
Chapitre 3 : Entrée/Sortie en C++ 25

Chapitre 3

Entrée/Sorties en C++

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 26

- Les entrées et sorties sont gérées dans C++ à travers des objets particuliers appelés streams ou bien flots (ou
flux).

- Pour utiliser ces objets, il faut inclure :

#include <iostream>

1. E/S dans le langage C

Un rappel des entrées et sorties en C :

printf("%d",5,7);

printf("%d,%d",5);

« printf » est peu sécuritaire, car le programmeur doit spécifier le type.

© Mohamed N. Lokbani 2026 POO avec C++

Affichage de 5 uniquement

Affichage de 5 et un entier
quelconque à cause du 2nd %d qui n'a
pas été spécifié.

Chapitre 3 : Entrée/Sortie en C++ 27

2. E/S dans le langage Java

System.out.println(5);

o C’est une bonne chose de ne pas être obligé de préciser le format de sortie.

o Java se charge d’afficher dans le format qui conviendrait le mieux.

o Un inconvénient à cette approche! Et si l’on voulait avoir une sortie formatée?

o C’est possible en Java mais assez complexe à faire.

o Dans la version 5 de Java, l’utilisation du formatage a été grandement facilitée.

o En effet, le formatage à la manière C a été introduit dans la version 5 de java.

© Mohamed N. Lokbani 2026 POO avec C++

Pas besoin de préciser le format.

Chapitre 3 : Entrée/Sortie en C++ 28

3. E/S dans le langage C++

- <iostream> offre une interface orientée objet plus sécuritaire.

- Deux opérateurs sont surchargés de manière appropriée pour les flots :

 l’opérateur d’insertion << (écriture)

 l’opérateur d’extraction >> (lecture)

- On dit que ces deux opérateurs sont « surchargés » car ils font aussi autre chose.

- En réalité, ces opérateurs sont utilisés dans des opérations de manipulation de bits.

- Dans les opérations « 1 + 1 », « 1.5 + 2.5 », l’opérateur addition (« + ») fait l’addition de deux entiers et il
est surchargé aussi pour faire l’addition de deux réels.

- Les flots prédéfinis sont :

 cout associé à la sortie standard (équivalent à stdout dans le langage C),

 cerr associé à la sortie erreur standard (équivalent à stderr dans le langage C),

 cin associé à l'entrée standard (équivalent à stdin dans le langage C),

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 29

- Le bon format (bonne opération) est choisi en fonction du type des arguments,

- Les types écrits ou lus sont:

char short int long float double char*

#include <iostream>

int main() {
int i;
std::cout << "Entrer un entier: " << std::endl;
std::cin >> i;
std::cout << "Le carre de " << i \

 << " est: " << (i*i) << std::endl;
return 0;

}

Exemple.cpp

Si « Exemple » est le nom du programme exécutable de « Exemple.cpp », vous obtenez comme résultat :

© Mohamed N. Lokbani 2026 POO avec C++

endl équivalent de \n en C.

\ pour signifier que l’instruction suit à
la ligne suivante

Chapitre 3 : Entrée/Sortie en C++ 30

prompt>Exemple
Entrer un entier:
20 (retour chariot obligatoire)
Le carre de 20 est: 400
prompt>

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 31

- On appelle « :: » opérateur de résolution de portée. Si l’on veut éviter son utilisation :

#include <iostream>

using namespace std;

int main() {
int n;
double x;

// on peut écrire aussi le \n à l'intérieur de la chaîne à afficher
cout << "Entrer la valeur de n, puis celle de x:\n";
cin >> n >> x;

// on incrémente n de 3 unités.
n+=3;

// à cause des règles de préséance des opérateurs, on pouvait s'abstenir d'écrire
// (x*x) entre parenthèses, x*x suffirait.
cout << n << (x*x) << endl;
return 0;

}

Exemple.cpp

© Mohamed N. Lokbani 2026 POO avec C++

On précise l’espace de nom d’où
seront prises les différentes fonctions
d’entrées et sorties

Chapitre 3 : Entrée/Sortie en C++ 32

Nous obtenons le résultat suivant :

prompt>Exemple
Entrer la valeur de n, puis celle de x:
10(espace obligatoire)12(retour chariot obligatoire)
13144
prompt>

- Il n’y a pas eu de séparation entre 13 et 144 car l’espace n’a pas été demandé. Pour l’avoir, il fallait
écrire :

cout << n << ' ' << (x*x) << endl;

- On pouvait utiliser aussi « " » à la place de « ' ».

cout << n << " " << (x*x) << endl;

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 33

4. Mise en forme de la sortie

- Pour mettre en forme les sorties, on utilise des manipulateurs de sortie.

- Un manipulateur de sortie ne produit pas de sortie mais spécifie un paramètre de mise en page.

- Ce paramètre remplace le paramètre par défaut.

#include <iostream>
#include <iomanip>
using namespace std;
int main() {

int n=123;

cout << setw(6) << n <<n<<endl;

cout << setw(2) << n <<endl;

cout << setfill('*') << setw(6) << n <<endl;

cout << hex << n << endl;

cout << oct << n << endl;

return 0;
}

© Mohamed N. Lokbani 2026 POO avec C++

Affiche en sortie :
123123
Où  représente dans cet exemple l'espace blanc

Ignore le format et affiche
123
Car n contient 3 caractères et le
format tient uniquement sur 2
caractères.

Affiche
***123
On remplace l'espace blanc  par des *

Affichage dans la
base octale de n:
173

Affichage dans la base hexadécimale
de n:
7B

Inclusion
nécessaire pour
permettre d’utiliser
les manipulateurs
de sortie.

Chapitre 3 : Entrée/Sortie en C++ 34

La même chose en utilisant « std::format ». Cette fonctionnalité a été introduite à partir de la norme « C++20 ».

#include <iostream>
#include <format> // C++20

int main() {
int n = 123;

// {:6} remplace setw(6).
std::cout << std::format("{:6}{}\n", n, n);

// {:2} remplace setw(2)
std::cout << std::format("{:2}\n", n);

// {:*>6} remplace setfill('*') et setw(6).
// '>' spécifie alignement à droite (par défaut pour les nombres)
std::cout << std::format("{:*>6}\n", n);

// {:x} pour hex, {:o} pour octal
std::cout << std::format("{:x}\n", n);
std::cout << std::format("{:o}\n", n);

return 0;
}

Le résultat obtenu par « std::format » peut-être préservé aussi en mémoire dans une variable du type chaîne de
caractères.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 35

La même chose en utilisant « std::print » et « std::println ». Sauf qu’ici, elles se contentent d’envoyer le résultat en
sortie. Ces fonctionnalités ont été introduites à partir de la norme « C++23 ».

#include <iostream>
#include <print> // C++23

int main() {
int n = 123;

// println ajoute automatiquement une nouvelle ligne (\n)
std::println("{:6}{}", n, n);
std::println("{:2}", n);

// même syntaxe que C++20
std::println("{:*>6}", n);

// Pour hex/octal, on peut utiliser '#' pour inclure le préfixe
// (0x or 0)
std::println("{:x}", n); // affiche : 7b
std::println("{:#x}", n); // affiche : 0x7b
std::println("{:o}", n); // affiche : 173

return 0;
}

Attention sous Windows uniquement, cette fonctionnalité est toujours au niveau expérimental avec gcc. Il faut
ajouter cette librairie au moment de faire l'édition de liens: « -lstdc++exp ».

© Mohamed N. Lokbani 2026 POO avec C++

