pair of tiles
of type ‘e’ and ‘f’ (top left).

Three important observations can be made:
• Decimal numbers that correspond to F-codes assigned to pen-

tagonal sampling tiles of type ‘a’ and ‘b’ are all in the range
[1..(F2(n+1)−1)], where n is the subdivision level of the initial
tiles, and Fi are the Fibonacci numbers.

• Successive subdivisions enrich sampling points obtained with
the previous subdivisions, putting new sampling points in be-
tween.
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Figure 6: Three subdivisions according to the production rules (1).
Only the F-codes of pentagonal sampling tiles are shown (in red),
together with corresponding decimal values (in black).

• Decimal numbers already assigned at a subdivision level n
will remain at the same positions during all further subdivi-
sions. The principle of this distribution is similar to that of
Bayer’s dispersed-dot dither [Bayer 1973], [Foley et al. 1990]
or that of rotated dispersed-dot dither [Ostromoukhov et al.
1994].

This allows us to build an adaptive importance sampling sys-
tem based on the Penrose subdivision system with the production
rules (1). Our adaptive importance sampling system is simple.
First, we cover the area of interest, where the importance is defined,
with a pair of tiles of type ‘e’ and ‘f’, as shown in Figure 6 (top left).
Then, we apply the recursive subdivision process according to the
production rules (1). We stop subdividing when the required local
subdivision level κ is reached. In this case, we output the center of
the ‘a’ and ‘b’ type tiles, if the local importance is greater than the
decimal value of the F-code of the current tile. Pseudo-code for this
algorithm is shown in Appendix A.
Importance density may be scaled by a factor mag, constant for
the entire importance density image, in order to obtain the desired
number of points. This effect is illustrated in the companion video1.
The required local level of subdivision κ can be determined as

κ = dlogφ 2 max
tile

(mag · I(x,y))e, (2)

where d e is the usual notation for ceiling, I(x,y) is the importance
value at position (x,y), and φ = 1+

√
5

2 is the Golden Ratio. The fac-
tor logφ 2 can be explained as the factor of self-similarity of Penrose
tiling. In fact, from one level of subdivision to the next, the area of
Penrose tiles diminishes by factor φ 2. The value maxtile(·) can be
achieved with standard scan-conversion on the triangle, for tiles of
type ‘c’, ‘d’, ‘e’, and ‘f’ (no scan-conversion is needed for tiles of
type ‘a’ and ‘b’ that are supposed to be infinitesimal). This scan-
conversion is opened to possible optimization. If less precision is
required but speed is capital, the importance can be tested only at a
few points within the tile.

4 Lookup Table-based Relaxation

To improve the spatial distribution of the sampling points, we create
a table of corrective vectors, which is used at run-time to relocate
the sampling points. These corrective vectors, expressed in terms of

1Siggraph 2004 Full Conference DVD-ROM; also available on the web
site of the first author: www.iro.umontreal.ca/ ˜ ostrom/ImportanceSampling

Before Relaxation After RelaxationCorrections

Figure 7: Lloyd’s relaxation applied on sampling point set of con-
stant importance, produced with our Penrose tiling-based system.
Small corrections are shown as yellow lines connecting the centers
of uncorrected (blue) and corrected (red) sampling points.
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Figure 8: Structural indices is obtained by converting the 6 most
significant bits of the F-code assigned to each tile to the conven-
tional decimal representation. Only sampling (pentagonal) tiles are
considered. In this figure, we use identical colors for tiles of type
‘b’ and ‘c’, ‘d’ and ‘e’, to better visually identify the structure. No-
tice how the local neighborhoods around tiles with the same la-
bel are similar, after rotation. Highlighted are the neighborhoods
around pentagons labeled with is = 5.

orthogonal basis proper to each tile, will have the effect of “relax-
ing” the point distribution. See Figure 7 and the companion video1.
Unfortunately, even though there are only two different sampling
tiles, the fact that Penrose tiles fill the plane aperiodically makes
it impossible to account for every possible correction vector. Nev-
ertheless, the self-similar nature of the tiling can be harnessed to
obtain a limited number of corrective vectors. To accomplish this,
we relabel the sampling tiles with what we call a “structural index”,
is, which is calculated from the first six bits of their F-code (see Fig-
ure 8). This gives a total of 21 different labels (the maximum value
encoded with the F-system over 6 bits). Each of these 21 labels has
a corresponding corrective vector. This six-bit structural indexing
has been found experimentally.
Because these corrective vectors have to be representative of any
importance density function, we must optimize them with regards
to different importance values. We chose to optimize the vectors
over n importance values that are represented by what we call the
“importance index”, iv which is calculated as follows:

iv = bn ·ψ(mag · I(x,y))c, (3)

where b c is the usual notation for the floor, I(x,y) is the importance
value at position (x,y) and ψ(·) maps a real number onto the interval
[0..1]. We found that with n = 8 we get rather smooth gradations
across importance values.
The resulting corrective vectors optimized over each importance
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Figure 9: A typical importance map sampled with our system. Blue
dots indicate the centers of the sampling tiles. Yellow lines show
lookup table-based corrections applied on sampling points. Red
dots show the corrected sampling points. Please note seamless tran-
sitions between zones of different levels of subdivision.

value are stored in a 8× 21 lookup table where the first index is
addressed by the importance index iv and the second dimension is
addressed by the structural index is.

The procedure used to generate the lookup table is the following.

First, we initialize the lookup table with zero vectors. Then, for
each importance index, iv, we apply the following process.

1. With our sampling system, create a large patch of sampling
points that correspond to the current importance, using the
latest version of the lookup table for corrections as will be
explained below.

2. Apply Lloyd’s relaxation on this set. Be careful to make pe-
ripheral points immovable. This is needed because the patch
is finite. See Figure 7.

3. For each sampling point, calculate the difference between the
uncorrected position and the relaxed position.

4. Calculate the mean value of correction vectors, for all sam-
pling tiles with the same structural index is. Store the results
in the table at position (iv, is).

5. Repeat steps (1)-(4) until convergence is attained (typically 5
to 10 iterations).

Considering the lookup table as a vector field, a low-pass filter is
then applied to the vectors across importance indices. Then, the
whole process is repeated until convergence is attained (typically 5
to 10 iterations). Thus, relaxation and low-pass filtering are applied
alternatively.

At the end of the optimization, the corrected points closely match
those obtained by true Lloyd relaxation, for all importance levels.
The low-pass filtering between each iteration ensures that the points
will be distributed adequately over gradients in non-constant impor-
tance density functions.

Figures 9, 13 (top), 10, and 11 (top right) illustrate the results
achieved with our system. Please note how our technique captures
nuances of importance in all subranges of the dynamic range.

Fourier Transform

Angular Anisotropy

Radial ComponentImportance

Figure 10: Fourier amplitude spectrum (DFT) of a smooth impor-
tance density image sampled with 2600 points, together with its the
radial component and angular anisotropy of the spectrum. Please
notice the typical blue noise profile of the radial component.

Several examples of lookup tables of various sizes can be found
on1. Please notice that the lookup table of size 8×21 described here
is compact, yet still gives satisfactory results. Larger size lookup
tables are applicable as well.

5 Case Study: Environment Map Sampling

One of many applications of our technique in computer graphics
is the sampling of HDR environment maps. The idea is to reduce
the environment map to a relatively small number of point light
sources, thus speeding up the integration of the incoming illumi-
nation. We compare our sampling system with those used in re-
cent incarnations of the above idea, notably Structured Importance
Sampling [Agarwal et al. 2003] and LightGen [Cohen and Debevec
2001]. See the companion video 1.
This problem essentially reduces to the k-centers problem, to which
there is no known polynomial-time solution. To achieve a fast so-
lution, an approximation must be used. [Agarwal et al. 2003] use
the Hochbaum-Shmoys algorithm, and [Cohen and Debevec 2001]
use k-means clustering; both are iterative searches. In [Kollig and
Keller 2003], a modifed Lloyd’s relaxation scheme is used to dis-
tribute the sampling points, which is also an iterative process. In our
system, the sampling points are deterministic and the lookup table
is pre-calculated; only a thresholding operation must be performed
during the sampling. Thus, we can obtain an empirical linear time
approximation (time on a 2.6 GHz P4 processor):

No. of points 236 343 455 690 930 1847 3006
Time in ms 6 9 12 17 22 42 64

The resulting sample distribution compares well with the other
techniques. The running times, though, are several orders of mag-
nitude lower. In order to obtain running times similar to our system,

1Siggraph 2004 Full Conference DVD-ROM; also available on the web
site of the first author: www.iro.umontreal.ca/ ˜ ostrom/ImportanceSampling



Figure 11: Galileo’s Tomb environment map, sampled with left: LightGen, center: Structured Importance Sampling, and right: our system.
The map size is 1024×512, the number of samples is 300. On a 2.6 GHz P4, sampling times were: left: 45 minutes, center: 25 seconds,
right: 8 milliseconds.

one could use the cumulative importance density function sampled
with a stratified Monte-Carlo sampling pattern or low-discrepancy
sequences, as shown in Figure 13. As mentioned before, the result-
ing sample points do not exhibit a blue-noise distribution. Whether
a blue-noise distribution of the lights is better in this context can be
debated, but that is beyond the scope of this paper.
With the relative speed of our system, the bottleneck quickly be-
comes the rendering process. With a rendering system that could
handle a few hundred lights in real time, it would be possible to sim-
ulate distant illumination with dynamic maps at interactive frame-
rates, using our sampling system.
See Figures 1 and 11 and the companion video.

6 Discussion and Future Work

Several important notions are given in this paper without formal
proof. For example, the property of uniformity of point distribution
introduced in Section 3 must be thoroughly studied and adequately
presented. This is a considerable work that goes far beyond the
scope of this paper. Adequate mathematical tools for this study
should be developed.
As we mentioned in Section 2, three-dimensional extension of Pen-
rose tiling was proposed by Mackay more than twenty years ago;
it played an important role in the discovery of quasicrystals. Con-
sequently, one may expect to build a 3D construction, similar to
our construction in Section 3, which would result in isotropic 3D
point distribution, modulated by 3D importance density functions.

Such hierarchical constructions would be useful in various com-
puter graphics applications. Moreover, a multi-dimensional vari-
ant of our construction may exist as well. It would be helpful in
various light transport calculations where multi-dimensional impor-
tance density functions must be sampled (see also [Veach 1997],
[Kollig and Keller 2001], [Kollig and Keller 2002]).
Sampling point sets produced with our method are not perfectly
isotropic. One possible way to improve our results would be study-
ing different available aperiodic tilings with the methodology intro-
duced in this paper. Among the known aperiodic tilings that share
various properties with Penrose tiling, we are considering Am-
mann’s octagonal tiling [Grünbaum and Shephard 1986], Socolar’s
dodecagonal tiling [Socolar 1989], and Wang tiling [Grünbaum
and Shephard 1986], [Hiller et al. 2001], [Cohen et al. 2003].

Another way to improve isotropy would be to use our method as
a starting point for some other methods, such as weighted Lloyd’s
relaxation, which will then converge in much fewer iterations.

7 Conclusions

Let us summarize the contributions of this paper.
First, we have proposed an original method for sequentially num-
bering all vertices of Penrose tiling, based on the Fibonacci number
system. The Penrose tiling is used as an underlying structure for
a recursive subdivision. The numbers associated with the tiles are
used as thresholds in the sampling process.
Second, we improve the above system with corrective vectors to en-



sure blue noise properties of the sampling point distribution. This
is achieved through an off-line Lloyd relaxation scheme. The cor-
rective vectors obtained in the optimization are stored in a two-
dimensional lookup table.
Our technique is very fast because the required processing per sam-
pling point is simple. The processing time grows linearly with the
number of sampling points. Typical processing time for sampling
a scene with thousands of sampling points can be measured in mil-
liseconds. Because each tile is processed independently, the pro-
posed system is parallelizable and therefore can be efficiently im-
plemented with hardware.
Because of its speed, simplicity, and multi-resolution properties
combined with good quality of point distribution, our importance
sampling technique may be applied in a large variety of graphical
applications.
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Salesin, Branko Grünbaum, Przemyslaw Prusinkiewicz, Craig Ka-
plan, Douglas Zongker, Eric Stollnitz, Daniel Wood, Julie Dorsey,
Pierre Alliez, Mathieu Desbrun, Alexander Keller, Jiri Patera, Mark
Grundland, Pierre McKenzie, Jean Vaucher, and Neil Stewart. We
would like to thank the anonymous SIGGRAPH reviewers for their
constructive and pertinent comments. Very special thanks to Frédo
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APPENDIX A: Pseudo-code of the Adaptive

Subdivision and Sampling

ADAPTIVESAMP(t o f type tile)
1 � Structure tile contains the fields:
2 � type: [‘a’..‘f’]
3 � LOS: Level of Subdivision
4 � vertices: center if ‘a’ or ‘b’, triangle otherwise
5 � Fcode
6 � mag and importance are global variables
7 local LOS← GETMAXLOSWITHINTILE(t)
8 if t.LOS≥ local LOS
9 then � Terminal: don’t need more subdivisions

10 local importance← mag ·GETLOCALIMPORTANCE(t)
11 if t.type = (‘c’ or ‘d’ or ‘e’ or ‘f’)
12 then return � Not a ”sampling tile”: do nothing
13 if local importance≥ FIBOTODECIMAL(t.Fcode)
14 then OUTPUTSAMPLE(t.center)
15 return
16 else � Need more subdivisions
17 {t1, .., tn}← SUBDIVIDEUSINGPRODUCTIONRULES(t)
18 return {ADAPTIVESAMP(t1), ..,ADAPTIVESAMP(tn)}

It is worth mentioning that the routines GETMAXLOSWITHIN-
TILE(t) and GETLOCALIMPORTANCE(t) play a very important,
even crucial role in the algorithm. If, for any reason (e.g., because
of a singularity in the importance density), they fail to evaluate the
local importance/max importance, it may result in locally erroneous
sampling density.

APPENDIX B: φ - and F- Number Systems

Details about φ - and F- (Fibonacci) number systems can be found
in [Knuth 1997] and [Graham et al. 1994].

The φ -system is a positional number system in base φ , where
φ = 1+

√
5

2 is the Golden Ratio. Any rational number x can be ex-
pressed in this system exactly as in our conventional binary or dec-
imal systems, except that instead of using powers of two or ten, this
system employs powers of φ . For example, the number (101.001)φ
in base φ is

(101.001)φ = φ 2 +φ 0 +φ−3 ≈ 3.854110

The φ -system is closely related to the F-system (the abbreviation
for Fibonacci system). The F-system is also a positional sys-
tem. Any integer n can be presented in the F-system as a sum of
Fibonacci numbers Fj multiplied by their positional coefficients,
which may be 0’s or 1’s. Thus, a number n can be expressed by its
F-code (bmbm−1 . . .b3b2)F :

n = (bmbm−1 . . .b3b2)F ⇐⇒ n =
m

∑
j=2

b jFj. (4)

The first index in the summation is j = 2 because of the convention
used for Fibonacci numbers Fj:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,F7 = 13, . . .

The representation of numbers is not unique in the F-system, but
it becomes unique if the rule of normal form is imposed: two ad-
jacent 1’s are not permitted. The procedure of conversion from an
arbitrary sequence of 0’s and 1’s to the normal form, along with
many other technical details, can be found in [Graham et al. 1994].
Here are the first twelve integers expressed in the F-system in nor-
mal form:

3 8 13 21 34 55 89 144

0.2

0.4

0.6

0.8

1

Figure 12: Function Ψ(x). Note that Ψ(x) “jumps” every F2 j

Figure 13: A ramp importance density image sampled with (top)
our system and the cumulative importance density function sampled
with (middle) a stratified Monte-Carlo pattern, or (bottom) Sobol
low-discrepancy sequence.

1 = (00001)F , 2 = (00010)F , 3 = (00100)F ,
4 = (00101)F , 5 = (01000)F , 6 = (01001)F ,
7 = (01010)F , 8 = (10000)F , 9 = (10001)F ,

10 = (10010)F , 11 = (10100)F , 12 = (10101)F .

More examples of interpretation of such sequences of 0’s and 1’s,
which we shall call F-codes, as integer numbers, are shown in Fig-
ure 6.

The routine FIBOTODECIMAL converts F-codes to the conven-
tional decimal representation.

FIBOTODECIMAL(Fcode)
1 accumulator← 0
2 for i← 0 to LENGTH(Fcode)−1
3 do
4 accumulator← accumulator +Fcode[i] ·Fi+2
5 return accumulator

Function Ψ(x) that maps a real positive x onto interval [0..1], as
shown in Figure 12, is defined as follows:

Ψ(x) = (logφ 2

√
5 · x) mod 1.

It can be easily derived from the well-known Binet’s formula

Fn = [φ n/
√

5],

where [ ] is the usual notation for the nint (Nearest Integer) function.




