PC Tech/ Tutor

By Jeff Prosise

ngh—PerI’ormance otring Searching

How a smart algorithm can make a big difference.

hy are some programs faster than

others? Why, for example, would one

word processor require 30 seconds to

spell-check a document when anoth-
er may take only 15 seconds?

Sometimes the speed difference lies in the
efficiency of the code. If one programmer can
do a job in 100 clock cycles, another might be
able to do it in 95. But very often speed isn’t
attributable so much to minute differences in
code as it is to the problem-solving technique
that the code embodies. I'm talking about al-
gorithms—the step-by-step procedures that
tell computers how to do the things they dont
do naturally, such as finding the cube root of a
number or sorting a list of names. An algo-
rithm describes an approach to solving a prob-
lem. The choice of algorithm can have a dra-
matic impact on a program’s performance.

I've been fascinated by algorithms ever
since I caught the programming bug more
than a decade ago. My first encounter with al-

gorithms came when I wrote a line-drawing - -

routine that relied on sines and cosines to
compute pixel positions. I was astounded to
find that the code I had so carefully crafted
took 10 seconds to draw a line connecting two
corners of the screen. This experience led me
to learn about Bresenham’s line-drawing al-
gorithm, which converts lines into pixels using
simple integer arithmetic. This allows it to run
many times faster than algorithms that rely on
classic geometrical equations:

Among the traditional types of algonthms \

discussed in computer science textbooks are
methods for string searching. The object of a
string search is to find occurrences of a speci-
fied text string within a larger body of text—
for example, to identify occurrences of the
string “pain” in the phrase “The rain in
Spain.” Windows 95 Find utility uses a string
search when you type text into the box la-
beled “Containing text” on the Advanced tab.
The Find command in Microsoft Word’s Edit
menu performs a string search, too. But not all
string-search algorithms are created equal.

Some are substantially faster than others, and
one in particular has become to string search-
ing what Bresenham is to line drawing, The al-
gorithm is called Boyer-Moore, and it’s simple
enough for anyone to understand. Let’s look
at it more closely to see how it works. Along

the way, you’ll see what a difference an algo-
rithm can make.

BRUTE-FORCE STRING SEARCHING

Suppose someone asked you to devise an al-
gorithm for searching a buffer full of text fora
specified string. The simplest approach to
string searching is the brute-force method,
which involves comparing each and every
substring in the text that’s being searched
against the text that’s being searched for. Fig-
ure 1 shows the steps involved in a brute-force
search. Initially, the leftmost characters in the
two strings are aligned, so that the “p” in
“pain” lines up with the “T” in “The.” Then
the two characters are compared. If the char-
acters are not the same, the search string

Youd be surprised at the
number of applications

- ‘whose Search commands
 use the brute-force tech-
nique instead of the faster

Boyer-Moore method.

- “pain” and the arrow specifying the current
- location in the text that’s being searched are
. shifted right one character position, and the
- process is repeated. If the characters are the

same, the arrow is shifted right one position,
but the search string is not. If four consecutive
characters compare identically, we’ve found a
substring that equals the search text. Other-
wise, the search proceeds until the right end of
the search string lines up with the right end of
the string that’s being searched, and a final
comparison fails.

You’d be surprised at the number of apphi-
cation programs whose Search or Find com-
mands use the brute-force technique depicted
in Figure 1. If the text being searched contains
no more than a few thousand characters,
brute force is fine, because users aren't likely
to complain—and probably won’t even no-

tice—if a search requires 0.8 seconds instead
of 0.4. But what happens if the target of the
search contains millions of characters, or per-
haps billions? There’s a big difference be-
tween waiting 20 minutes and waiting just 10.
And that’s exactly the kind of difference that
Boyer-Moore can make.

THE BOYER-MOORE ALGORITHM

Brute force is the simplest approach to
string searching, but it’s hardly the best.
Given a buffer M whose length is m and a
search string N whose length is n, a brute-
force search through all of M for occur-
rences of N requires at least m-n+1 individ-
ual comparisons. Greater efficiency may be

obtained by minimizing the number of com-

parisons performed.

In 1977, R. S. Boyer and J. S. Moore pub-
lished a paper entitled “A Fast String Search-
ing Algorithm” that described a more efficient
approach to string searching. The method out-
lined in the paper came to be known as the
Boyer-Moore string-search algorithm and has
since been the subject of countless papers. The
Boyer-Moore technique applies a bit of intel-
ligence—some would say common sense—to
the search process that reduces the number of
comparisons required. In many cases, a Boyer-
Moore search can outperform a brute-force
search by a factor of 2:1.

The key to the Boyer-Moore algorithm is the
observation that some comparisons are unnec-
essary, because they can't possibly yield a match
between the two strings. Consider the compar-
ison between the strings “pain” and “The rain
in Spain,” for example. Comparing the right-
most character in “pain” to the corresponding
character in “The rain in Spain” (a space)
makes it clear that the strings don't match:

pain
The rain in Spain

A

A brute-force string-comparison method
would shift one place to the nght and try
again, as shown here:

pa1n y
The rain in Spain

A

SEPTEMBER 10, 1996 PCMAGAZINE 289

b e

But in reality, this comparison is unnecessary.
- The fact that there’s no space character in
“pain” means the strings can’t possibly match
as long as “pain” is lined up anywhere over
the space between “The” and “rain.” Thus,
after comparing “n” against “ ” in the first step
and seeing that they are different, we could
save time by shifting a full four places to the
right, as shown here:’

pain
The rain in Spain

A

This simple modification allows us to doin
one step what formerly required four. That’s
the essence of Boyer-Moore: working from
the right end of the character strings instead of
the left (notice that the arrow starts out lined
up with the “n” in “pain” rather than the “p”),
and, after a mismatch occurs, shifting right as
many as n places instead of just one. (Once

PC TECH
Tutor

again, n equals the number of characters in
the search string.) When two characters are
the same, the arrow is moved one character to
the left and the previous two characters are
compared. If the number of successful com-
parisons equals the length of the search text,
then a match has been identified.

The trick to implementing the Boyer-Moore
algorithm is in knowing how many places to
shift after a failed comparison. If the character
in the text that you're searching doesn’t appear
in the search string, it’s easy: just shift right a
full n places. But what if the “n” in “pain” lined
up over the “a” in “Spain”? In that case, shift-
ing right more than two places could result in
amissed match:

. pain
The rain in Spain
pain
The rain in Spain

A

pain The solution? If the
The rain in Spain character in the tar-
....... v Nomatch ... gettext appears in the
pain string being searched
The rain in Spain for,shiftrightanumber
2 A ' No match of places that equals the
... distance from the l’ight
. pain end of the search string
: The rain in Spain ‘ to the character in ques-
....... 3 ... Nomtch ... ~ ton Since “a” is two
pain i characters to the left of
The rain in Spain Fhinghtglost char:cter
o in “pain,” proper proce-
....... 4 Nomatch dure would be to shift
5 two places instead of
four:
‘pain pain
The rain in Spain U Spfin
13 8 No match
T SRR ot RN S SO N pa'ln
pain The rain in Spain
The rain in Spain . A
14 e One character matches
......... Now the “5” in “pain”
pain lines up with the “n” in
The rain in Spain - “Spain,” and the match-
_____ 18 .~ [Twocharacters match 1o qibstring will be
pain detected.
The rain in Spain In practice, it’s quite
16 3 Three characters match easy for a search pro-
.. gram to know how
LCAL) many places to shift for
U OO U any character in the tar-
17 ~ Got 1t!

290 PCMAGAZINE SEPTEMBER 10, 199

get text. The secretis to
build a table that con-
tains an element for
every possible charac-
ter. For conventional 8-
bit character sets, the
table contains 256 ele-

ments, requiring just 256 bytes of storage.
Each entry in the table holds a shift count
for the corresponding character. For charac-
ters that don’t appear in the search text,
the shift count equals the number of charac-
ters in the search text. For characters that do
appear in the search text, the shift count
equals the distance from the right end of
the search text to the rightmost occurrence

"of the character. If the search text is “pain,”

the shift counts for “p,” “a,” “i,” and “n”
are 3,2, 1, and 0, respectively. For all other
characters, the shift count is 4. Given a
character, a simple table lookup (something
that computers can do very fast) then tells
you how many places to shift.

Figure 2 shows how Boyer-Moore im-
proves upon the brute-force technique that
is diagrammed in Figure 1. In step 1, the “n”
in “pain” is compared with the space be-
tween “The” and “rain.” Because the char-
acters don’t match, and because the shift
count for the space character is 4, the
search text is moved four places to the right,
and the arrow is moved with it. In steps 2
through 4, the arrow is moved backward as
three successive characters match, and in
step 5 the search text is shifted right four
places, because of the mismatch between
“p” and “r.” Note that when a shift occurs,
the arrow always moves to the end of the
search text. In the end, the number of steps
required to perform the search is reduced
from 17 to 11—a savings of more than 35
percent.

‘There are many variations on the basic
Boyer-Moore algorithm that lend added
efficiency to the search process. Even the
original Boyer-Moore algorithm is some-
what more complicated than the one dis-
cussed here, because it uses an additional
heuristic that takes advantage of repeat-
ing patterns in the search string. Nonethe-
less, Figure 2 illustrates the gist of Boyer-
Moore string searching in all of its various
forms.

THE FASTSEARCH PROGRAM

In order to see for myself just how much of a
difference Boyer-Moore can make, I took an
old DOS text-searching utility I wrote some
years ago and modified it to use a Boyer-
Moore string search. The original version
used a brute-force algorithm similar to the
one shown in Figure 1.

The results were telling. In an informal
test performed by searching a 40MB docu-
ment file for a text string that was 11
characters long, the original version of the
program needed 65 seconds to search the
entire file. The Boyer-Moore version, which
I named FastSearch, took only 41 seconds.
In some cases, FastSearch required as little
as 33 seconds to scan the entire file for
longer strings. (One of the interesting char-

7©

!
i
|
i

PG TECH
Tutor

Shift Table for
: Characters :

“pain”

A1l others -

pain ..
1 The rain in Spain -
=, pain 7
2 The rain {in Spain

One character matches;

pain’

' the prev1ous character

Two characters match;
compare the previous character

- Three *'char‘acters match;

,;No météh shift right 4 places
(shift count for f‘ r” o= 4)

acteristics of the Boyer—Moore algonthm is

that longer search strings will often result in
speedier searches.) By comparison, the Find
utility that comes with Windows 95 required
34 seconds to perform the same test search.
1 don’t know what search algorithm that
Find utility uses, but I'd be willing to bet that
it’s not a brute-force technique, and that it’s
probably some form of Boyer-Moore. Find
is also written with 32-bit code that’s opti-
mized for 32-bit processors, while Fast-

292 PCMAGAZINE SEPTEMBER 10, 1996

Search uses generic 16-bit x86 code that runs
on all Intel CPUs.

In computer programming, there is often
a trade-off between memory requirements
and performance. Speedier algorithms re-
quire more logic,-and more logic means
more code and more memory. Yet Boyer-
Moore added only 100 bytes to the size
of the FastSearch executable. It says a
lot about the algorithm when a 30 percent
or greater increase in performance can

be achieved with just 100 additional bytes
of code.

In case you'd like to try out FastSearch
for yourself, you can download it from PC
Magazine Online (see the sidebar “Guide to
Our Utilities” in this issue’s Utilities col-
umn for downloading instructions). You
can get syntactical help for FastSearch by
typing

fs /2
at the command prompt. The command

fs \docfiles*.doc “Hello, worid”

scans all the .DOC files in the \DOCFILES di-
rectory and prints the names of those that
contain the text string “Hello, world.” Fast-
Search also supports the following command
line switches:
o /S for searching subdirectories, too;
« /C for performing case-sensitive searches
(by default, searches are not case-sensitive);
and
o /A for searching hidden and system files as
well as normal files (by default, files marked
with hidden and system attnbutes are not in-
cluded in the search).

Thus, the command

" fs \ “Microsoft” /s /c /a

searches every file on your hard disk for the
word Microsoft. (Try it—you may be sur-

prised!) Note that FastSearch may be inter-
rupted by sharing violations if called uponto
search an entire hard disk while Windowsis

running. Just press the F key in response to

the “Abort, Retry, Fail” message and Fast- .
Search will skip the offendmg file and resume -

the search.

FURTHER READING

Boyer-Moore is one of a 1arger family of
algorithms designed for performmg exact

string searches, approximate string searches, -

“sounds-like” string searches, and other
types of textual comparisons. You can read
more about it in almost any book on classic
computer algonthms One of my favorite
such books is Practical Algorithms for
Programmers, by Andrew Binstock and
John Rex (1995, Addison-Wesley). In it,
yow’ll find discussions of all sorts of algo-
rithms (including Boyer-Moore), plus gen-
erous amounts of sample code showing
how the algorithms are implemented—a
key ingredient that’s missing from many
books of this genre. O :

Jeff Prosise is a contributing editor of PC
Magazine. His new book, Programming Win-
dows 95 with MFC, was recently published by
Microsoft Press:

N\

>)

SN

PR

BRI R

PTIRRET N

