Chapitre 3 : Entrée/Sortie en C++ 25

Chapitre 3

Entrée/Sorties en C++

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 26

- Les entrées et sorties sont gérées dans C++ a travers des objets particuliers appelés streams ou bien flots (ou
flux).

- Pour utiliser ces objets, il faut inclure :

#include <iostream>

1. E/S dans le langage C

Un rappel des entrées et sorties en C :

Affichage de 5 uniquement

—

printf ("%d",5,7);

Affichage de 5 et un entier
printf ("sd, $d",5); < quelconque a cause du 2™ %d qui n'a
pas été spécifié.

« printf » estpeu sécuritaire, car le programmeur doit spécifier le type.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++

27

2. E/S dans le langage Java

Pas besoin de préciser le format.

System.out.println(5);

¥

o C’est une bonne chose de ne pas étre obligé de préciser le format de sortie.

O Java se charge d’afficher dans le format qui conviendrait le mieux.

o Un inconvénient a cette approche! Et si I’on voulait avoir une sortie formatée?

o C’est possible en Java mais assez complexe a faire.

O Dans la version 5 de Java, I’utilisation du formatage a été grandement facilitée.

o En effet, le formatage a la maniére C a été introduit dans la version 5 de java.

© Mohamed N. Lokbani

2026

POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 28

3. E/S dans le langage C++

- <iostream> offre une interface orientée objet plus sé€curitaire.

- Deux opérateurs sont surchargés de maniere appropriée pour les flots :
» [’opérateur d’insertion << (€criture)
» |’opérateur d’extraction >> (lecture)

- On dit que ces deux opérateurs sont « surchargés » car ils font aussi autre chose.
- En réalité, ces opérateurs sont utilisés dans des opérations de manipulation de bits.

- Dans les opérations « 1 + 1 », « 1.5 + 2.5 », I’opérateur addition (« + ») fait I’addition de deux entiers et il
est surchargé aussi pour faire I’addition de deux réels.

- Les flots prédéfinis sont :
* cout associé a la sortie standard (équivalent a stdout dans le langage C),
» cerr associé a la sortie erreur standard (équivalent a stderr dans le langage C),

» cin associ¢ a l'entrée standard (équivalent a stdin dans le langage C),

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 29

- Le bon format (bonne opération) est choisi en fonction du type des arguments,

- Les types écrits ou lus sont:

char short int long float double char*

endl équivalent de \n en C.

#include <iostream>

int main () {

int 1i;

std::cout << "Entrer un entier: " << std::endl; —) - .
std::cin >> 1i; \ pour signifier que I’instruction suit a
std::cout << "Le carre de " << i \4/ la ligne suivante

<< " est: " << (1*1) << std::endl;
return 0;

Exemple.cpp

Si « Exemple » est le nom du programme exécutable de « Exemple.cpp », vous obtenez comme résultat :

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++

30

prompt>Exemple

Entrer un entier:

20 (retour chariot obligatoire)
Le carre de 20 est: 400
prompt>

© Mohamed N. Lokbani

2026

POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 31
- On appelle « :: » opérateur de résolution de portée. Si I’on veut éviter son utilisation :
#include <iostream> . . 1 , .
On précise I’espace de nom d’ou
. . / seront prises les différentes fonctions
using namespace std; , , .
d’entrées et sorties
int main () {
int n;
double x;
// on peut €crire aussi le \n a l'intérieur de la chaine a afficher
cout << "Entrer la valeur de n, puis celle de x:\n";
cin >> n >> x;
// on incrémente n de 3 unités.
n+=3;
// & cause des régles de préséance des opérateurs, on pouvait s'abstenir d'écrire
// (x*x) entre parentheses, x*x suffirait.
cout << n << (x*x) << endl;
return 0;
}
Exemple.cpp
© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++

32

Nous obtenons le résultat suivant :

prompt>Exemple

Entrer la valeur de n, puis celle de x:

1 0(espace obligatoire)1 2(retour chariot obligatoire)
13144

prompt>

Il n’y a pas eu de séparation entre 13 et 144 car I’espace n’a pas ét¢ demandé. Pour I’avoir, il fallait
écrire :

cout << n << ' ' << (x*x) << endl;

On pouvait utiliser aussi « " » a la place de « ' ».

cout << n << " " << (x*x) << endl;

© Mohamed N. Lokbani

2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 33

4. Mise en forme de la sortie

- Pour mettre en forme les sorties, on utilise des manipulateurs de sortie.
- Un manipulateur de sortie ne produit pas de sortie mais spécifie un parametre de mise en page.

- Ce parametre remplace le parameétre par défaut.

#include <iostream> Affiche en sortie :
#include y<iomanip> 1123123
usi namespace std; Ou : représente dans cet exemple l'espace blanc
- . p p p
Inclusion [int main() | [
, . int n=123;
necessaire pour: Ignore le format et affiche
permettre d’utiliser b occ fw(6) << cen<<endl » 123
1135 mal}ipulateurs cou setw (6) " nesenaLs Car n contient 3 caractéres et le
€ sortie. .)
cout << setw(2) << n <<endl; ic;zlceigleesnt uniquement sur 2
cout << setfill('*') << setw(6) << n <<endl; |
\ Affiche
cout << hex << n << endl; wE*123
On remplace 1'espace blanc : par des *
cout << oct << n << endl; |
Affichage dans la /v Affichage dans la base hexadécimale
base octale de n: » return 0; de n:
173 } 7B

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 34

La méme chose en utilisant « std::format ». Cette fonctionnalité a €té introduite a partir de la norme « C++20 ».

#include <iostream>
#include <format> // C++20

int main () {
int n = 123;

// {:6} remplace setw(6).
std::cout << std::format("{:6}{}\n", n, n);

// {:2} remplace setw(2)
std::cout << std::format ("{:2}\n", n);

// {:*>6} remplace setfill('*') et setw(6).
// '>'" spécifie alignement a droite (par défaut pour les nombres)
std::cout << std::format ("{:*>6}\n", n);

// {:x} pour hex, {:0} pour octal
std::cout << std::format ("{:x}\n", n);

std::cout << std::format ("{:o0}\n", n);

return 0;

Le résultat obtenu par « std::format » peut-&tre préservé aussi en mémoire dans une variable du type chaine de
caracteres.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 3 : Entrée/Sortie en C++ 35

La méme chose en utilisant « std::print » et « std::println ». Sauf qu’ici, elles se contentent d’envoyer le résultat en
sortie. Ces fonctionnalités ont été introduites a partir de la norme « C++23 ».

#include <iostream>
#include <print> // C++23

int main () {
int n = 123;

// println ajoute automatiquement une nouvelle ligne (\n)
std: :println("{:6}{}", n, n);
std::println("{:2}", n);

// méme syntaxe que C++20
std::println("{:*>6}", n);

// Pour hex/octal, on peut utiliser '#' pour inclure le préfixe
// (0x or 0)

std::println("{:x}", n)
std::println("{:#x}", n
std::println("{:0}", n)

; // affiche : 7b
y; // affiche : 0x7b
; // affiche : 173

return 0;

Attention sous Windows uniquement, cette fonctionnalité est toujours au niveau expérimental avec gcc. Il faut
ajouter cette librairie au moment de faire I'édition de liens: « -lstdct++exp ».

© Mohamed N. Lokbani 2026 POO avec C++

