
Chapitre 7 : Les fonctions 82

Chapitre 7

Les fonctions

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 83

1. Définition d'une fonction

La définition se fait comme suit :

type identificateur (paramètres) {
... /* Instructions de la fonction. */

}

- « type » est le type de la valeur renvoyée.

- « identificateur » est le nom de la fonction.

- « paramètres » est une liste de paramètres.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 84

Une définition = entête + corps

int soustraction(int x, int y)
{
 return (x-y);
}

- Une fonction en C++ peut être définie globalement dans une autre fonction ou dans une classe. Dans ce
dernier cas, la fonction porte le nom de « méthode ».

- Il n’y a pas de fonctions en Java seulement des méthodes.

© Mohamed N. Lokbani 2026 POO avec C++

Corps

Entête

Chapitre 7 : Les fonctions 85

2. Déclarations de fonctions (prototypes)

- Prototype => Description de l’entête d’une fonction avant son 1er appel,

type identificateur (paramètres) ;

- Le prototype est facultatif en C mais OBLIGATOIRE en C++,

- Une fonction doit être déclarée avant d'être appelée.

// déclaration de la fonction
int soustraction(int,int);

int main(){
int x=11, y=10, z=0;
// appel de la fonction
z = soustraction(x,y);
return 0;

}
// définition de la fonction
int soustraction(int a, int b) {

return (a-b);
}

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 86

Écrire

int soustraction(int,int);

Ou bien

int soustraction(int a,int b);

- Les deux précédentes écritures reviennent à dire la même chose.

- Le compilateur dans tous les cas ignore le nom des variables dans la déclaration d’une fonction.

- L’appel d’une fonction se fait en donnant son nom puis les valeurs de ses paramètres entre parenthèses.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 87

3. Prototype et définition en même temps

- Écrire la définition avant le premier appel de la fonction (son utilisation).

// Prototype et définition de la fonction
int soustraction(int a, int b) {

return (a-b);
}

int main(){
int x=11, y=10, z=0;
// appel de la fonction
z = soustraction(x,y);
return 0;

}

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 88

4. Cas de VOID

4.1. Fonction sans paramètres (arguments)

- Une fonction sans arguments restera sans type

int fonction_test(void)  C

int fonction_test()  C++

4.2. Fonction sans valeur de retour

fonction_exemple(int a,double b);

- En C par défaut retourne un « int ».

- En C++ déclaration du type de la valeur retournée est OBLIGATOIRE,

void fonction_exemple(int a,double b);

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 89

5. Surdéfinition de fonctions

- Un nom (de fonction, d’opérateur, etc.) est surdéfini s’il désigne plus d’une chose à la fois.

 5/2 division entière, le résultat est 2, et le reste est perdu.

 5.0/2.0 division réelle, le résultat est 2.5.

- L’opérateur « / » a un double rôle : la division des nombres entiers et des nombres réels.

- En C++ (Java aussi), on peut définir différentes fonctions ayant le même nom mais le nombre et le type
de paramètres sont différents.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 90

#include <iostream>

using namespace std;

void affiche(int x) {cout << "un entier:" << x << endl;}
void affiche(double w) {cout << "un double: " << w << endl;}

int main() {
int n=100;
double z=259.6;

affiche(n); // appel de affiche(int x)
affiche(z); // appel de affiche(double w)
return 0;

}

- Le compilateur recherche la « meilleure correspondance » possible.

- S’il y a plusieurs arguments, le compilateur essaye chacune des fonctions séparément.

- Le compilateur signale une erreur de compilation si aucune fonction ne convient ou bien si plusieurs
fonctions conviennent. Donc, il y a plusieurs choix possibles (ambiguïté) dans celles-ci.

© Mohamed N. Lokbani 2026 POO avec C++

Même nom, mais
les arguments sont
différents

Chapitre 7 : Les fonctions 91

#include <iostream>
using namespace std;
double exemple(double x, int w){

cout << "configuration -A-: " << x << " " << w << "\n";
return x;

}

int exemple(int x, double w){
cout << "configuration -B-: " << x << " " << w << "\n";
return x;

}

int main() {
double a=150.8,w;
int b=200,v;

w = exemple(a,b);
v = exemple(b,a);

v = exemple(a,a);
return 0;

}

© Mohamed N. Lokbani 2026 POO avec C++

Configuration -A-

Conversion de int vers double du 1er argument,
configuration A ?
Ou bien conversion de double vers int du 2er argument,
configuration B ?
=> D'où erreur (ambiguïté) car il est impossible de choisir
entre les deux configurations A & B.
Le type de retour n'est pas considéré lors du processus de
conversion de types.

Configuration -B-

Configuration -B-
int exemple(int,double)

Configuration -A-
double exemple(double,int)

Chapitre 7 : Les fonctions 92

- Pour un seul argument, le compilateur essaie dans l’ordre :

 Correspondance exacte de types.

 Promotion numérique.

Origine Conversion vers
char,short int
int long
float double

short zz=12;
affiche(zz);

int ww=15;
affiche(ww);

© Mohamed N. Lokbani 2026 POO avec C++

Appel de affiche(int) si affiche(short) n'existe pas.

Appel de affiche(double) si affiche(int) ou
affiche(long) n'existent pas.

Chapitre 7 : Les fonctions 93

 Conversion dégradante

Origine Conversion vers
int short
double float

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 94

12. Arguments par défaut

- 2 types de paramètres :

 Paramètres réels : dans l’appel de fonction.

 Paramètres formels : dans l’entête de la fonction.

#include <iostream>

int multiplication(int x,int y){
return (x*y);

}
int main(){

cout << multiplication(3,4)<< endl;
return 0;

}

© Mohamed N. Lokbani 2026 POO avec C++

Formels

Réel

Chapitre 7 : Les fonctions 95

- On commence à omettre à partir de la fin.

- On peut spécifier des valeurs par défaut

#include <iostream>

using namespace std ;

double exemple(double x, char c = 'T', double z=200.5){
cout << x << " " << c << "\n";
return z;

}

int main() {

double a=150.8,w;

w = exemple(a,'s',-670.9);
cout << w << endl;

w = exemple(a,'s');
cout << w << endl;

w = exemple(a);
cout << w << endl;
return 0;

}

© Mohamed N. Lokbani 2026 POO avec C++

Omission des deux derniers arguments, la
fonction prendra la valeur par défaut du 2e et
3e argument.

Omission à partir de la fin …
Omission du dernier argument, la fonction
prendra la valeur par défaut du 3e argument.

Nombre de paramètres formels = nombre de
paramètres réels.
Aucun traitement à faire.

Chapitre 7 : Les fonctions 96

Affichage en sortie

150.8 s
-670.9
150.8 s
200.5
150.8 T
200.5

Erreur de compilation …

- Un appel : « w = exemple(); » provoquera une erreur de compilation.

- Aucune valeur par défaut n'a été définie dans l'entête de la fonction exemple pour le premier argument.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 97

13. Fonctions inline (en ligne)

- #define est utilisé pour la substitution de texte.

- Une autre utilité du #define est la définition de macros.

- Une macro est une pseudo fonction substituée dans tout le programme pendant le prétraitement
(préprocesseur) avant la compilation.

- Elle évite le coût d'un appel de fonction en contrepartie le code exécutable devient plus volumineux.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 98

#include <iostream>

#define abs(x) (x<0)?-x:x

using namespace std ;

int main() {
int n, a=-4, b=6;

n = abs(a);
cout << n << endl; // affiche 4
n = abs(a)*2;
cout << n << endl; // affiche 4
n = abs(b)*2;
cout << n << endl; // affiche 12

return 0;
}

n = abs(a)*2; // est transformée en :

n = (a<0) ? -a : a*2;

n = (-4<0) ? 4 : 8; // puisque -4 est inférieure à 0, on retourne 4

Le résultat est faux. Il faut donc revoir la logique de l’opération.

© Mohamed N. Lokbani 2026 POO avec C++

Définition de la macro abs. Elle
permet de calculer la valeur absolue
d’un nombre.

Chapitre 7 : Les fonctions 99

Une solution à ce problème serait d’écrire la macro comme suit :

#define abs(x) ((x<0)?-x:x)

Mais qu’en est-il pour le programme suivant, que va-t-il afficher après son exécution ?

#include <iostream>

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

using namespace std ;

int main() {
int a=0,b=1;

cout << MAX(a,b++) << endl;

return 0;
}

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 100

- Le C++ a introduit les fonctions inline afin de remédier aux problèmes posés par l’utilisation des
macros mais tout en gardant comme dans le cas des macros, la gestion des appels de fonctions faibles
(surtout pour les petites fonctions).

- Il n’y aura pas d’accès à la table des fonctions. Toutes les fonctions sont considérées inline dans le
programme.

- Le qualificatif inline recommande au compilateur de faire une copie du code de la fonction en place :

 code compilé plus long …

 MAIS le compilateur peut prendre la décision de "désactiver" le qualificatif inline
d’une fonction s’il estime qu’il perdra moins de temps à y accéder via la table des
fonctions que de recopier son code.

syntaxe: inline fonction_donnée

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 7 : Les fonctions 101

#include <iostream>

using namespace std;

int inline abs(int x){
return (x<0)?-x:x;

}

int main() {
int n, a=-4;
n = abs(a)*2;
cout << n << endl; // affiche 8
return 0;

}

- Pourquoi inline au lieu d’une fonction tout court ?

 Afin d’éviter l’accès à la fonction à travers la table des fonctions (là où est stocké un
index vers la fonction) d’où un gain de temps.

© Mohamed N. Lokbani 2026 POO avec C++

Le programme calcule d'abord abs(a)
puis le résultat est * 2

