
Chapitre 1 : Généralités 1

Chapitre 1

Généralités

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 2

Le langage C++ est né de l’association des langages C et Simula, au point de l’appeler au départ « C avec les
classes » avant de prendre en 1983 le nom de C++. L’inventeur du langage est Bjarne Stroustrup, un informaticien
de AT&T.

1. Architecture minimale d’un programme C++

#include <iostream>

using namespace std;

int main() {

cout << "IFT1166\n";
return 0;

}

© Mohamed N. Lokbani 2026 POO avec C++

Directives au préprocesseur

Espaces de nom

Programme Principal :
Déclarations + Définitions

Début et fin de la fonction

Nom de la fonction

Chapitre 1 : Généralités 3

1.1 Directives au processeur

- C’est une ligne de programme commençant par le caractère #.

- Elle permet de manipuler le code du programme source avant sa compilation.

- Parmi les directives, on trouve : inclusions de fichiers, substitutions, macros, compilation conditionnelle.

- La ligne « #include <iostream>» est interprétée par le préprocesseur qui recherche dans des répertoires
standards le fichier dont le nom est « iostream ».

- Si le préprocesseur trouve ce fichier, il l’« inclut » en lui faisant subir le même traitement que le fichier
initial (traitement des lignes commençant par #, recherche des macros, etc.).

- Ce simple programme nécessite l’inclusion du fichier externe « iostream » contenant les méthodes
nécessaires pour manipuler les entrées et les sorties.

1.2 Espace de noms

- La bibliothèque standard C++ est définie dans son propre espace de noms, un bloc (ou espace) portant le
nom « std ».

- La directive « using namespace std » dit au compilateur que toutes les choses définies dans « std » doivent
être rendues accessibles pour être directement utilisées.

- La bibliothèque « std » contient par exemple la définition de la fonction « cout » utilisée pour l’affichage en
sortie.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 4

1.3 Programme Principal

- La fonction « main » est le point d’entrée d’un programme C++.

- C’est à travers cette fonction « main » qu’un programme C++ démarre.

- La signature de la méthode « main » peut-être avec paramètres ou sans, comme suit :

int main()

int main(int argc, char* argv[])

- Les paramètres « argc » et « argv » permettent de récupérer les arguments de la ligne de commande qui a
lancé ce programme.

- La variable « argc » représente le nombre d'arguments, nom du programme compris.

- La variable « argv » est un tableau de chaînes de caractères contenant la liste des arguments.

- La méthode « main » retourne une valeur entière représentant l’état de l’exécution du programme.

- La valeur entière retournée est par convention positive non nulle en cas d’erreur.

- Dans notre exemple, la valeur retournée est « 0 » pour signifier que l’exécution du programme s’est faite
correctement.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 5

2. Génération d’un programme exécutable

Les différentes étapes intervenant dans le processus d’élaboration d’un programme exécutable sont comme suit :

© Mohamed N. Lokbani 2026 POO avec C++

Code source

Préprocesseur

Compilateur

Un fichier source contenant un ensemble d’instruction C+
+, comme des fonctions, classes etc.

Phase préliminaire : le préprocesseur examine toute les
lignes commençant par # et effectue des manipulations sur
le texte source comme inclusions de fichiers, substitutions,
compilation conditionnelle etc.

Fabrique le code objet à partir du programme généré par le
préprocesseur. Une fois le fichier prétraité, le compilateur
C++ va traduire le fichier source en un langage
intermédiaire, dit langage d'assemblage, qui est spécifique
au processeur sur lequel est effectuée la compilation. C'est
durant cette phase que la vérification de l'utilisation à bon
escient des fonctions et procédures est effectuée. Le
compilateur peut (grâce au prototype présent dans le fichier
prétraité) vérifier que l'utilisation de cout est cohérente.
Une fois cette compilation effectuée, l'assembleur effectue
la traduction en langage machine.

Chapitre 1 : Généralités 6

© Mohamed N. Lokbani 2026 POO avec C++

Librairie

Éditeur de liens

Programme
Exécutable

Code objet
Le fichier généré (suffixe .o signifiant object code ou code
objet) contient le code machine de la fonction unique
déclarée dans notre programme : la fonction main.

Trouver quelque part le code de « cout ». Cette procédure
peut elle-même faire référence à d'autres procédures qu'il
faudra également trouver : étape de regroupement de toutes
les données et de tout le code des fichiers objets du
programme et des bibliothèques
Ajouter à notre programme le code de démarrage (ce qui se
passe avant la fonction main) et le code d'arrêt (ce qui se
passe après la fonction main).
Le résultat de l'édition de liens est un fichier image.

Fichier image pourra être chargé en mémoire par le
système d'exploitation pour être exécuté.

Chapitre 1 : Généralités 7

3. De Java/C vers C++

- Le langage C++ est une extension objet du langage C.

- Par la suite le langage Java s’est inspiré de la partie objet du C++, avec quelques différences importantes.

- Pour cette raison, aujourd’hui, on dit que le langage C++ est une sorte de mélange C et Java.

3.1 C++ versus C

- Les langages C et C++ ont une même syntaxe de base.

- Il est donc possible de passer facilement du C vers C++ (portabilité).

- Un programme écrit dans un langage C (normalisation du C : standard ansi-C) peut-être directement compilé comme étant un
programme C++.

- Ainsi donc, l'intégration de fichiers C++ et C dans un même programme est facile à faire.

- Il permet ainsi de réutiliser toutes les bibliothèques existantes.

- Lors de l’exécution d’un programme C++, très bien écrit, ses performances devraient être comparables à un
programme C.

- Cependant, parmi les inconvénients, bien que le langage C++ soit plus strict que le langage C, il a hérité de
certains choix malencontreux du langage C !

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 8

- Par exemple :

 le fait de passer par un préprocesseur.
 le manque de gestion automatique de la mémoire.
 pas de protection de la mémoire.
 avare en messages d’erreurs.
 manipulation parfois hasardeuse des pointeurs même si elle fait la joie de certains bidouilleurs !

- Cette richesse fait qu’elle peut-être utilisée à mauvais escient !

3.2 C++ versus Java

- Les langages C++ et Java se ressemblent à un certain degré.

- En effet, la syntaxe est en partie similaire, les fonctionnalités objet sont de même nature.

- Parmi les différences, on peut citer le fait que C++ est aussi un langage procédural, vu qu’il est une
extension du langage C.

- Alors que Java est un langage purement orienté objet.

- Dans Java, on note la présence du « garbage collector » ou « ramasse-miettes » pour permettre une gestion
automatique des ressources mémoires disponibles. En C++, cette gestion est laissée au programmeur.

- Java ne permet pas l’héritage multiple comme C++.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 9

- Ainsi en Java, dans un schéma d’héritage, on ne peut pas écrire par exemple qu’un hydravion hérite des
propriétés à la fois de « avion » et de « bateau ».

- C++ permet la redéfinition de la plupart des opérateurs.

- Il permet aussi l’utilisation de la notion de généricité (templates). Cette notion a été introduite, sous une
certaine forme, dans la version 5 de Java.

- C++ est un langage compilé alors que Java est un langage interprété.

- Un langage compilé est plus rapide lors de l’exécution qu’un langage interprété. Il a cependant
l’inconvénient d’être machine dépendante.

- Ceci signifie qu’il faudra le compiler pour chaque type de système d’exploitation (Linux, Windows, etc.).

- Alors que pour Java qui est un langage interprété, nécessite la présence d’une machine virtuelle pour chaque
architecture.

4. Normalisation et compilateurs

- Les premiers travaux de normalisation du langage C++ ont commencé en 1989.

- Sa première normalisation n’a été validée qu’en 1998.

- Cette normalisation a permis de standardiser la base du langage ainsi que la bibliothèque C++ standard.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 10

- La dernière normalisation du C++ remonte à 2023.

- Elle permet d’écrire du code plus moderne, plus performant et plus sûr.

- Malgré le fait que le langage C++ a été normalisé, ils existent des différences notables entre les compilateurs
existants.

- Une partie de ces compilateurs n’observent pas totalement la norme définie.

- Pour ce cours, nous allons utiliser le compilateur :

- GCC : un compilateur gratuit du domaine public le plus récent.

 Il faudra faire attention à la version utilisée. Nous allons développer l’ensemble des exemples
du cours, des exercices des séances de démonstrations ainsi que les travaux pratiques en
utilisant la version du compilateur disponible dans les laboratoires d’enseignement.

 La première séance de démonstration va être la présentation des différents outils disponibles sur
des machines. Cette séance va vous permettre ainsi de voir les différents outils gravitant autour
de gcc pour une utilisation simple et efficace !

- Il existe aussi d’autres compilateurs, comme Clang/LLVM (utilisé par défaut sur Mac) et MSVC (Microsoft
Visual C++ pour Windows).

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 11

5. GCC sous toutes les formes

- La commande g++ est dérivée de la commande gcc.

- Cette commande met à jour au moment de son appel les chemins nécessaires pour accéder aux différents
fichiers d’entêtes et de bibliothèques nécessaires pour une compilation correcte d’un programme écrit dans
un langage C++.

Options du compilateur Description

g++ -v -v : pour connaître le numéro de version du compilateur.

g++ -c toto.cpp –o toto.o -c : permet de préciser le fichier à compiler.
-o : permet de préciser le nom du fichier objet. Par défaut, ce
fichier porte le nom de : « a.out ».

g++ toto.o -o toto.exe On réalise l’étape d’édition de liens.
-o : permet de préciser le nom du fichier exécutable. Par défaut,
ce fichier porte le nom de : « a.out ».

g++ toto.cpp –o toto.exe D’une pierre, deux coups ! Cette instruction permet de compiler
et de réaliser l’édition de liens en « une seule » opération.
-o permet de préciser le nom du fichier exécutable. Par défaut, ce
fichier porte le nom de : « a.out ».

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 1 : Généralités 12

Options du compilateur Description

g++ -g toto.cpp –o toto.exe -g permet d’inclure les informations nécessaires pour permettre
le débogage du programme.

g++ -Wall -Wall demande au compilateur de signaler tous les endroits dans
le fichier compilé qui sont des utilisations douteuses du langage
C++. L'option Wall vient de Warnings ALL.

g++ --help --help affiche l’aide en ligne en rapport avec les différentes
options disponibles.

g++ -pedantic -pedantic pour un respect strict de la spécification.

g++ -std=c++23 -std pour forcer l’utilisation d’un standard en particulier.

© Mohamed N. Lokbani 2026 POO avec C++

