
Chapitre 5 : Opérateurs, expressions et conversion 51

Chapitre 5

Opérateurs, expressions et conversions

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 52

1. Expressions

- Une expression est la composition d’opérateurs, de variables, de constantes, de fonctions et de
parenthèses.

- Une expression retourne toujours un résultat, sa valeur.

- La valeur de l’expression a un type et, elle peut-être utilisée dans une autre expression

Dans cet exemple :

int x = 3 + sin(z) ;

Variable : Z

Constante : 3

Fonction : sin

Valeur de retour : x , type « int »

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 53

2. Opérateurs

- Le langage C++ est riche en opérateurs.

Priorité et associativité des opérateurs
Opérateur Associativité

:: (portée globale)
:: (portée classe)

Gauche – Droite

() [] -> . (postfixe)++
(postfixe)-- sizeof typedef

Gauche – Droite

++(préfixe) –-(prefixe) ! ~
&(adresse) +(unaire) –(unaire)
*(indirection) delete new casts

Droite - Gauche

.* ->* Gauche – Droite
* / % Gauche – Droite
+ - Gauche – Droite
<< >> Gauche – Droite
< <= > >= Gauche – Droite
== != Gauche – Droite
& Gauche – Droite
^ Gauche – Droite
| Gauche – Droite
&& Gauche – Droite
|| Gauche – Droite
?: Droite – Gauche
= += -= *= /= %= >>= <<= &= ^= |= Droite – Gauche
, (opérateur virgule) Gauche – Droite

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 54

2.1 Opérateurs arithmétiques

Expression arithmétique
(par ordre de priorité)

Commentaire

-i +j moins unaire, plus unaire
i*j i/j i%10 multiplication division modulo
i+j i-j addition soustraction
i = 3/2.0 a prend la valeur 1.5
i = 3/2 a prend la valeur 1

- Le symbole « % » représente l’opérateur modulo.

- Il fournit le reste de la division entière de son premier opérande par son second.

- Remarque : la division entière n’est réalisée que sur des nombres entiers. En Java, elle peut être utilisée
aussi sur des réels (float).

11%4 vaut 3
12%4 vaut 0
11%2 vaut 1

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 55

2.2 Opérateurs de manipulation de bits

Manipulation de bits Commentaire
~i
i=0x5F ~i=10100000 160

Négation bit à bit. Il inverse un à un tous les
bits de son unique opérande

i << n
i = -100
i << 2  i = -400

Décalage à gauche de n rangs. Les bits
sortants sont perdus. Ils sont remplacés par
des 0. Si la variable est signée, le bit de signe
est conservé. Multiplication par 2.

i >> n
i = -100
i >> 2  i = -25

Décalage à droite de n rangs. Les bits sortants
sont perdus. Ils sont remplacés par des 0. Si la
variable est signée, le bit de signe est
conservé. Division par 2.

& ET bit à bit entre les valeurs de 2 expressions
| OU bit à bit entre les valeurs de 2 expressions
^ OU exclusif bit à bit entre les valeurs de 2

expressions

Op1 Op2 Op1&Op2 Op1|Op2 Op1^Op2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 56

2.3 Opérateurs d’incrément et de décrément

- Les opérateurs d’incrémentation ou décrémentation sont placés soit avant (pré) soit après (post) la
variable.

Incrément et décrément Expression équivalente
j = ++i ; D’abord i = i+1 ; puis j = i ;
j = i++ ; D’abord j = i ; puis i = i+1 ;
j = --i ; D’abord i = i-1 ; puis j = i ;
j = i-- ; D’abord j = i ; puis i = i-1 ;

- Pré : L’incrémentation/décrémentation est effectuée puis la variable est utilisée.

- Post : L’utilisation de la variable est effectuée avant l’incrémentation/décrémentation.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 57

2.4 Opérateurs d’affectation

- L’élément à gauche du « = » se voit affecter la valeur retournée par l’expression de droite.

- Les conversions éventuelles sont prises en considération lors de l’affectation.

a = b = 0 ;
a = b + (c=3) ;  c=3 ; a = b + c ;
a op= b ;  a = a op b ; // Affectation combinée
a += 3 ; a = a + 3
op : * / % + - << >> & ^ |

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 58

2.5 Opérateurs relationnels et booléens

- Le résultat de la comparaison de deux expressions vaut :

 false (0) si le résultat de la comparaison est FAUX.

 true (1) si le résultat de la comparaison est VRAI.

Type Opération Symbole
Relationnel Inférieur que

Supérieur que
Inférieur que ou égal
Supérieur que ou égal

<
>
<=
>=

Égalité Égal
Différent

==
!=

Logique Négation (unaire)
ET booléen
OU booléen

!
&&
||

- Une expression est vraie si elle est non nulle.

- Une expression est fausse si elle est égale à zéro.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 59

Déclaration et initialisation
int a = -5, b=3, c=0 ;

Expression Équivalence Valeur
a + 5 && b ((a + 5) && b) false ou 0
!(a < b) && c ((!(a < b)) && c) false ou 0
1 || (a != 7) (1 || (a != 7)) true ou 1

((!(a < b)) && c)
(a<b)  (-5<3) ? => vrai
!(vrai) => faux
c = 0  c a une valeur nulle => faux
((!(vrai)) && faux) => faux (false)

Op1 Op2 Op1&&Op2 Op1||Op2 !Op1
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 60

2.6 Opérateur de séquence

- L’opérateur de séquence est représenté par le symbole « , ».

- Il est le moins prioritaire dans la table des opérateurs.

- Il permet d’évaluer les différentes opérations dans l’ordre.

- Dans une liste d’expressions séparées par « , », chaque expression est évaluée en premier avant de passer
à la suivante qui se trouve à sa droite.

a = (b=10 , b+20) ;
b=10 ; a=b+20=10+20=30 ;

x = 10, i=2, z=3 ;

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 61

2.7 Opérateur conditionnel

- Il est appelé aussi opérateur ternaire.

- Il prend comme opérandes 3 expressions.

- La syntaxe de l’opérateur conditionnel est comme suit :

(expression1) ? expression2 : expression3 ;

- « expression1 » est évaluée en premier.

- Si « expression1 » est vraie alors :

 « expression2 » est évaluée.

 Le résultat est celui fourni par « expression2 ».

- Si « expression1 » est fausse alors :

 « expression3 » est évaluée.

 Le résultat est fourni par « expression3 ».

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 62

int a = -3;

int n = (a < 0) ? -a : a;

a = -3

est-ce que a < 0 ?

vrai => n = -a = -(-3) = 3;

Dans cet exemple, n est égale à la valeur absolue de a.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 63

2.8 Opérateur de taille

- L’opérateur de taille est représenté par le mot clé réservé « sizeof ».

- Il permet de déterminer la taille en octets d’une variable ou d’un type ou d’une expression.

- Cette taille est calculée en fonction de l’architecture interne de la machine.

Déclaration et initialisation
int a, b[10] ;

Expression Valeur gcc sur windows
sizeof(a) 4 (la taille d’un int)
sizeof(b) 40 (10 x la taille d’un int = 40)
sizeof(b[2]) 4 (la taille d’un int)

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 64

3. Conversions

- Le langage C++ a deux types de conversion : implicite et explicite.

3.1 Conversions implicites

- Les conversions implicites peuvent avoir lieu dans le calcul d’une expression quand on passe directement
un argument à une fonction ou lors du retour d’une valeur par une fonction.

- Ces conversions implicites facilitent la tâche du programmeur.

- Cependant elles risquent d’être potentiellement dangereuses si l’on ne garde pas un œil ouvert.

- En effet, elles peuvent générer des bogues lors de l’exécution d’un programme. Des bogues qui sont
parfois difficiles à cerner pour le commun des mortels !

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 65

- Les règles de conversion sont comme suit :

 Si l’opérande est du type « char », « wchar_t », « short », « bool » ou « enum », elle est
convertie en « int ».

 Si l’opérande est un nombre entier tellement grand que l’on ne peut pas représenter par un
« int », il sera représenté par un « unsigned int ».

 Après ces deux premières étapes de conversion, si une expression contient un ensemble de types
différents, la hiérarchie à suivre lors de la conversion est comme suit :

 « int » < « unsigned » < « long » < « unsigned long » < « float »
< « double » < « long double ».

 L’opérande, ayant un type moins élevé dans la hiérarchie, est promue à un type plus élevé
et l’expression récupère ce type.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 66

3.2 Conversions explicites

- On peut demander explicitement une conversion d’un opérande dans un type désiré.

- Cette opération s’appelle « casting » ou « transtypage ».

- Les règles de forçage de conversion de type du langage C peuvent être utilisées aussi en C++.

Casts Commentaires
x = float(y) ; Notation C++
x = (float) y ; Notation C, ok aussi en C++

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 67

- 4 nouveaux opérateurs ont été introduits en C++, pour forcer la conversion de type.

Opérateurs Commentaires
static_cast Cet opérateur est utilisé pour effectuer les opérations de

conversion standard, par exemple, de int en float, un
float en char etc.

const_cast Cet opérateur permet uniquement la conversion de types
const vers non const.

reinterpret_cast Cet opérateur est utilisé essentiellement pour la
conversion de types de relations différentes (non
standard).

dynamic_cast Cet opérateur est utilisé en programmation
polymorphique où la conversion est différée au moment
de l'exécution du programme.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 68

Opérations Commentaires
double x = 5.89;
int y = static_cast <int>(x); ANSI C++ : double vers int.
double z = static_cast <double>(y); ANSI C++ : int vers double.
int i = 7 ;
float w = (float) i ; C
w = float(i) ; C++
w = static_cast <float>(i) ; ANSI C++
char a = static_cast<char> ('B'+5.0) ; ANSI C++

Les opérateurs « const_cast », « reinterpret_cast » et « dynamic_cast » seront étudiés plus tard dans le cours.

© Mohamed N. Lokbani 2026 POO avec C++

