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In this communication, we report on recent progress in improvement of ex-
treme discrepancy and star discrepancy of one-dimensional sequences. Namely, we
present a permutation of “Babylonian” sequences in base 60, which improves the
best known results for star discrepancy obtained by Henri Faure in 1981 [5], and
a permutation of sequences in base 84, which improves the best known results for
extreme discrepancy obtained by Henri Faure in 1992 [6]. Our best result for star
discrepancy in base 60 is 32209/(35400log60) ≈ 0.222223 (Faure’s best result in
base 12 is 1919/(3454log12) ≈ 0.223585); our best result for extreme discrep-
ancy in base 84 is 130/(83log84) ≈ 0.353494 (Faure’s best result in base 36 is
23/(35log6)≈ 0.366758).

1 Introduction

Variance reduction in quasi-Monte Carlo integration is tightly related to uniformity
of distributions of the point sets, which sample the integrand. Among different met-
rics for evaluation of the uniformity of distributions, star discrepancy and extreme
discrepancy play a special role. In fact, it has been shown [8] that the variance of an
integral estimation is bounded by an expression which depends on star discrepancy
and extreme discrepancies. Schmidt [9] estimated the lower bounds of star and ex-
treme discrepancies for an arbitrary sequence of points. This theoretical estimation
has been later improved by Béjian [1]. A thorough description of the problem, the
main results and the relevant bibliography can be found in Niederreiter’s book [8].

The first low-discrepancy sequences are due to van der Corput [11]. Béjian and
Faure [2] estimated the asymptotic behavior of star and extreme discrepancies of the
van der Corput sequences. Different constructions for building low-discrepancy se-
quences have been proposed and evaluated by Borel [3], Braaten and Weller [4],
Lapeyre and Pagès [7] and Thomas [10]. In 1981, Faure [5] proposed different
generalized (permuted) van der Corput sequences in base 12, having the smallest
asymptotic star and extreme discrepancies. In 1989, Thomas [10] improved Faure’s
result for extreme discrepancy by a small amount. In 1992, Faure [6] further im-
proved extreme discrepancy, using generalized van der Corput sequences in base
36. Faure’s constructions for star discrepancy (1981, base 12) and for extreme dis-
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crepancy (1992, base 36) remain the best known to date results for one-dimensional
sequences.

In this paper, we improve Faure’s results for extreme discrepancy and star dis-
crepancy of one-dimensional sequences. Our best result for star discrepancy in
base 60 is 32209/(35400log60) ≈ 0.222223 (Faure’s best result in base 12 is
1919/(3454log12) ≈ 0.223585); our best result for extreme discrepancy in base
84 is 130/(83log84) ≈ 0.353494 (Faure’s best result in base 36 is 23/(35log6) ≈
0.366758).

First, let us recall some definitions commonly used in the specialized literature
[5, 6, 8].

Let X = (xn)n≥1 be a sequence defined on one-dimensional interval [0,1], and
A(α,N,X) the number of n ≤ N such that 0 ≤ xn < α . The remainder E is defined
as E(α,N,X) = A(α,N,X)−αN; E([α,β [;N,X) = E(β ,N,X)−E(α,N,X), where
0≤ xn < α < β ≤ 1.

The extreme discrepancy is defined as D(N,X) = supα,β |E([α,β [;N,X)|, and
the star discrepancy is defined as D∗(N,X) = supα,β |E(α,N,X)|.

The superior limits of extreme and star discrepancy are defined as

s(X) = lim
N

(D(N)/ log(N)

and
s∗(X) = lim

N
(D∗(N)/ log(N).

Given an integer n ≥ 1 in b-adic representation ∑
∞
j=0 a j(n)n j and the sequences

of permutations (σ j) j≥0 of the set {0,1, . . . ,b− 1}, the generalized van der Corput
sequence Sb,σ in fixed base b is defined by

Sb,σ =
∞

∑
j=0

σ j(a j(n))n− j−1. (1)

In this article, we consider only position-independent permutations, that is per-
mutations (σ j) j≥0 which are identical for any position j in the generalized van der
Corput sequence in Equation (1); j can be omitted.

Let Zσ
b = (σ(0)/b, . . . ,σ(b− 1)/b). For any integer h such that 0 ≤ h < b− 1,

the functions Ψ
−

b,σ ,Ψ+
b,σ and Ψb,σ are defined as follows:

Ψ
+

b,σ (x) =

{
maxh(A([0,h/b[;k;Zσ

b )−hx) i f 0≤ h≤ σ(h−1),
maxh((b−h)x−A([h/b,1[;k;Zσ

b )) i f σ(h−1) < h < b,
(2)

Ψ
−

b,σ (x) =

{
maxh(hx−A([0,h/b[;k;Zσ

b )) i f 0≤ h≤ σ(h−1),
maxh(A([h/b,1[;k;Zσ

b )− (b−h)x) i f σ(h−1) < h < b,
(3)

and
Ψb,σ (x) = Ψ

+
b,σ (x)+Ψ

−
b,σ (x). (4)

The terms α
+
b,σ ,α−b,σ and αb,σ are defined as follows:
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α
+
b,σ = inf

n≥1
sup
x∈R

(
1
n

n

∑
j=1

Ψ
+

b,σ

( x
b j

))
,

α
−
b,σ = inf

n≥1
sup
x∈R

(
1
n

n

∑
j=1

Ψ
−

b,σ

( x
b j

))
, and

αb,σ = inf
n≥1

sup
x∈R

(
1
n

n

∑
j=1

Ψb,σ

( x
b j

))
. (5)

Three theorems by Faure [5] relate the terms of extreme discrepancy D(Sb,σ ,N)
and star discrepancy D∗(Sb,σ ,N), as well as the partial terms D+(Sb,σ ,N) and
D−(Sb,σ ,N), with functions Ψ

+
b,σ ,Ψ−b,σ and Ψb,σ defined in Equations (2) to (4). Also,

they allow to express the superior limits of extreme discrepancy s(Sb,σ) and star dis-
crepancy s∗(Sb,σ) in terms of α

+
b,σ ,α−b,σ and αb,σ :

Theorem 1 (Faure 1981) The terms of extreme and star discrepancy of Sb,σ can be
expressed, for any N ≥ 1, as follows

D+(Sb,σ ,N) =
∞

∑
j=1

Ψ
+

b,σ

(
N
b j

)
,

D−(Sb,σ ,N) =
∞

∑
j=1

Ψ
−

b,σ

(
N
b j

)
,

D(Sb,σ ,N) =
∞

∑
j=1

Ψb,σ

(
N
b j

)
, and

D∗(Sb,σ ,N) = max(D+(Sb,σ ,N),D−(Sb,σ ,N)).

Theorem 2 (Faure 1981) The asymptotic term of the extreme discrepancy of Sb,σ

can be expressed in terms of the constant αb,σ , defined in Equation (5):

s(Sb,σ ) = limN→∞

D(Sb,σ ,N)
logN

=
αb,σ

logb
.

Theorem 3 (Faure 1981) Let A ⊂ N defined as A =
⋃

∞
H=1 AH and AH = {H(H −

1)+1, . . . ,H2}. Let σ be any permutation of {0, . . . ,b−1}, and τ be a permutation
defined as τ(k) = b−1−k, where 0≤ k≤ b−1. Then, the permutation ΣA = (σ j) j≥1
is defined as σ j = σ if j ∈ A and σ j = τ ◦σ if j /∈ A. The asymptotic behavior of the
star discrepancy of Sb,ΣA can be expressed in terms of α

+
b,σ and α

−
b,σ as follows:

s∗(Sb,ΣA) = limN→∞

D∗(Sb,σ ,N)
logN

=
α

+
b,σ +α

−
b,σ

2logb
.

2 Main results

Let σ84 be a permutation in base 84:
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σ84 =(0,22,64,32,50,76,10,38,56,18,72,45,6,28,59,79,41,13,67,25,54,

2,36,70,16,48,81,30,61,8,43,74,20,52,4,34,66,15,46,77,26,11,62,

39,82,57,23,69,33,3,51,19,73,42,7,60,29,80,47,14,65,35,1,53,24,

68,12,40,78,58,27,5,44,71,17,55,37,83,21,49,75,9,31,63).

(6)

Theorem 4 Let base b = 84 and the permutation σ84, defined in Equation (6).
The superior limit of the extreme discrepancy of the sequence S84,σ84 is

s(S84,σ84) = 130/(83log84)≈ 0.353494.

Let σ60 be a permutation in base 60:

σ60 =(0,15,30,40,2,48,20,35,8,52,23,43,12,26,55,4,32,45,17,37,

6,50,28,10,57,21,41,13,33,54,1,25,46,18,38,5,49,29,9,58,

22,42,14,34,53,3,27,47,16,36,7,51,19,44,31,11,56,24,39,59).
(7)

Theorem 5 Let base b = 60 and the permutation σ60, defined in Equation (7).
The superior limit of the star discrepancy of the sequence S60,ΣA is

s∗(S60,ΣA) = 32209/(35400log60)≈ 0.222223.

3 Upper and Lower Bounds of s(S84,σ84) and s∗(S60,ΣA)

It may be interesting to evaluate numerically the upper and lower bounds of the
extreme discrepancy s(S84,σ84). Here, we follow Faure’s method presented in [5],
Section 5.2.1.

To obtain a lower bound of s(S84,σ84), we compute (1/ν)Fν(a/(bν−1)) for given
integers a and ν so that 1 ≤ a ≤ bν . For ν = 1 and a = 16, we get s(S84,σ84) ≥
0.353494 · · · = 130/(83log84). Note that we get the same value of s(S84,σ84) by
exact calculation, presented in Section 4.2. To obtain an upper bound, we need to
compute Fn(x) up to a sufficiently big n, then evaluate the expression α . Namely, for
n = 6, F6(x) reaches its maximum at x = 120475271600/846. For this x, s(S84,σ84)
can be calculated: s(S84,σ84) = 207668158967/(131736761856log84) ≈ 0.355778.
Therefore, our numerical evaluation of lower and upper bounds of s(S84,σ84) can be
formulated as follows:

0.353494≤ s(S84,σ84)≤ 0.355778.

Note that this numerical estimation already surpasses the best Faure’s result of
s(S36,σ36) in base 36.

Similarly, to obtain a lower bound of s∗(S60,ΣA), we compute (1/ν)Fν(a/(bν −
1)) for given integers a and ν so that 1 ≤ a ≤ bν . For ν = 2 and a = 1239, we get
s∗(S60,ΣA)≥ 0.222218 · · ·= 111/(122log60). To obtain an upper bound, we need to
compute Fn(x) up to a sufficiently big n, then evaluate the expression α . Namely, for
n = 8, F8(x) reaches its maximum at x = 57822845901639/608. For this x, s∗(S60,ΣA)
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can be calculated: s∗(S60,ΣA) ≈ 0.223424. Therefore, our numerical evaluation of
lower and upper bounds of s∗(S60,ΣA) can be formulated as follows:

0.222218≤ s∗(S60,ΣA)≤ 0.223424.

Note that this numerical estimation already improves the best Faure’s result of
s∗(S12,ΣA) in base 12.

4 Proofs

The proofs of Theorems 4 and 5 follow the main line of the proofs provided by Henri
Faure in [5, 6].

First, we build the functions Ψ
+

b,σ (x), Ψ
−

b,σ (x) and Ψb,σ (x). Then, based on Theo-
rems 1 and 2, we express s(Sb,σ ) in terms of Ψb,σ . We perform numerical investiga-
tion of this function, make an induction hypothesis and prove it.

Similarly, we express s∗(Sb,σ) in terms of Ψ
−

b,σ and Ψ
+

b,σ , based on theorems
Theorems 1 and 3. We make an induction hypothesis and prove it.

As in [5, 6], we introduce the function

Fn(x) =
n−1

∑
k=0

Ψ(xbk), (8)

where Ψ(xbk) is the piecewise affine function defined in Equation (4), and express
α = infn≥1(maxx∈[0,1] Fn(x)/n).

4.1 Function Ψ84,σ84(x)

Finding Ψ
+

b,σ (x), Ψ
−

b,σ (x) and Ψb,σ (x) is a tedious work. These functions should be
presented as piecewise affine functions on well-defined intervals. As, for definition
of s(S84,σ84), we need the function Ψ84,σ84(x) only, we omit here, for the reasons of
compactness, the intermediate expressions for Ψ

+
84,σ84

(x) and Ψ
−

84,σ84
(x).

The exact definition of the functionΨ84,σ84(x) defined on intervals I1
h = [h/84,(h+

1)/84] is presented in Table 1. Each interval I1
h can also be expressed as a set of affine

subintervals. Thus, the interval [0,1] is expressed as a set of 216 affine subintervals.
Figure 1 (left) shows the function Ψ84,σ84(x) visually.

4.2 Proof of Theorem 4

Following [5, 6], we define Ψ
−

b,σ84
, Ψ

+
b,σ84

and Ψb,σ84 on intervals In
h = [h/bn,(h +

1)/bn]. The interval In
h is called dominated if there exists a set J of integers with h /∈ J

such that Fn(x)≤max j∈J Fn(x+( j−h)/bn) for all x ∈ In
h . Otherwise, the interval is

dominant.
Numerical investigations shows that there are three dominant intervals when n =

1: J1
28,J

1
52 and J1

55. But, for higher n, there are exactly two dominant intervals. For
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Table 1. Ψ84,σ84(x) defined on intervals I1
h = [h/84,(h+1)/84]

h Ψ84,σ84(x), maximum of linear functions h Ψ84,σ84(x), maximum of linear functions
0 {83x} 42 {5−7x,44x−21}
1 {1− x,61x} 43 {22−40x,26x−12}
2 {2−23x,41x} 44 {21−37x,14x−6,59x−30}
3 {3−43x,31x} 45 {15−25x,21x−10,54x−28}
4 {2−11x,41x−1} 46 {18−30x,8x−3,26x−13}
5 {4−43x,21x} 47 {34−58x,11−17x,29x−15}
6 {3−21x,31x−1} 48 {17−27x,11x−5,54x−30}
7 {5−41x,37x−2} 49 {12−18x,16x−8}
8 {6−47x,2−7x,51x−4} 50 {42−68x,27x−15}
9 {5−33x,3−15x,29x−2,55x−5} 51 {36−57x,51x−30,64x−38}
10 {5−29x,27x−2} 52 {14−20x,9−12x,39x−23}
11 {9−57x,5−27x,25x−2} 53 {30−45x,21x−12,46x−28}
12 {8−45x,9x,49x−6} 54 {26−38x,13x−7,33x−20,59x−37}
13 {7−35x,15x−1} 55 {18−25x}
14 {4−15x,37x−5} 56 {23x−14}
15 {10−47x,3−9x,45x−7,61x−10} 57 {24−33x,24x−15}
16 {6−23x,62x−11} 58 {43−60x,16−21x,32x−21,72x−49}
17 {6−22x,12x−1} 59 {10−12x,19x−12}
18 {14−58x,9−35x,15x−2,60x−12} 60 {38−51x,10−12x,20x−13,38x−26}
19 {7−24x,23x−4,57x−12} 61 {35−46x,19−24x,6x−3,59x−42}
20 {8−27x,10x−1} 62 {20−25x,6x−3}
21 {3−6x,25x−5} 63 {9−10x,27x−19}
22 {17−59x,3−6x,24x−5,46x−11} 64 {29−36x,11x−7,24x−17}
23 {12−38x,7−20x,12x−2,51x−13} 65 {48−60x,13−15x,35x−26,58x−44}
24 {7−19x,12x−2} 66 {11−12x,22x−16}
25 {23−72x,11−32x,21x−5,60x−17} 67 {51−62x,23x−17}
26 {9−24x,33x−9} 68 {51−61x,38−45x,9x−6,47x−37}
27 {9−23x} 69 {32−37x,15x−11}
28 {25x−7} 70 {14−15x,35x−28}
29 {22−59x,13−33x,21x−6} 71 {43−49x,9−9x,45x−37}
30 {19−49x,10−24x,9x−2,61x−21} 72 {23−25x,27x−22,57x−48}
31 {10−23x,33x−11} 73 {25−27x,29x−24}
32 {21−51x,8−17x,37x−13} 74 {50−55x,27−29x,15x−12,33x−28}
33 {20−47x,68x−26} 75 {47−51x,7x−5,47x−41}
34 {8−16x,18x−6,47x−18} 76 {35−37x,41x−36}
35 {12−25x,13x−4} 77 {30−31x,23x−20}
36 {14−29x,17x−6} 78 {58−61x,27x−24}
37 {31−67x,41x−17,61x−26} 79 {55−57x,13x−11,31x−28}
38 {12−23x,27x−11,40x−17} 80 {52−53x,31−31x,23x−21}
39 {9−16x,18x−7} 81 {60−61x,31−31x,33x−31}
40 {33−66x,22−43x,7x−2,40x−18} 82 {51−51x,x}
41 {23−44x,7x−2} 83 {83−83x}
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Table 2. Ψ
+

60,σ60
(x) defined on intervals I1

h = [h/60,(h + 1)/60]. Note that Ψ
−

60,σ60
(x) = 0 on

[0,1].

h Ψ
+

60,σ60
(x), maximum of linear functions h Ψ

+
60,σ60

(x), maximum of linear functions

0 {59x} 30 {46x−22}
1 {1− x,44x} 31 {9−14x,26x−12}
2 {2−16x,29x} 32 {20−34x,3−3x}
3 {3−31x,19x} 33 {3−3x,26x−13}
4 {19x,57x−3} 34 {21−34x,17−27x,13x−6}
5 {2−3x} 35 {13x−6}
6 {2−3x} 36 {6−7x}
7 {2−3x} 37 {6−7x,9x−4}
8 {2−3x,19x−1} 38 {9x−4,26x−15}
9 {5−21x} 39 {11−14x}
10 {2−3x,36x−5} 40 {9−11x,29x−18}
11 {6−24x,2−3x} 41 {23−31x}
12 {7x,36x−6} 42 {29x−19,36x−24}
13 {7−24x,16x−2,29x−5} 43 {19−24x,16x−10}
14 {9−31x} 44 {34−44x}
15 {33x−7} 45 {44x−32}
16 {9−27x,3−5x,24x−5} 46 {14−16x,24x−17}
17 {12−36x,3−5x} 47 {30−36x,7−7x}
18 {3−5x,24x−6} 48 {7−7x,29x−22}
19 {13−36x,11x−2} 49 {27−31x,9x−6}
20 {14x−3} 50 {21x−16}
21 {18−46x,5−9x} 51 {18−19x}
22 {5−9x,7x−1} 52 {18−19x,4x−2,36x−30}
23 {7x−1} 53 {23−24x,4x−2}
24 {7−13x} 54 {4x−2}
25 {7−13x,27x−10} 55 {4x−2}
26 {16−33x,12−24x,14x−5} 56 {54−56x,24−24x}
27 {14x−5,36x−15} 57 {24−24x,21x−19}
28 {13−24x,14x−5} 58 {39−39x,x}
29 {24−46x} 59 {59−59x}

example, when n = 2, the dominant intervals are J2
2420 and J2

4636. Further numerical
investigations allow us to make the following induction hypothesis: for any n > 1,
the index hn of dominant intervals Jn

hn
is either

hn =−16
83

+
509
83

3n+128n−1

or
hn =

16
83

+
797
83

3n28n−1.

In these intervals, Fn is the affine function in form pn(x− hn/84n)+ qn, where the
coefficients pn and qn are either
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pn =−61
83

+
703384n

83
; qn =

130n
83

+
14342−n21−n

6889
+

11715
192892

or

pn =−23
83

+
699584n

83
; qn =

130n
83

+
14342−n21−n

6889
+

11715
192892

.

In both cases, max{Fn(x) | x ∈ Jn
hn
}= qn.

Our induction hypothesis can be easily checked for n = 1. Let us suppose that it
holds for an arbitrary n≥ 1. To check that it holds for n+1, we need to add Ψ(xbn)
to Fn(x) on Jn

hn
and check that Fn+1(x) is still dominant on Jn+1

hn+1
. We performed

this checking for each affine subinterval of definition of the function Ψ84,σ84(x), and
verified that our induction hypothesis holds: the intervals Jn+1

hn+1
are dominant.

There, we have proved that

dn = max
x∈[0,1]

Fn(x)/n = qn

and
α84,σ84 = inf

n≥1
dn/n = lim

n→∞
dn/n = 130/83.

Consequently,
s(S84,σ84) = 130/(83log84)≈ 0.353494.

4.3 Functions Ψ
+

60,σ60
(x) and Ψ

−
60,σ60

(x)

For the definition of s∗(S60,ΣA), we need the function Ψ
+

60,σ60
(x) and Ψ

−
60,σ60

(x).

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Fig. 1. Graphical representation of the functions Ψ84,σ84(x) and Ψ
+

60,σ60
(x), as defined in Equa-

tions (2) to (4), for two particular cases explored in this paper. Left: the function Ψ84,σ84(x).
Right: the function Ψ

+
60,σ60

(x). Both are defined on the interval [0,1]. Note that Ψ
−

60,σ60
(x) = 0

on [0,1].
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The exact definition of the functionΨ
+

60,σ60
(x) defined on intervals I1

h = [h/60,(h+
1)/60] is presented in Table 2. Each interval I1

h is also expressed as a set of affine
subintervals. Thus, the interval [0,1] is expressed as a set of 102 affine subintervals.
Ψ
−

60,σ60
(x) = 0 on [0,1]. Figure 1 (right) shows the function Ψ

+
60,σ60

(x) visually.

4.4 Proof of Theorem 5

In this case, Ψ
−

60,σ60
(x) = 0 on [0,1]. Consequently, Ψ60,σ60(x) = Ψ

+
60,σ60

(x).
Numerical investigations shows that there are are exactly two dominant intervals,

for any n≥ 1. When n = 1, the dominant intervals are J1
21 and J1

39. When n = 2, the
dominant intervals are J2

1239 and J2
2361. Further numerical investigations allow us to

make the following induction hypothesis: for any n ≥ 1, the index hn of dominant
intervals Jn

hn
is either

hn =
21
61

((−1)n−60n)

or
hn =

1
61
(
21(−1)n +22n+33n5n+1) .

In these intervals, Fn is the affine function in form pn(x− hn/60n)+ qn, where the
coefficients pn and qn are either

pn =
1793

59
22n+115n− 46

59
; qn =

32209n
17700

+
4921−2n31−n5−n

3481
+

82369
104430

or

pn =
2
59

(118760n−7) ; qn =
32209n
17700

+
4921−2n31−n5−n

3481
+

82369
104430

,

and max{Fn(x) | x ∈ Jn
hn
}= qn.

Our induction hypothesis can be easily checked for n = 1. Let us suppose that it
holds for an arbitrary n≥ 1. To check that it holds for n+1, we need to add Ψ+(xbn)
to Fn(x) on Jn

hn
and check that Fn+1(x) is still dominant on Jn+1

hn+1
. We performed

this checking for each affine subinterval of definition of the function Ψ
+

60,σ60
(x), and

verified that our induction hypothesis holds: the intervals Jn+1
hn+1

are dominant.
There, we have proved that

dn = max
x∈[0,1]

Fn(x)/n = qn

and
α

+
60,σ60

= inf
n≥1

dn/n = lim
n→∞

dn/n = 32209/17700; α
−
60,σ60

= 0.

Consequently,

s∗(S60,ΣA) = (α+
60,σ60

+α
−
60,σ60

)/(2log60) = 32209/(35400log60)≈ 0.222223.
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5 Search Method

Looking for good permutations for large bases b is a difficult task. In fact, an exhaus-
tive search would require explicit evaluation of b! cases. For example, in base 84,
this would require studying 84! > 10127 sequences, which is obviously not tractable
with modern computers. In this section, we shortly sketch our search method, which
makes this difficult task manageable. We illustrate our method using base b = 84.

Our search method consists in three separate steps. First, we build a (pruned) tree
of all possible permutations. The root node is, by convention, 0. The first level of the
tree contains 83 branches: it can be any number in the range [1, 83]. Every branch of
the first level contains 82 branches of the second level, etc. We build the tree, starting
from the root. When a new branch is added, this corresponds to building a partial
permutation. For example, adding the branch ‘3’ to the root ‘0’, is equivalent to
building the beginning of the permutation sequence σ = (0,3, . . .). At this point, the
whole permutation sequence σ is unknown; therefore, we can not build the functions
Ψ
−

b,σ ,Ψ+
b,σ and Ψb,σ , as defined in Equations (2) to (4). Nevertheless, we can evaluate

the discrepancy for this partial subset of k elements (σ(0)/b, . . . ,σ(k−1)/b),k < b.
If the discrepancy value of this particular sequence is bigger than a certain pruning
threshold value T , the branch is pruned away. The choice for the pruning threshold
is a delicate task: if it is too large, the tree after all pruning operations may contain a
huge number of branches. If the pruning threshold T is too small, the final tree may
contain no branches at all. Choosing the right threshold value T requires many trial-
and-errors and some intuition. At the end of the first step, the entire tree of all possible
permutations is built. Thanks to pruning, it contains a reasonably small number of
branches. For each possible permutation sequence σ (i), which corresponds to one
leaf of the tree, the discrepancy of the first 84 elements of the sequence is below the
threshold T .

At the beginning of the second step, we have a list of permutation sequences σ (i),
one sequence per leaf of the tree. For each sequence σ (i), the functions Ψ

−
b,σ ,Ψ+

b,σ and
Ψb,σ are built according to Equations (2) to (4). Consequently, the terms Fn(x) can
be evaluated according to Equation (8). We sort the sequences σ (i) according to the
value of F2(x), calculated for the first 842 terms of each permutation sequence σ (i).

During the third step, we study more carefully the permutation sequences σ (i)

with the smallest values of F2(x). The behavior of Fn(x) is studied for n > 2; for each
n, the maxima of Fn(x) are determined. Finally, an induction hypothesis is emitted,
and the value of pn,qn,α84,σ84, etc. are calculated. A special program checks the in-
duction hypothesis (validation of the dominant intervals), as described in Section 4.2.

6 Conclusions

In this contribution, we have shown two permutations in bases 60 and 84, which
improve the best known values of asymptotic star and extreme discrepancies of one-
dimensional sequences. Our numerical exploration, based on the methodology de-
scribed in Section 5, has shown that, in general, asymptotic terms of star and extreme
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discrepancies decrease as the values of the base b become bigger. The decrease is not
linear, and some particular bases, namely b = 60 and b = 84, allow particularly low
asymptotic terms of star and extreme discrepancies. Our current methodology allows
the exploration of integer bases b < 100. A challenging future step would be devel-
oping a more powerful method of search for “good permutations” in larger bases,
which could approach the theoretical lower bounds of star and extreme discrepan-
cies, predicted by Schmidt and Béjian.
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