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ABSTRACT

In this contribution, we present an optimal halftoning algorithm that uniformly distributes pixels over a hexagonal grid.
This method is based on a slightly modified error-diffusion approach presented at SIGGRAPH 2001.� Our algorithm’s
parameters are optimized using a simplex downhill search method together with ablue noise based cost function. We
thus present a mathematical basis needed to perform spectral and spatial calculations on a hexagonal grid. The proposed
algorithm can be used in a wide variety of printing and visualization tasks. We introduce an application where our error-
diffusion technique can be directly used to produce clustered screen cells.
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1. INTRODUCTION

1.1. Motivations

Digital halftoning is a technique for rendering images with a wide dynamic range on devices having a limited number
of available intensity levels. Driving color and grayscale printers is a typical application of digital halftoning. Most
modern laser and inkjet printers possess a limited number of available output intensity levels, whereas the input signal
may be considered as continuous-tone. In most applications, the input and output signals are sampled on a square or
rectangular grid. It is for this reason that most research in digital halftoning has been focused on halftoning using square
(or orthogonal) grids. Only a small amount of work has been done on hexagonal grids.���

Traditional digital halftoning using orthogonal grids has made tremendous progress during the last ten years. A
number of algorithms have been proposed that considerably increase the visual quality of the produced images.�� ��� At
the same time, none of the algorithms mentioned above can be easily reused with satisfactory results on hexagonal grids.

In the present contribution, we will try to fill this gap. We introduce an error-diffusion algorithm with optimized
coefficients that produces decent output on a hexagonal grid. We base our algorithm essentially on the work made by
Ostromoukhov� and reusing ideas derived from other contributions.���� 	� 


The motivations for our work were two-fold:

– first, from a theoretical point of view, generalization of existing halftoning algorithms to a hexagonal grid will lead
to a better understanding of the fundamental digital halftoning algorithm – which is far from obvious;

– second, physical devices with a hexagonal organization of visualization elements do exist (e.g. displays with hexag-
onal organization of RGB spots, inkjet printers with hexagonal organization of elementary ink drops). It may be more
appropriate to drive such entities directly, without passing through the intermediate orthogonal structure. An example of
such application will be presented in section 4.
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Figure 1. This figure illustrates the visual properties of blue noise: a light gray uniform patch halftoned with the scanline-path Floyd-
Steinberg E-D algorithm (left) and with the algorithm proposed in�(right). The Radial Fourier Transform (blue noise profile) was taken
from Ulichney’s book�� .

1.2. Error-Diffusion

Error-diffusion is a widespread binarization algorithm that is mostly used to render images on black-and-white devices
especially in the case where the preservation of fine image detail is needed.�� This algorithm is a fairly good compromise
between speed, simplicity and visual quality.

The way error-diffusion works is simple. First, every input pixel���� �� is selected one after the other. These pixels
have a value ranging between 0 and 1 and the order in which they are processed depends on the chosenpath (usually
serpentine or scanline). When a pixel���� �� is selected, it is compared to a fixthreshold � that is generally set at 0.5.
Whenever���� �� is larger than�, the value “1” is assigned to the output image���� ��, otherwise it is set to ”0”. This
output value is then compared to the input intensity level and put their difference in the error image���� ��. The error is
finally “distributed” to the neighboring pixels according to a given coefficient set similar to the one presented in Figure
3(a). The basic error-diffusion algorithm using ascanline path and the Floyd-Steinberg (FS) coefficient set is presented
in Table 1.

Table 1. Classical error-diffusion algorithm processing the pixels in a scanline order using Floyd-Steinberg (FS) coefficient set.

Function ERROR DIFFUSION(f[.],t): Function DISTRIBUTE ERR FS SCANLINE(�,f[.],P):
. Create output image g[.] . f[pixel at the right of P] +=� � �	��
. Create error image e[.] . f[pixel at the bottom right of P] +=� � �	��
. For each pixel P of image f[.] on a scanline pathDo . f[pixel under P] +=� � �	��
. If f[P] 
 ThresholdThen . f[pixel a the bottom left of P] +=� � �	��
. g[P]� white
. Else
. g[P]� black
. e[P]� (f[P]-g[P])
. DISTRIBUTE ERR FS SCANLINE(e[P],f[.],P)
. return output image g[.]

1.3. Blue Noise

Let us consider the problem of processing with a halftoning algorithm, an input image���� �� of size� ���� where each
pixel is assigned aconstant intensity level���� �� �  � 	
� ��. The goal of any halftoning algorithm is to generate a
bi-level output image���� �� thatapproximates best the input image. The output must consequently contain� � � �� � 



Table 2. Pseudo-code used to calculate the radial Fourier transform (RFT) of a two dimensional Fourier amplitude spectrum (G[.]).

Function COMPUTE RFT(G[.]):
. Create a one-dimensional array RFT[.]
. ���� ���� the center point of G[.]
. For each pixel P of image G[.]Do
. ���� ���� the coordinates of pixel P
. �����

��� ����� � ��� � ����

. RFT[���] += G[P]

. RFT[.]� NORMALIZE(RFT[.])

. Return RFT[.]

white pixels and�� � �� � �� � � black pixels in order to have an average intensity level . Each of the white pixels
covers an area of�

�
pixel� and the average distance between each other is equivalent to

�� �

��
�

��
�
� if  � 
��

��
���

� otherwise.
(1)

Since these pixels are assumed to be uniformly distributed,� � induces aprincipal frequency �� � �	��
��� �� clearly

visible in the frequency domain (see Figure 1 (d) and (e)). This kind of frequency shape with a peak over the principal
frequency and radial symmetry is called theblue noise shape. As presented in Figure 1(e), the blue noise spectrum is
often plotted as a one-dimensional profile function, often referred to asRadial Fourier Transform(RFT). The algorithm
that computes RFT from���� ��, the Fourier transform of the bi-level output image���� ��, is given by the pseudo-code
in Table 2.

For the remainder of this article, after the problem statement in the next section, we will discuss the proposed algorithm
along with its mathematical background and the optimization process in section 3. Section 4 will propose some possible
applications for our algorithm while section 5 will comment on some results and section 6 will draw conclusions.

2. PROBLEM STATEMENT

The method presented in this paper was built upon the generic concept of alattice. We define a lattice as being a two-
dimensional array of discrete points distributed over a coordinate system��� �� ���� where��� and��� are unitary base vectors
separated by a non-zero angle�. In this contribution, we call these pointslattice points. By their very nature, these points
cover no surface area and are labeled by a coordinate pair��� ��. The Cartesian coordinates of a lattice point defined by
its integer indices� and� are given by

��� �� � ���� � ���� (2)

where��� is the conversion function. By using the well knownDelaunay triangulation algorithm, we can subdivide
the lattice into a set of triangles and find its dual structure called theVoronoi diagram. �� From the basic theory of
computational geometry, we know that whenever allDelaunay triangles are equilateral, as in our case, theVoronoi regions
are nothing other than perfecthexagonal cells. In the context of this paper, we give these cells the namehexagonal pixels.
An example of this Voronoi diagram is presented in Figure 2.

Let us now consider a continuous input function���� �� defined in the two-dimensional space� � where���� �� � �.
This function can be sampled over a lattice in such a way that each lattice point is associated with the function value at
that point:

���� �� � ����� ��� (3)

where���� �� is the sampled function.
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Figure 2. View of a hexagonal grid. Such a structure is a particular Voronoi diagram since each Voronoi region is a perfect hexagonal
pixel.

It is well known in the halftoning community that a sampled function such as���� �� can beapproximated by a
bi-level function����� ��. More precisely, a halftoning method refers to the process of representing a sampled function
such as���� �� over a limited number of values, typically set to 0 and 1. The problem we solve in this contribution can
therefore be formulated this way: from a two-dimensional function���� �� sampled over a hexagonal lattice, generate a
bi-level function����� �� that best approximates���� ��. We consider that����� �� approximates���� �� well, whenever
the following two requirements are respected:

1. The local intensity of����� �� integrated over a small region equals���� ��. In other words,

���� �� �

� ���

���

� ���

���
����� ������ (4)

where� is a constant as large as a few hexagonal pixels.

2. If ���� �� � � for all values of� and� where� is a constant, the binary pixels of� ���� �� must be homogeneously
distributed in space. In other words,����� �� should have spectralblue noise characteristics as defined above.

To reach these requirements, we decided to use a modified version of the error-diffusion halftoning algorithm previously
introduced.
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Figure 3. Example of the Floyd-Steinberg algorithm applied to an orthogonal grid (a) and to a hexagonal grid (b). The affine transfor-
mation between the orthogonal grid and the hexagonal grid is made by the bijection operator� ���.

3. PROPOSED ALGORITHM

3.1. Model Description

As we stated previously, with the help of an error-diffusion algorithm, our goal is to compute a halftone image� ���� ��
that approximates a function���� �� sampled over a hexagonal grid. Unfortunately, the basic error-diffusion algorithm



presented in section 1.2 was not designed to work over hexagonal grids and thus generates disturbing artifacts. To solve
that problem, we use avariable-coefficient approach�� 
 which proposes to use 256 coefficient sets, one for each of the
256 intensity levels. Furthermore, the serpentine path was adopted to reduce directional artifacts mainly visible in the
shadows and the highlights.�� The complete pseudo-code for this method using the notation of section 1.2 can be found
in Table 3. Note that the 256 coefficient sets used in functionDISTRIBUTE ERROR(.) will be further optimized by
minimizing a givencost function built upon the blue noise constraint in order to meet section 2’s requirements. That cost
function will be described in detail in section 3.2.

Table 3. Pseudo-code of the error-diffusion algorithm used to distribute pixels over a hexagonal grid. Note that there is one coefficient
set for each of the 256 intensity levels. Since the pixel value� �� � was sampled between 0 and 1, its multiplication by 255 gives an
index corresponding to the appropriate coefficient set in the “Coeffs[.]” array.

Function ED HEXA(f[.],Threshold,Coeffs[.]): Function DISTRIBUTE ERROR(Error,f[.],P,Coeffs[.]):
. Create output image g[.] . CS� select one coefficient set Coeffs[255*f[P]]
. Create error image e[.] . If processing direction goes from Left to RightThen
. For all pixels P of image f[.] on a . DISTRIBUTE ERROR L R(CS,Error,f[.],P)
. serpentine pathDo . Else
. If f[P] 
 ThresholdThen . DISTRIBUTE ERROR R L(CS,Error,f[.],P)
. g[P]� white
. Else
. g[P]� black
. e[P]� (f[P] - g[P])
. DISTRIBUTE ERROR(e[p],f[.],P,Coeffs[.])
. return output image g[.]
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Figure 4. This figure shows how the error is distributed over the hexagonal pixels with Floyd-Steinberg’s method, our method and
Shiau-Fan’s method.

3.2. Optimization Process

In the previous section, an error-diffusion algorithm (ED HEXA(.)) was proposed to uniformly distribute pixels on a
hexagonal grid. However, in order to reach theblue noise requirement presented in section 2, we need to optimize the
256 coefficient sets. To do so, we implemented a simplex downhill method�� in combination with a blue noise basedcost
function and made it converge toward optimal coefficient values. This kind of method to find optimal coefficient weights
has been used several times in the past.�� �� �� As shown in Figure 5, the functionCOST FUNCTION( ,set) computes the
area between����� ��’s radial Fourier transform�� ��� and a given analytical function� ���. It was found that for
� ���, a normalized Gaussian function with standard deviation! �

	�
�

was a good compromise between simplicity and
result quality.�� The cost function algorithm is presented in Table 4.

As suggested by Ostromoukhov,� we did not optimise every 256 coefficient sets. To preserve stability of the whole
optimization process, we only optimized a fewkey levels and linearly interpolated the coefficients between these specified
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Figure 5. To calculate its error value, the functionCOST FUNCTION(�, set) first computes the hexagonal halftone image����� 	�
of average intensity “I”. It then computes a radial Fourier transform
�� ��� and calculates a Gaussian function� ��� centered on
principal frequency�� .�� �� � ���’s standard deviation is � ��

��
and the cost is the area between� ��� and
�� ��� : ���� �� ��

���
��
�� ���� � �������

Table 4. Cost function used within the simplex downhill search method to find optimal coefficient sets

Function COST FUNCTION( ,set):
. � 	�� ��� Create a flat image of intensity
. �
	�� ��� ED HEXA(f[.],
��,set)
. �
	"� Æ�� FOURIER TRANSFORM��
	�� ���.

. ��	�� ���
�
���

�
�
	 �"� Æ��

. �� ���� COMPUTE RFT(��	�� ��)

. If  # 
�� Do

. �� � ��
�

. Else

. �� � ��
���

. ! � �
�

. �� � �
�

. � 	� �� NORM GAUSSIAN FUNCTION(�� ,!)

. �	� �� ���� 	� �� � 	� ���

. cost� � 	�



�	� ���
. return cost

levels. Furthermore, because of error-diffusion’s symmetry propriety above and under 0.5, we only optimized the first
128 coefficents and transposed it to the 128 others. The 128 optimized coefficient sets are presented in Table 6.

One aspect of the problem that was not tackled yet concerns the number of coefficients the coefficient sets must have.
After trying many different configurations, we realized that the simple case with 3 coefficients (� �,�� and���� as shown
in Figure 4(b)) produces fairly good results. Furthermore, in contrast with the cases where more than 3 coefficients are
used, the optimization process converges more rapidly and is less prone to fall into local minimas.

3.3. Mathematical Context

As presented in Figure 3(a), the error-diffusion algorithm was originally made to work over anorthogonal lattice. Also,
it is more convenient to implement an orthogonal lattice in a computer program than a hexagonal lattice. For these
reasons, we decided not to useED HEXA(.) during the optimization process to create the hexagonal halftone result
����� ��. Instead, we used this algorithm on an orthogonal function� 
��� �� to create a bi-level output�
��� �� also
represented over an orthogonal grid. Once this last result is computed, its orthogonal lattice points are projected over
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Figure 6. This figure represents a gray scale ramp sampled over a hexagonal lattice where each black dot stands for a lattice point.
On top is the result of theERROR DIFFUSION(.) algorithm using a serpentine path and the well knowShiau-Fan(SF) coefficient
set.� At the bottom is the result of theED HEXA(.) algorithm using our optimized coefficients (see Table 6). There is a significant
difference between these two approaches especially around levels 64, 96 160, 192 and 224

����� ��’s hexagonal lattice points using abijection operator$��� (see Figure 3 and 7). This operator has the general
form $��� �� � ��� ��. By using the coordinates of Figure 3(a) and (b), we find that for a given point��� �� defined on an
orthonormal basis, its projection to a hexagonal basis is:

$��� �� �

�
�

%
�����

�
���

�
(5)

where� is the hexagonal pixel half-size and% is the orthogonal pixel half-size as shown in Figure 3. Images� 
��� �� and
����� �� can be linked together by equation (5) in order to get

���$��� ��� � �
��� ��� (6)

In summary, during the optimization process, the error-diffusion method creates� 
��� �� and the bijection operator
$��� maps this orthogonal grid to����� ��. To objectively optimize the method’s parameters, we compute����� ��’s
Fourier transform (����� ��) and see how close it is to the blue noise shape. For a matter of convenience, even if
����� �� could be computed by directly applying the Fourier transform to� ���� ��, we made the decision to convert the
affine transformation$��� to the Fourier domain. As shown in�	 , the spatial affine transformation of equation (6) can be
directly transposed to the frequency domain as follows:

���
%

�
"�
Æ � "%�

��
� �

�
���

%
�
�"� Æ� (7)

where�
�"� Æ� is the Fourier transform of�
��� ��. The spectral bijectionT(.) can thus be represented by the following



equation:

T�"� Æ� � �
%

�
"�
Æ � "%�

��
��

The relation between the two bijection operators$ andT is illustrated in Figure 7.
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Figure 7. The following illustrates the process pipeline where the affine bijection� (.) converts the orthogonal image����� �� into
the hexagonal one����� 	� and the spectral bijectionT(.) converts the Fourier transform����� Æ� into ����� ��. F(.) is the Fourier
transform function.

4. POSSIBLE APPLICATIONS

By its very nature, our method preserves small image details better than most concurrent approaches.�
 However, even
if such a method is known for generating some of the most pleasing visual results, it is not suitable for a large variety of
high resolution laser printers.�
� � Mostly because of thedot gain effect, the individual dots dispersed over the output
image by the error-diffusion algorithm are hardly printable. For that reason, laser printers are driven most of the time by
clustered-dot halftone methods. For example, to work around the dot gain effect, many printer drivers take advantage of
a threshold matrix with a clustered organization of its dots, hence the generic nameclustered-dot for this kind of matrix
(see Figure 8(a)).�� Even if such a threshold algorithm is at the same time, fast, easy to implement and well suited for
most laser printing devices, it experiences some serious limitations. First, in low resolution, it generates poor results since
it filters all high frequency details.�
 Second, it can only generates a fix number of gray levels which can produce visible
steps in some cases. For example, the matrix shown in Figure 8(a) can only generate 12 different intensity levels and thus
induces unacceptable false contours such as those in Figure 10(a).

One solution to these limitations, is to join together the clustered-dot algorithm with the error-diffusion method. That
way, we can expect that the advantages of one will minimize the drawbacks of the other. Even if similar ideas were already
proposed in the past,�� �� �� none of these approaches offers optimal coefficient sets. In this contribution, we apply our
ED HEXA(.) algorithm (in addition with the optimized coefficient sets) over aquasi-hexagonal grid such as the one
in Figure 8(b). As Fan proposed it in� , instead of processing the individual pixels with the error-diffusion method, we



process the individual threshold clusters. We thus sequentially compute the local error cumulated over each cluster and
redistribute it to its neighbors (see Figure 8(b)). To do so, we slightly modified theED HEXA(.) procedure to fit the
quasi-hexagonal grid and called the new versionED QUASI HEXA(.) as presented in Table 5.

Table 5. Modified error-diffusion algorithm used over a quasi-hexagonal grid such as the one in Figure 8(b).

Function ED QUASI HEXA(f[.],Coeffs[.]): Function APPLY THRESHOLD(f[.],g[.],Cluster[.],error):
. Create output image g[.] . totalError�0
. Create 2D Clustered Dot Threshold table Clt[.] . For all pixels P in f[.] covered by Cluster[.]Do
. Create error buffer e[.] . If f[P] + error
 Cluster[P]Then
. For all cluster C of table Clt[.] on a . g[p]� white
. serpentine pathDo . Else
. err =APPLY THRESHOLD(f[.],g[.],Clt[C],e[C]) . g[p]� Black
. DISTRIBUTE ERROR(err,e[.],f[.],Coeffs[.]) . totalError += f[p]-g[p]
. return output image g[.] . return totalError/number of pixels visited
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Figure 8. (a) A 12 level Clustered-dot threshold matrix and (b) the way error is distributed over aquasi-hexagonal grid.

5. RESULTS
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Figure 9. Result of 3 different methods applied on aquasi-hexagonal grid.

The final algorithm is fast, conceptually simple and memory efficient since it requires only a few operations per
pixel. All computations needed for optimization of the ED coefficients are done once. These optimized coefficients are
hardcoded into the final algorithm.



Figure 10. The first result was rendered by simply applying a 12 levelclustered-dot matrix over the input image. The second one
was computed with the combination ofED HEXA(.) and theclustered-dot matrix. Note that the micro-structure is the same in both
images.

The optimization process using both the simplex downhill search method and the functionCOST FUNCTION(.)
converged in less than two minutes on a 1.4 GHz Athlon processor for eachkey levels. We compared these results with
others obtained with asimulated annealing algorithm�� and saw that the results were very much similar at every key
levels. That observation made us believe that even if the simplex method can theoretically fall into local minimas, in the
present case it converges near the global minima. We thus made the decision to keep working with the simplex method,
mainly because of its speed.

Concerning theED HEXA(.) procedure applied to a perfect hexagonal grid, results are shown in Figure 6. The
reader can see what functionERROR-DIFFUSION(.) usingShiau-Fan coefficient set� and a serpentine path gives by
opposition toED HEXA(.) using the optimized coefficient sets. We can see that the latter produces globally less artifacts



especially around levels 64, 96, 160, 192 and 224.

Finally, results ofED HEXA(.) applied over aquasi-hexagonal grid (such as the one in Figure 8) are presented in
Figure 9 and 10. Figure 9 shows the difference betweenED HEXA(.) using Shiau-Fan’s coefficient set(SF), our approach
and Fan’s dot-to-dot algorithm.� We decided to put a grayscale ramp going from���

���
to ���

���
because the clustered-dot

matrix with 12 thresholds divides the
� � scale into 12 sections of equal length (����
���

) all having a similar configuration.
For this reason, the artifacts shown between���

���
and ���

���
are exactly the same between���

���
and ���

���
, �

���

and ���
���

, ��	
���

and
�

���

and so on down to zero.

Figure 10 shows the striking difference between our approach and a straight 12 levelsclustered-dot threshold. Among
other things, we can see that our approach minimizes the false contours while preserving the fundamental regular clustered
structure of the matrix. The two images were printed in 300 dpi.

6. CONCLUSION

In this paper, an optimal error-diffusion technique was introduced. This simple and fast method uniformly distributes
pixels over a hexagonal grid. Instead of using the classical error-diffusion algorithm (ERROR-DIFFUSION(.)) we im-
plemented a slightly modified version of that algorithm (ED HEXA(.)). This method takes advantage of 255 coefficient
sets, each being optimized in order to minimize artifacts around their corresponding intensity level.

The optimization process used a simplex downhill search method together with the blue noise based cost function
COST FUNCTION(.). During the optimization process, for a matter of simplicity, we made the decision not to use the
hexagonal grid����� �� directly. Instead, an orthogonal grid�
��� �� was generated and converted to����� �� using a
bijection operator$ . By making use of the spectralbijection operatorT, the functionCOST FUNCTION(.) calculates
the hexagonal grid Radial Fourier Transform (RFT) and measures how close it is to the blue noise profile. After many
tests made over a large variety of images, it was found that a configuration with 3 coefficients was a good choice regarding
simplicity, speed and better optimization efficiency.

By its conceptual simplicity and speed, our algorithm can be used to work over a variety of printing and visualization
devices as illustrated in figure 10. It is thus possible to drive physical hexagonal entities directly, without having to
pass through an intermediate orthogonal structure. We have shown that by mixing together clustered-dot matrices and
ED HEXA(.), the classical problems of dispersed dots can be considerably improved while reducing the false contours.

In the future, we expect to reduce the artifacts around level�
�

and �
�

and address the question of the uniform areas
located around the 12 intensity levels :����� ����� ����� ����,...,�����. We think that this last challenge could be addressed
like a multilevel contouring artifact.��� ��
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Table 6. List of the coefficient sets optimized by our method. Thekey-levels are those highlighted on the left.

96:   4313  5337  349
97:   4369  5298  334
98:   4424  5258  318
99:   4478  5219  303
100: 4532  5180  288
101: 4586  5141  273
102: 4640  5103  258
103: 4693  5064  243
104: 4746  5026  228
105: 4799  4988  213
106: 4851  4950  198
107: 4904  4913  183
108: 4955  4876  169
109: 5007  4839  154
110: 5058  4802  140
111: 5109  4765  126
112: 5160  4729  111
113: 5210  4693  97
114: 5260  4657  83
115: 5310  4621  69
116: 5360  4585  55
117: 5409  4550  41
118: 5458  4514  27
119: 5507  4479  14
120: 5556  4444  0
121: 5506  4403  91
122: 5448  4356  196
123: 5380  4299  321
124: 5299  4232  469
125: 5200  4150  650
126: 5077  4048  875
127: 4920  3918  1162

0:  6691   0        3309
1:  6691   0        3309
2:  6576   316    3108
3:  6462   629    2909
4   6348   940    2711
5:  6236   1248  2516
6:  6124   1554  2322
7:  6014   1857  2129
8:  5904   2157  1938
9:  5795   2456  1749
10: 5688  2751  1561
11: 5581  3044  1375
12: 5474  3335  1190
13: 5369  3624  1007
14: 5265  3910  825
15: 5161  4194  645
16: 4682  4237  1081
17: 4303  4272  1425
18: 3997  4300  1704
19: 3743  4323  1934
20: 3530  4342  2128
21: 3900  4165  1935
22: 4516  3871  1613
23: 4375  3722  1904
24: 4214  3551  2236
25: 4027  3354  2619
26: 4000  3779  2221
27: 3972  4224  1804
28: 3943  4689  1368
29: 3912  5177  911
30: 3879  5690  431
31: 3785  5701  514

32: 3693  5712  595
33: 3603  5722  675
34: 3514  5733  753
35: 3509  5694  798
36: 3504  5655  841
37: 3499  5618  883
38: 3494  5581  925
39: 3489  5545  965
40: 3485  5510  1005
41: 3480  5476  1044
42: 3476  5442  1082
43: 3471  5409  1120
44: 3399  5139  1462
45: 3333  4891  1776
46: 3272  4664  2064
47: 3216  4454  2330
48: 3164  4260  2576
49: 3116  4080  2804
50: 3071  3912  3017
51: 3029  3756  3215
52: 2990  3610  3400
53: 2954  3473  3574
54: 2919  3344  3737
55: 2887  3223  3890
56: 2856  3109  4034
57: 2827  3002  4171
58: 2800  2900  4300
59: 2774  2804  4422
60: 3134  3401  3466
61: 3460  3942  2598
62: 3757  4435  1808
63: 4029  4886  1086

64: 4278  5300  422
65: 4249  5324  427
66: 4220  5347  432
67: 4192  5371  437
68: 4163  5395  442
69: 4134  5418  447
70: 4106  5442  452
71: 4077  5465  457
72: 4049  5489  462
73: 4020  5512  467
74: 3992  5536  472
75: 3964  5559  477
76: 3936  5582  482
77: 3907  5605  487
78: 3879  5628  492
79: 3851  5652  497
80: 3823  5675  502
81: 3795  5698  507
82: 3768  5721  512
83: 3740  5744  517
84: 3712  5767  521
85: 3684  5789  526
86: 3743  5747  510
87: 3802  5705  493
88: 3860  5663  477
89: 3918  5622  461
90: 3975  5580  444
91: 4032  5539  428
92: 4089  5498  412
93: 4146  5458  396
94: 4202  5417  381
95: 4258  5377  365

d10 d-11 d01 d10 d-11 d01 d10 d-11 d01 d10 d-11 d01


