Chapitre 5 : Opérateurs, expressions et conversion 51
Chapitre 5
Opérateurs, expressions et conversions
© Mohamed N. Lokbani 2026 POO avec C++
Chapitre 5 : Opérateurs, expressions et conversion 52

1. Expressions

- Une expression est la composition d’opérateurs, de variables, de constantes, de fonctions et de

parenthéses.

- Une expression retourne toujours un résultat, sa valeur.

- La valeur de I’expression a un type et, elle peut-étre utilisée dans une autre expression

Dans cet exemple :

int x = 3 + sin(z) ;

Variable : Z
Constante : 3
Fonction : sin

Valeur de retour : x , type « int »

© Mohamed N. Lokbani 2026

POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 53
2. Opérateurs
- Le langage C++ est riche en opérateurs.
Priorité et associativité des opérateurs
Opérateur Associativité
(portée globale) Gauche - Droite
(portée classe)

() [1 -> . (postfixe) ++ Gauche - Droite

(postfixe)-- sizeof typedef

++ (préfixe) —- (prefixe) ~

& (adresse) +(unaire) —(unaire) Droite - Gauche

*(indirection) delete new casts

LK —>% Gauche - Droite

* /% Gauche - Droite

+ - Gauche - Droite

<< >> Gauche - Droite

< <= > >= Gauche - Droite

== |= Gauche - Droite

& Gauche - Droite

” Gauche - Droite

| Gauche - Droite

&& Gauche - Droite

| Gauche - Droite

?: Droite - Gauche

= += -= *= /= §= >>= <= §= = Droite - Gauche

, (opérateur virgule) Gauche - Droite
© Mohamed N. Lokbani 2026 POO avec C++
Chapitre 5 : Opérateurs, expressions et conversion 54

2.1 Opérateurs arithmétiques

Expression arithmétique Commentaire
(par ordre de priorité)
-1 +j moins unaire, plus unaire
i*3 i/3 1%10 multiplication division modulo
i+j i-3 addition soustraction
i=3/2.0 a prend la valeur 1.5
i=3/2 a prend la valeur 1

Le symbole « % » représente 1’ opérateur modulo.

11 fournit le reste de la division entiére de son premier opérande par son second.

Remarque : la division entiére n’est réalisée que sur des nombres entiers. En Java, elle peut étre utilisée

aussi sur des réels (float).

11%4 vaut 3
12%4 vaut O
11%2 vaut 1

© Mohamed N. Lokbani

2026

POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 55

2.2 Opérateurs de manipulation de bits

Manipulation de bits Commentaire
~1 Négation bit a bit. Il inverse un a un tous les
i=0x5F ~i=10100000¢> 160 |bits de son unique opérande
i<<n Décalage a gauche de n rangs. Les bits
i = -100 sortants sont perdus. Ils sont remplacés par
i << 2 & 1= -400 des 0. Si la variable est signée, le bit de signe
est conservé. Multiplication par 2.
i>n Décalage a droite de n rangs. Les bits sortants
i = -100 sont perdus. Ils sont remplacés par des 0. Si la
i> 2 & 1i=-25 variable est signée, le bit de signe est
conservé. Division par 2.
& ET bit a bit entre les valeurs de 2 expressions
| OU bit & bit entre les valeurs de 2 expressions
» OU exclusif bit a bit entre les valeurs de 2
expressions
Op1l Op2 Op1&Op2 Op1|Op2 Op1~0Op2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0
© Mohamed N. Lokbani 2026 POO avec C++
Chapitre 5 : Opérateurs, expressions et conversion 56

2.3 Opérateurs d’incrément et de décrément

- Les opérateurs d’incrémentation ou décrémentation sont placés soit avant (pré) soit aprés (post) la

variable.
Incrément et décrément Expression équivalente
J o= ++1i ; D’abord i = i+1 ; puis 7 = i ;
J o= i++ ; D’abord j = i ; puis i = i+1 ;
j o= --1i; D’abord 1 = i-1 ; puis j = 1 ;
jo=1i-- 7 D’abord j = i ; puis i = i-1 ;

- Pré : L’incrémentation/décrémentation est effectuée puis la variable est utilisée.

- Post : L’utilisation de la variable est effectuée avant 1’incrémentation/décrémentation.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion

57

2.4 Opérateurs d’affectation

- L’¢élément a gauche du « = » se voit affecter la valeur retournée par 1’expression de droite.

- Les conversions éventuelles sont prises en considération lors de 1’affectation.

|
o
I

0 ;
(c=3) ; @ c=3 ; a=Db + c;

U]

+= ;a=a+3
op : * /%5 4+ - << >> 8 "

+
op=b ; ©® a =a op b ; // Affectation combinée

© Mohamed N. Lokbani 2026

POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion

58

2.5 Opérateurs relationnels et booléens

- Le résultat de la comparaison de deux expressions vaut :

= false (0) si le résultat de la comparaison est FAUX.

= true (1) sile résultat de la comparaison est VRAL

Type Opération Symbole
Relationnel Inférieur que <
Supérieur que >

Inférieur que ou égal <=
Supérieur que ou égal >=

ET booléen
OU booléen

Egalité Egal ==
Différent !
Logique Négation (unaire) !

- Une expression est vraie si elle est non nulle.

- Une expression est fausse si elle est égale a zéro.

© Mohamed N. Lokbani

2026

POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion

59

Déclaration et initialisation
int a = -5, b=3, c¢c=0 ;
Expression Equivalence Valeur
a+ 5 && b ((a + 5) && Db) false ou 0
!(a < b) && c ((!'(a < b)) && c) |falseou0
111 (al=17) (1 11 (a!'=17)) true ou 1
(('(a <D)) & c)
(a<b) & (-5<3) ? => vrai
! (vrai) => faux
c =0 & c a une valeur nulle => faux
((!(vrai)) && faux) => faux (false)
opl Op2 Op1&&O0p2 Op1||0p2 10pl
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0
© Mohamed N. Lokbani 2026 POO avec C++
60

Chapitre 5 : Opérateurs, expressions et conversion

2.6 Opérateur de séquence
- L’opérateur de séquence est représenté par le symbole « , ».
- Il est le moins prioritaire dans la table des opérateurs.

- Il permet d’évaluer les différentes opérations dans 1’ordre.

- Dans une liste d’expressions séparées par « , », chaque expression est évaluée en premier avant de passer

a la suivante qui se trouve a sa droite.

a = (b=10 , b+20) ;
b=10 ; a=b+20=10+20=30 ;

x =10, 1=2, z=3 ;

© Mohamed N. Lokbani 2026

POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 61

2.7 Opérateur conditionnel
- Il est appelé aussi opérateur ternaire.
- Il prend comme opérandes 3 expressions.

- La syntaxe de ’opérateur conditionnel est comme suit :

(expressionl) ? expression2 : expression3 ;

- «expressionl » est évaluée en premier.
- Si«expressionl » est vraie alors :

= «expression2 » est évaluée.

= Le résultat est celui fourni par « expression2 ».
- Si « expressionl » est fausse alors :

=« expression3 » est évaluée.

= Le résultat est fourni par « expression3 ».

© Mohamed N. Lokbani 2026 POO avec C++
Chapitre 5 : Opérateurs, expressions et conversion 62
int a = -3;
int n = (a <0) ? -a : a;
a = -3

est-ce que a < 0 ?
vrai => n = -a = -(-3) = 3;

Dans cet exemple, n est égale a la valeur absolue de a.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion

63

2.8 Opérateur de taille

- L’opérateur de taille est représenté par le mot clé réservé « sizeof ».

- Il permet de déterminer la taille en octets d’une variable ou d’un type ou d’une expression.

- Cette taille est calculée en fonction de ’architecture interne de la machine.

Déclaration et initialisation
int a, b[10] ;
Expression Valeur gcc sur windows

sizeof (a) 4 (la taille d’un int)

sizeof (b) 40 (10 x la taille d’un int = 40)

sizeof (b[2]) 4 (la taille d’un int)
© Mohamed N. Lokbani 2026 POO avec C++
Chapitre 5 : Opérateurs, expressions et conversion 64

3. Conversions

- Le langage C++ a deux types de conversion : implicite et explicite.

3.1 Conversions implicites

- Les conversions implicites peuvent avoir lieu dans le calcul d’une expression quand on passe directement

un argument a une fonction ou lors du retour d’une valeur par une fonction.

- Ces conversions implicites facilitent la tdche du programmeur.

- Cependant elles risquent d’étre potentiellement dangereuses si I’on ne garde pas un ceil ouvert.

- En effet, elles peuvent générer des bogues lors de 1’exécution d’un programme. Des bogues qui sont

parfois difficiles a cerner pour le commun des mortels !

© Mohamed N. Lokbani 2026

POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 65

- Les régles de conversion sont comme suit :

= Si P’opérande est du type «char», « wchar t», «short», «bool» ou «enum», elle est
convertie en « int ».

= Si I’opérande est un nombre entier tellement grand que 1’on ne peut pas représenter par un
« int », il sera représenté par un « unsigned int ».

= Aprés ces deux premiéres étapes de conversion, si une expression contient un ensemble de types
différents, la hiérarchie a suivre lors de la conversion est comme suit :

e « int » < « unsigned » < « long » < « unsigned long » < « float »
< « double » < « long double ».

e [’opérande, ayant un type moins élevé dans la hiérarchie, est promue a un type plus élevé
et ’expression récupére ce type.

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 66

3.2 Conversions explicites
- On peut demander explicitement une conversion d’un opérande dans un type désiré.
- Cette opération s’appelle « casting » ou « transtypage ».

- Les régles de forcage de conversion de type du langage C peuvent étre utilisées aussi en C++.

Casts Commentaires
x = float(y) ; Notation C++
x = (float) vy ; Notation C, ok aussi en C++

© Mohamed N. Lokbani 2026 POO avec C++

Chapitre 5 : Opérateurs, expressions et conversion 67
- 4 nouveaux opérateurs ont été introduits en C++, pour forcer la conversion de type.
Opérateurs Commentaires
static_cast Cet opérateur est utilisé pour effectuer les opérations de
conversion standard, par exemple, de int en float, un
float en char etc.
const_cast Cet opérateur permet uniquement la conversion de types
const VEIS non const.
reinterpret cast Cet opérateur est utilisé essentiellement pour la
conversion de types de relations différentes (non
standard).
dynamic_cast Cet opérateur est utilisé en programmation
polymorphique ou la conversion est différée au moment
de I'exécution du programme.
© Mohamed N. Lokbani 2026 POO avec C++
Chapitre 5 : Opérateurs, expressions et conversion 68
Opérations Commentaires
double x = 5.89;
int y = static_cast <int>(x); ANSI C++ : double vers int.
double z = static cast <double>(y); ANSI C++ : int vers double.
int 1 =7 ;
float w = (float) i C
w = float (i) ; CH++
w = static cast <float>(i) ; ANSI C++
char a = static cast<char> ('B'+5.0) ; ANSI C++
Les opérateurs « const_cast », « reinterpret_cast » et « dynamic_cast » seront étudiés plus tard dans le cours.
© Mohamed N. Lokbani 2026 POO avec C++

