Chapitre 7 : Les fonctions 82

Chapitre 7

Les fonctions

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions

83

1. Définition d'une fonction

La définition se fait comme suit :

type identificateur (parametres) {

/* Instructions de la fonction.

}

*/

- «type » est le type de la valeur renvoyée.

-« identificateur » est le nom de la fonction.

-« parametres » est une liste de parametres.

© Mohamed N. Lokbani

2026

POO avec C++



Chapitre 7 : Les fonctions 84

Une définition = entéte + corps -
Entéte

| AN
//int soustraction(int x, int ;}\
{

Corps

return (x-y);

- Une fonction en C++ peut étre définie globalement dans une autre fonction ou dans une classe. Dans ce
dernier cas, la fonction porte le nom de « méthode ».

- Iln’y a pas de fonctions en Java seulement des méthodes.

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions

85

2. Déclarations de fonctions (prototypes)

Prototype => Description de I’entéte d’une fonction avant son 1* appel,

type identificateur (parametres) ;

Le prototype est facultatif en C mais OBLIGATOIRE en C++,

Une fonction doit étre déclarée avant d'étre appelée.

// déclaration de la fonction
int soustraction (int, int);

int main () {
int x=11, y=10, z=0;
// appel de la fonction
z = soustraction(x,Vy);
return 0;

}
// définition de la fonction

int soustraction(int a, int b) {
return (a-b):

}

POO avec C++

© Mohamed N. Lokbani

2026



Chapitre 7 : Les fonctions

86

Ecrire

int soustraction(int, int);

Ou bien

int soustraction(int a,int b);

- Les deux précédentes écritures reviennent a dire la méme chose.

- Le compilateur dans tous les cas ignore le nom des variables dans la déclaration d’une fonction.

- L’appel d’une fonction se fait en donnant son nom puis les valeurs de ses parameétres entre parenthéses.

© Mohamed N. Lokbani

2026

POO avec C++



Chapitre 7 : Les fonctions

87

3. Prototype et définition en méme temps

- Ecrire la définition avant le premier appel de la fonction (son utilisation).

// Prototype et définition de la fonction
int soustraction(int a, int b) {
return (a-b);

}

int main () {
int x=11, y=10, z=0;
// appel de la fonction
z = soustraction(x,y);
return 0;

© Mohamed N. Lokbani 2026

POO avec C++



Chapitre 7 : Les fonctions 88

4. Cas de VOID

4.1. Fonction sans paramétres (arguments)

- Une fonction sans arguments restera sans type

int fonction test(void) < C

int fonction test() < C+H+

4.2. Fonction sans valeur de retour

fonction exemple (int a,double b);

- En C par défaut retourne un « int ».

- En C++ déclaration du type de la valeur retournée est OBLIGATOIRE,

void fonction exemple (int a,double b);

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 89

5. Surdéfinition de fonctions

- Un nom (de fonction, d’opérateur, etc.) est surdéfini s’il désigne plus d’une chose a la fois.
= 5/2 division entiére, le résultat est 2, et le reste est perdu.
= 5.0/2.0 division réelle, le résultat est 2.5.

- L’opérateur « / » a un double role : la division des nombres entiers et des nombres réels.

- En C++ (Java aussi), on peut définir différentes fonctions ayant le méme nom mais le nombre et le type
de parametres sont différents.

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 90

#include <iostream>
using namespace std;

void affiche (int x) {cout << "un entier:" << x << endl;}

voil ffiche (double w) {cout << "un double: " << w << endl;}
Méme nom, mais 4ﬁ:iftfi'
les arguments sont int main () {
différents int n=100;
double z=259.6;

affiche(n); // appel de affiche(int x)
affiche(z); // appel de affiche (double w)
return O;

- Le compilateur recherche la « meilleure correspondance » possible.

- S’il y a plusieurs arguments, le compilateur essaye chacune des fonctions séparément.

- Le compilateur signale une erreur de compilation si aucune fonction ne convient ou bien si plusieurs
fonctions conviennent. Donc, il y a plusieurs choix possibles (ambiguité) dans celles-ci.

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 91

#include <iostream> Configuration -A-
using namespace std;
double exemple (double x, int w) {

cout << "configuration -A-: " << x << " " K< w << "\n";
return Xx;

} / Configuration -B-
int exemple (int x, double w) {

cout << "configuration -B-: " << x << " " << w << "\n";
return x;

} Configuration -A-

int main() { double exemple(double,int)

double a=150.8,w; |
int b=200,v; Configuration -B-

=
|

int exemple(int,double)
= exemple (a,b);
v = exemple (b, a);

v = exemple(a,a);
return 0;

Conversion de int vers double du 1 argument,
‘\\\\\\ configuration A ?

Ou bien conversion de double vers int du 2" argument,
configuration B ?

=> D'ou erreur (ambiguité) car il est impossible de choisir
entre les deux configurations A & B.

Le type de retour n'est pas considéré lors du processus de
conversion de types.

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 92

- Pour un seul argument, le compilateur essaie dans I’ordre :
= Correspondance exacte de types.

* Promotion numérique.

Origine Conversion vers
char, short int
int long
float double

Appel de affiche(int) si affiche(short) n'existe pas.

affiche(zz);

Appel de affiche(double) si affiche(int) ou
affiche(long) n'existent pas.

int ww=15;
affiche (ww) ;

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 93
= Conversion dégradante
Origine Conversion vers
int short
double float
© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions

94

12. Arguments par défaut

- 2 types de parametres :

» Parametres réels : dans 1’appel de fonction.

» Parameétres formels : dans I’entéte de la fonction.

#include <iostream>

int multiplication (int x,int y) {

return (x*y);

}

int main () {

cout << multiplication(3,4)<< endl;

return 0;

S

\

Formels

Réel

© Mohamed N. Lokbani

2026

POO avec C++



Chapitre 7 : Les fonctions

95

- On commence a omettre a partir de la fin.

- On peut spécifier des valeurs par défaut

#include <iostream>
using namespace std ;
double exemple (double x, char ¢ = 'T',

cout << x << " " K< ¢ << "\n";
return z;

double z=200.5) {

int main () {

double a=150.8,w;

Nombre de paramétres formels = nombre de
paramétres réels.
Aucun traitement a faire.

w = exemple(a,'s',-670.9);
cout << w << endl;

w = exemple(a,'s'); t/////////

Omission a partir de la fin ...
Omission du dernier argument, la fonction
prendra la valeur par défaut du 3° argument.

cout << w << endl;

w = exemple (a);

A

cout << w << endl;

return 0;

Omission des deux derniers arguments, la
fonction prendra la valeur par défaut du 2° et
3¢ argument.

© Mohamed N. Lokbani 2026

POO avec C++



Chapitre 7 : Les fonctions 96

Affichage en sortie

150.8 s
-670.9

150.
200.
150.
200.

0

U1 0O U1
—

Erreur de compilation ...

- Unappel: «w = exemple (); » provoquera une erreur de compilation.

- Aucune valeur par défaut n'a été¢ définie dans I'entéte de la fonction exemple pour le premier argument.

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 97

13. Fonctions inline (en ligne)

- #define est utilisé pour la substitution de texte.
- Une autre utilité du #define est la définition de macros.

- Une macro est une pseudo fonction substituée dans tout le programme pendant le prétraitement
(préprocesseur) avant la compilation.

- Elle évite le colit d'un appel de fonction en contrepartie le code exécutable devient plus volumineux.

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions

98

#include <iostream>

-

#define abs (x) (x<0)7?-x:x

using namespace std ;

Définition de la macro abs. Elle
permet de calculer la valeur absolue
d’un nombre.

int main () {

int n, a=-4, b=6;
n = abs(a);
cout << n << endl;
n = abs(a)*2;
cout << n << endl;
n = abs (b)*2;
cout << n << endl;

// affiche 4
// affiche 4
// affiche 12

return 0;

n = abs (a)*2; // est transformée en :
n = (a<0) ? -a a*2;
n = (-4<0) ? 4

8; // puisque -4 est inférieure a 0, on retourne 4

Le résultat est faux. Il faut donc revoir la logique de 1’opération.

© Mohamed N. Lokbani 2026

POO avec C++



Chapitre 7 : Les fonctions 99

Une solution a ce probleéme serait d’écrire la macro comme suit :

#define abs (x) ((x<0)?-x:x)

Mais qu’en est-il pour le programme suivant, que va-t-il afficher aprés son exécution ?

#include <iostream>
#define MAX (a,b) (((a) > (b)) 2?2 (a) : (b))
using namespace std ;

int main () {
int a=0,b=1;

cout << MAX (a,b++) << endl;

return 0;

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 100

- Le C++ a introduit les fonctions inline afin de remédier aux problémes posés par 1’utilisation des
macros mais tout en gardant comme dans le cas des macros, la gestion des appels de fonctions faibles
(surtout pour les petites fonctions).

- Il n’y aura pas d’acces a la table des fonctions. Toutes les fonctions sont considérées inline dans le
programme.

- Le qualificatif in1ine recommande au compilateur de faire une copie du code de la fonction en place :
= code compilé plus long ...
= MAIS le compilateur peut prendre la décision de "désactiver" le qualificatif inline

d’une fonction s’il estime qu’il perdra moins de temps a y accéder via la table des
fonctions que de recopier son code.

syntaxe: inline fonction donnée

© Mohamed N. Lokbani 2026 POO avec C++



Chapitre 7 : Les fonctions 101

#include <iostream>
using namespace std;

int inline abs (int x) {
return (x<0)?-x:x;

Le programme calcule d'abord abs(a)

int main () { puis le résultat est * 2
int n, a=-4;
n = abs(a)*2;

cout << n << endl; // affiche 8
return 0;

- Pourquoi inline au lieu d’une fonction tout court ?

= Afin d’éviter I’acces a la fonction a travers la table des fonctions (1a ou est stocké un
index vers la fonction) d’ou un gain de temps.

© Mohamed N. Lokbani 2026 POO avec C++



