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ABSTRACT sand delay elements as in acoustics. In these situa-

In this chapter, we provide an overview of existin{ons the sources are the desired signals, yet only the

algorithms for blind source separation of convolutiv e_cgrdmgs of thg m'xfd sources are available and the
audio mixtures. We provide a taxonomy, whereiff'XINg Process 1S gn nown. ] o
many of the existing algorithms can be organized, There are multiple potential applications of con-

rithms that have been applied to real-world audio sefDt sound sources are recorded simultaneously with
aration tasks. possibly multiple microphones. These sources may

be speech or music, or underwater signals recorded
in passive sonar [1]. In radio communications, an-
1. INTRODUCTION tenna arrays receive mixtures of different communi-
cation signals [2, 3]. Source separation has also been
During the past decades, much attention has begpplied to astronomical data or satellite images [4].
given to the separation of mixed sources, in partiginally, convolutive models have been used to inter-
ular for theblind case where both the sources angret functional brain imaging data and bio-potentials
the mixing process are unknown and only recordings, 6, 7, 8].
of the mixtures are available. In several situations it tpis chapter considers the problem of separat-

is desirable to recover all sources from the record(ﬁqg linear convolutive mixtures focusing in particu-
mixtures, or at least to segregate a particular sourgg: on acoustic mixtures. Theocktail-party prob-
Furthermore, it may be useful to identify the mixingem has come to characterize the task of recovering
process itself to reveal information about the physmgbeech in a room of simultaneous and independent
mixing system. speakers [9, 10]. Convolutive blind source separa-
In some simple mixing models each recordingon (BSS) has often been proposed as a possible so-
consists of a sum of differently weighted source sigution to this problem as it carries the promise to re-
nals. However, in many real-world applications, suctover the sources exactly. The theory on linear noise-
as in acoustics, the mixing process is more comple¥ee systems establishes that a system with multiple
In such systems, the mixtures are weighted and d@puts (sources) and multiple output (sensors) can
layed, and each source contributes to the sum wige inverted under some reasonable assumptions with
multiple delays corresponding to the multiple pathgppropriately chosen multi-dimensional filters [11].
by which an acoustic signal propagates to a micr@he challenge lies in finding these convolution filters.
phone. Such filtered sums of different sources are There are already a number of partial reviews

called convolutive mixtures. Depending on the situay zilable on this topic [12, 13, 14, 15, 16, 17, 18, 19,

tion, the filters may consist of a few delay elementgg o1 22]. The purpose of this chapter is to pro-
as in radio communications, or up to several thou- =
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vide a complete survey of convolutive BSS and idewhereA(z) is a matrix with FIR polynomials in each
tify a taxonomy that can organize the large numbentry [23].

of available algorithms. This may help practitioners

and res_earchers_ new to the area of cpnvolutive SQU?&_ Special cases

separation obtain a complete overview of the field.

Hopefully those with more experience in the field cathere are some special cases of the convolutive mix-
identify useful tools, or find inspiration for new algo-—tyre which simplify Eq. (2):

rithms. Figure 1 provides an overview of the different
topics within convolutive BSS and in which sectioqhe
they are covered. An overview of published results i .
given in Section 8.

Instantaneous Mixing ModelAssuming that all
signals arrive at the sensors at the same time with-
being filtered, the convolutive mixture model (2)
simplifies to

x(t) = As(t) + v(t). 4)

This model is known as thimstantaneousr delay-
First we introduce the basic model of convolutivéess (linear) mixture model. Hered = Ay, is an
mixtures. At the discrete time indexa mixture of M x N matrix containing the mixing coefficients.
N source signals(t) = (s1(t),...,sn(t)) are re- Many algorithms have been developed to solve the
ceived at an array a¥/ sensors. The received signalsnstantaneous mixture problem, see e.g. [17, 24].

are denotede(t) = (z1(t),...,zum(?)). In many Delayed SourcesAssuming a reverberation-free

real-world applications the sources are said todi® environment with propagation delays the mixing
volutively (or dynamically) mixed. The convolutive model can be simplified to

model introduces the following relation between the

m’th mixed signal, the original source signals, and N

some additive sensor noisg, (t): Tm(t) =D mnsn(t = kmn) +vm(t)  (5)
n=1

2. THE MIXING MODEL

[

N R wherek,,,, is the propagation delay between source
xm(t) - Z Z a'rnnksn(f' - k) + Uy (t) (1) n and Sgr”]LSOﬁ’L.
A= Noise Free In the derivation of many algorithms,
The mixed signal is a linear mixture of filtered verthe convolutive model (2) is assumed to be noise-free,
sions of each of the source signals, angl, repre- i.e..
sents the corresponding mixing filter coefficients. In K1
practice, these coefficients may also change in time, z(t) = Z Ays(t—k). (6)
but for simplicity the mixing model is often assumed
stationary. In theory the filters may be of infinite
length (which may be implemented as IIR systems), Over and Under-determined Source®ften it
however, again, in practice it is sufficient to assumis assumed that the number of sensors equals (or
K < oo. In matrix form, the convolutive model canexceeds) the number of sources in which case lin-
be written as: ear methods may suffice to invert the linear mixing.
However, if the number of sources exceeds the num-

k=0

K-l ber of sensors the problem is under-determined, and
x(t) = Aps(t — k) +v(t), () even under perfect knowledge of the mixing system
k=0 linear methods will not be able to recover the sources.

where A, is anM x N matrix which contains the
E’thfilter coefficients.v(t) is theM x 1 noise vector. 2.2. Convolutive model in the frequency domain
In the z-domain the convolutive mixture (2) can be
written as: The convolutive mixing process (2) can be simplified
by transforming the mixtures into the frequency do-
X (z) = A(2)S(z) + V(2), (3) main. The linear convolution in the time domain can
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Figure 1: Overview of important areas within blind sepamaibf convolutive sources.

be written in the frequency domain as separate mutlre. By using the fast Fourier transform (FFT) con-

tiplications for each frequency: volutions can be implemented efficiently in the dis-
crete Fourier domain, which is important in acoustics
X(w)=AWw)S(w) + V(w). (7)  as it often requires long time-domain filters.

At each frequencyw = 27 f, A(w) is a complex

M x N matrix, X (w) andV (w) are complexd/ x 1

vectors, and similarlyS(w) is a complexN x 1

vector. The frequency transformation is typically 3. Block-based Model
computed using a discrete Fourier transform (DFT)

within a time frame of sizd” starting at timer: Instead of modeling individual samples at titene

X — DFT . T_1 can also consider a block consisting Bfsamples.
(w.1) ([2(t), - 2(t + . ® The equations for such a block can be written as fol-
and correspondingly fof(w, t) andV (w, t). Often lows:
a windowed discrete Fourier transform is used:

-1 :B(t) = A()S(t)++AK,18(t7K+1)
_ —jwt /T
X(w,t) = Z%M(T)w(“”)e O x(t—1) = Ags(t—1)+ -+ Ax_18(t — K)
- x(t—2) = Ags(t—2)+---+ Ag_18(t— K —1)
where the window functiom(7) is chosen to mini-
mize band-overlap due to the limited temporal aper-
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The M-dimensional output sequence can be writteh1. Feed-forward Structure
as anMT x 1 vector:

T An FIR separation system is given by
i(t) = [wT(t)a wT(f' - 1); e awT(t -T+ 1)} )

(10) = -3 l 14
wherex” (t) = [z1(t),---,zn(t)]. Similarly, the yn(t) = Z anmlmm(t’ ) (14)
N-dimensional input sequence can be written as an m=11=0
N(T + K — 1) x 1 vector: or in matrix form
) [T Ty 1\ ... T T L-1
s(t) = [S (t),s (t—1), 8 (=T K+(21>:1) y(t) = Z Wix(t — l) (15)
From this the convolutive mixture can be expressed o =0 _
formally as: As with the mixing process, the separation system
~ can be expressed in thedomain as
z(t) = As(t) +v(t), (12)

Y(z) = W(2)X(2), (16)

and it can also be expressed in block Toeplitz form
N Ao - Ag-1 O 0 with the corresponding definitions fgj(t) and W
A=| o - 0 . (13) [25]: .

The block-Toeplitz matrixA has dimension8/T x Table 1 summarizes the mixing and separation
N(T + K — 1). On the surface, Eq. (12) has th&guations in the different domains.

same structure as an instantaneous mixture given in

Eqg. (4), and the dimensionality has increased by32. Relation between source and separated sig-
factorT. However, the models differ considerably asals

the elements withicA and3(t) are now coupled in a . o .
rather specific way. The goal in source separation is not necessarily to

o . . recover identical copies of the original sources. In-
The majority of the work in convolutive source

separation assumes a mixina model with a finite stead, the aim is to recover model sources without
P Xing MAterferences from other sources, i.e., each separated
pulse response (FIR) as in Eg. (2). A notable excep-

tion is the work by Cichocki which considers also arglgnaly" () should contain signals originating from

auto-regressive (AR) component as part of the mia_single source only (see Figure 3). Therefore, each
. 9 pone P odel source signal can be a filtered version of the
ing model [18]. The ARMA mixing system proposed_ . - - S

; . . : — original source signals, i.e.:
there is equivalent to a first-order Kalman filter with

whereA has the following form:

an infinite impulse response (lIR). Y(z) =W(2)A(2)S(z) = G(2)S(z). (18)
This is illustrated in Figure 2. The criterion for sepa-
3. THE SEPARATION MODEL ration, i.e., interference-free signals, is satisfiedéf th

recovered signals are permuted, and possibly scaled
The objective of blind source separation is to findnd filtered versions of the original signals, i.e.:
an estimatey(¢), which is a model of the original _
source signals(t). For this, it may not be neces- G(z) = PA(2), (19)
sary to identify the mixing filtersA, explicitly. In- whereP is a permutation matrix, andl(z) is a diag-
stead, it is often sufficient to estimate separation fibnal matrix with scaling filters on its diagonal. If one
tersW, that remove the cross-talk introduced by thean identifyA(z) exactly, and choos®/ (z) to be its
mixing process. These separation filters may havestable) inverse, theA(z) is an identity matrix, and
feed-back structure with an infinite impulse responsme recovers the sources exactly. In source separa-
(IIR), or may have a finite impulse response (FIRjon, instead, one is satisfied with convolved versions
expressed as feed-forward structure. of the sources, i.e. arbitrary diagomg(z).
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Table 1: The convolutive mixing equation and its correspogdeparation equation are shown for different
domains in which blind source separation algorithms haen lnerived.

Mixing Process Separation Model
N K-1 M L-1
Time Tm(t) =D Gmnksn(t — k) + vm(t)  yn(t) =D > Wpmiwm(t 1)
n=1 k=0 m=1 =0
K-1 L-1
z(t) =Y Aps(t—k)+o(t) y(t) =Y Wat-1)
k=0 1=0
z-domain X (z) = A(2)S(z) + V(2), Y(z) =W(2)X(2)
Frequency X (w) = A(w)S(w) + V(w) Y(w)=W(w)X(w)
domain
Block Toe- Z(t) = A3(t) Y(t) = Wa(t)
plitz Form

N
N
N
.
N
\
N
N
\
N
N
N
\
N
N .
') Microphone
array

Figure 3: lllustration of a speech source. It is not alwagsicvhat the desired acoustic source should be. It
could be the acoustic wave as emitted from the mouth. Thigsponds to the signal as it would have been
recorded in an anechoic chamber in the absence of revedyezatt could be the individual source as it is
picked up by a microphone array. Or it could be the speechak@mit is recorded on microphones close
to the two eardrums of a person. Due to reverberations afréctibn, the recorded speech signal is most
likely a filtered version of the signal at the mouth. NOTE TOBMSHER: THIS FIGURE IS A PLACE
HOLDER ONLY. IT WILL REQUIRE MODIFICATION BY YOUR PRODUCTION DEPARTMENT. THE
FACES ARE TO BE REPLACED WITH ANY REASONABLE REPRESENTATIORNF A “SOURCE”
AND “RECEIVER” OF A SPEECH SIGNAL.

3.3. Feedback Structure by a feedback structure using IIR filters. The esti-

The mixing system given by (2) is called a feed-
forward system. Often such FIR filters are inverted
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S(2) X(2) Y(2) provided(I+U|(z))~* exists and all poles are within
A N WE the unit circle. Therefore,
S(2) c Y@), W) =T +U(2)" (23)
The feed-forward and the feedback network can be

combined to a so-called hybrid network, where a

Figure 2: The source signal§(z) are mixed with feed-forward structure is followed by a feedback net-
the mixing filterA(z). An estimate of the source sig-work [27, 28].

nals is obtained through an unmixing process, where
the received signalX (z) are unmixed with the fil- _
ter W(z). Each estimated source signal is then &4- Example: The TITO system

filtered version of the original source, i.&(z) = 5 ; o :

o . special case, which is often used in source separa-
W (z)A(z). Note that the mixing and the unmixing;o '\ oric is the two-input-two-output (TITO) system
filters do not necessarily have to be of the same ordﬁg]. It can be used to illustrate the relationship be-
tween the mixing and unmixing system, feed-forward
and feed-back structures, and the difference between
recovering sources versus generating separated sig-

U(z) < nals.
Figure 5 shows a diagram of a TITO mixing and
unmixing system. The signals recorded at the two
X(2) Y(Z)= microphones are described by the following equa-
tions:
Figure 4: Recurrent unmixing (feedback) network z1(2) = s1(2) + a12(2)s2(2) (24)
given by equation (21). The received signals are sep- z2(2) = s2(2) + a21(2)s1(z). (25)
arated by a IIR filter to achieve an estimate of the o . )
source signals. The mixing system is thus given by
_ 1 0,12(2)
A(Z) - |:a21(2) 1 :| ’ (26)

mated sources are then given by the following equay,
tion, where the number of sources equals the number
of receivers: 1 { 1 —ay2(z)

A = T e | —ane) 1

ich has the following inverse

L-1 M (27)

Yn(t) = @n(t) + Z Z Unmiym(t =1); (20) |t the two mixing filtersai»(z) andag; (z) can be
1=0 m=1 identified or estimated ag »(z) andas; (z), the sep-

andu,,,,; are the IIR filter coefficients. This can alsoaratlon system can be implemented as

be written in matrix form yi1(z) = m1(2) — a12(2)z2(2) (28)
L1 Y2(2) = 22(2) — az1(2)z1(2). (29)
y(t) = (1) + lz: Uyt =1 @1 A gufficient FIR separating filter is
=0

X ) ) . o 1 —alg(z)
The architecture of such a network is shown in Fig- W(z) = Ca(2) 1 (30)
ure 4. In thez-domain, (21) can be written as [26]

However, the exact sources are not recovered until
Y(2) =T +U(2) ' X(2), (22) this model sourceg(t) are filtered with the IR filter
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[1 '512(2)521 (Z)]-1

Figure 5: The two mixed sources ands, are mixed by a FIR mixing system. The system can be inverted by
an alternative system, if the estimatgs(z) andas; (z) of the mixing filtersa12(z) anda;2(z) are known.
Further, if the filter[1 — a@12(2)a21 (2)] 7! is stable, the sources can be perfectly reconstructed psvitre
recorded at the microphones.

[1—a12(2)az1(2)]~t. Thus, the mixing process is in- 5. SEPARATION PRINCIPLE
vertible, provided this inverse IIR filter is stable. If a
filtered version of the separated signals is acceptable, . . .
we may disregard the potentially unstable recursi ind source separation algorithms are based on dif-

filter in (27) and limit separation to the FIR inversiof€r€nt assumptions on the sources and the mixing
of the mixing system with (30). system. In general, the sources are assumed to be

independenor at least decorrelated. The separation
criteria can be divided into methods based on higher
order statistics (HOS), and methods based on second
order statistics (SOS). In convolutive separation it is
4. IDENTIFICATION also assumed that sensors receNdinearly inde-
pendent versions of the sources. This means that the

Blind identification deals with the problem of esti-sources should originate from different locations in
mating the coefficients in the mixing proceds. In  space (or at least emit signals into different orienta-
general, this is an ill-posed problem, and no uniqu#ns) and that there are at least as many sources as
solution exists. In order to determine the conditiongensors for separation, i.84 > N.

under which the system is blindly identifiable, as- Instead of spatial diversity a series of algorithms
sumptions about the mixing process and the inpatake strong assumptions on the statistics of the
data are necessary. Even though the mixing parasources. For instance, they may require that sources
eters are known, it does not imply that the source® not overlap in the time-frequency domain, utiliz-
can be recovered. Blind identification of the sourceng therefore a form o$parsenesi the data. Sim-
refers to the exact recovery of sources. Therefore oitaly, some algorithms for acoustic mixtures exploit
should distinguish between the conditions required tegularity in the sources such as common onset, har-
identify the mixing system and the conditions neamonic structure, etc. These methods are motivated
essary to identify the sources. The limitations foby the present understanding on the grouping prin-
the exact recovery of sources when the mixing fikeiples of auditory perception commonly referred to
ters are known are discussed in [30, 11, 31]. Foras “Auditory Scene Analysis”. In radio communi-
recent review on identification of acoustic systemsations a reasonable assumption on the sources is
see [32]. This review considers single and multieyclo-stationarity (see Section 5.2.3) or the fact that
ple input-output systems for the case of complete§ource signals take on only discrete values. By us-
known sources as well as blind identification, wher@g such strong assumptions on the source statistics
both the sources and the mixing channels are uihis sometimes possible to relax the conditions on
known. the number of sensors, eyl < N. The different
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Table 2: Assumptions made for separation

N<M N=M N>M
e Subspace methods e Asymmetric sources by 2nd and 3rd order cumulants Non-stationary,
[25]. [33] column-wise co-

prime sources [34]

e Reduction of prob-| e Separation criteria based on SOS and HO2Afer2 | e¢  Cross-cumulants
lem to instantaneoug system [41] [42, 43]

mixture [35, 36, 37,
25, 38, 39, 40]

e Uncorrelated sources with distinct power spectra [44]e Sparseness in time
and frequency [45, 46
47]

e 2 x 2, temporally colored sources [48]

e Cumulants of order> 2, ML principle [49].
e Known cross filters [41]

e 2 x 2, each with different correlation [50, 51], ex-
tended toM x M in [52]

e Non-linear odd functions [53, 26, 54, 55, 56, 57, 5§
e Non-linearity approximating the cdf see e.g. [59]

—

criteria for separation are summarized in Table 5. fourth order cross-moments or second and fourth or-
der cross-cumulants. Whereas off-diagonal elements
) o of cross-cumulants vanish for independent signals the
5.1. Higher Order Statistics same is not true for all cross-moments [61]. Source
. . . _.._separation based on cumulants has been used by sev-
Source separation based on higher order statistic |£| authors. Separation of convolutive mixtures by

t_)ased on the assumption that the sources are stalis, s of fourth order cumulants has been addressed
tically independent. Many algorithms are based %[62 63, 41, 64, 65, 66, 67, 68, 61, 69, 70, 71]. In
minimizing second {:md fourth order dependenqe b 2 73;1 74], th’e JADE’ aIg,oritr,lm f’or cbmélex:valued
tween the .model signals. A way to express ind ignals [75] was applied in the frequency domain in
pendence is that all the cross-moments between er to separate convolved source signals. Other
model sources are zero, i.e.: cumulant-based algorithms in the frequency domain
are given in [76, 77]. Second and third order cu-
’ — ﬁ =
Elyn(®)% yn(t =7)°] =0 mulants have been used by Ye et al. (2003) [33] for
n#n' a,f={1,2,...},V7, separation of asymmetric signals. Other algorithms
o _ based on higher order cumulants can be found in
where E[-] denotes the statistical expectation. Suq7g, 79]. For separation of more sources than sen-
cessful separation using higher order moments reors, cumulant-based approaches have been proposed
quires that the underlying sources are non-Gaussign[go, 70]. Another popular 4th-order measure of
(with the exception of at most one), since Gaussiaibn-Gaussianity i&urtosis Separation of convolu-

sources have zero higher cumulants [60] and therg@re sources based on kurtosis has been addressed in
fore equations (31) are trivially satisfied without profg1, 82, 83].
viding useful conditions.

51.1. 4th-order statistic 5.1.2. Non-linear cross-moments

It is not necessary to minimize all cross-moment80me algorithms apply higher order statistics for sep-
in order to achieve separation. Many algorithmaration of convolutive sources indirectly using non-
are based on minimization of second and fourth olinear functions by requiring:

der dependence between the model source signals.

This minimization can either be based on second and E[f(yn(t),g9(yn (t —7))] = 0. (31)
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Here f(-) andg(-) are odd non-linear functions. Thebe written as

Taylor expansion of these functions captures higher

order moments and this is found sufficient for sep- p(y) = Hp(yn), (32)
aration of convolutive mixtures. This approach was n

among of the first for separation of convolutive mix-

tures [53] extending an instantaneous blind separBhis is equivalent to stating that model sourggs
tion algorithm by Herault and Jutten (H-J) [84]. Indo not carry mutual information. Information the-
Back and Tsoi (1994) [85], the H-J algorithm was aperetic methods for source separation are based on
plied in the frequency domain, and this approach wasaximizing the entropy in each variable. Maximum
further developed in [86]. In the time domain, theentropy is obtained when the sum of the entropy of
approach of using non-linear odd functions has beeach variabley,, equals the total joint-entropy ig.
used by Nguyen Thi and Jutten (1995) [26]. Thein this limit variables do not carry any mutual in-
present a group of TITQ(x 2) algorithms based on formation and are hence mutually independent [96].
4th order cumulants, non-linear odd functions, an®l well-known algorithm based on this idea is the
second and fourth order cross-moments. This algfomax algorithm by Bell and Sejnowski (1995)
rithm has been further examined by Serviere (19987] which was significantly improved in conver-
[54], and it has also been used by Ypma et al. (200@¥nce speed by the natural gradient method of Amari
[55]. In Cruces and Castedo (1998) [87] a separati¢d8]. The Infomax algorithm can also be derived
algorithm can be found, which can be regarded agdirectly from model equation (32) using Maximum
generalization of previous results from [26, 88]. InLikelihood [99], or equivalently, using the Kullback-
Li and Sejnowski (1995) [89], the H-J algorithm has-eibler divergence between the empirical distribution
been used to determine the delays in a beamformand the independence model [100].

The H-J algorithm has been investigated further by |n all instances it is necessary to assume or model
Charkani and Deville (1997,1999) [90, 57, 58]. Theyhe probability density functiop, (s,,) of the under-
extended the algorithm further to colored sourceging sourcess,. In doing so, one captures higher
[56, 91]. Depending on the distribution of the sourcerder statistics of the data. In fact, most informa-
signals, also optimal choices of non-linear functiongon theoretic algorithms contain expressions rather
were found. For these algorithms, the mixing prosimilar to the non-linear cross-statistics in (31) with
cess is assumed to be minimum-phase, since the H{J,,,) = 9Inp,(y,)/dy,, andg(y,) = y.. The
algorithm is implemented as a feedback network. RDF is either assumed to have a specific form or it is
natural gradient algorithm based on the H-J netwoestimated directly from the recorded data, leading to
has been applied in Choi et al. (2002) [92]. A discugarametricandnon-parametrienethods respectively
sion of the H-J algorithm for convolutive mixtureg16]. In non-parametric methods the PDF is captured
can be found in Berthommier and Choi (2003) [93]implicitly through the available data. Such methods
For separation of two speech signals with two micrdrave been addressed in [101, 102, 103]. However, the
phones, the H-J model fails if the two speakers ak@st majority of convolutive algorithms have been de-
located on the same side, as the appropriate sepafied based on explicit parametric representations of
ing filters can not be implemented without delayinghe PDF.

one of the sources and the FIR filters are constrained Infomax, the most common parametric method,

to be causal. HOS independence obtained by applyas extended to the case of convolutive mixtures
ing antisymmetric non-linear functions has also beqﬂ/ Torkkola (1996) [59] and later by Xi and Reilly

used in [94, 95]. (1997,1999) [104, 105]. Both feed-forward and feed-
back networks were shown. In the frequency domain
5.1.3. Information Theoretic it is necessary to define the PDF for complex vari-

ables. The resulting analytic non-linear functions can
Statistical independence between the source signatsderived with [106, 107]
can also be expressed in terms of the probability den-
sity functions (PDF). If the model sourcgsare in- 8lnp(|Y|)€j arg(Y)

dependent, the joint probability density function can fY) = aY| ’ (33)
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wherep(Y') is the probability density of the model[143, 144, 145, 135, 137].

sourceY € C. Some algorithms assume circular A strong prior on the signal can also be realized

sources in the complex domain, while other alggsia Hidden Markov Models (HMMs). HMMs can

rithms have been proposed that specifically assu@orporate state transition probabilities of different

non-circular sources [108, 109]. sounds [136]. A disadvantage of HMMs is that they
The performance of the algorithm depends teequire prior training and they carry a high compu-

a certain degree on the selected PDF. It is impad@tional cost [146]. HMMs have also been used in

tant to determine if the data has super-Gaussian [@47, 148].

sub-Gaussian distributions. For speech commonly a

Laplace distribution is used. The non-linearity is als -

known as the Bussgang non-linearity [110]. A cong'z' Second Order Statistics

nection between the Bussgang blind equalization g; 5o me cases, separation can be based on second or-
gorithms and the Infomax algorithmiis given in Lamyg, tatistics (SOS) by requiring only non-correlated

bert and Bell (1997) [111]. Multichannel blind de-g e rather then the stronger condition of inde-

convolution algorithms.derived from the Bussgangandence. Instead of assumptions on higher order
approach canbe foundin [112, 23, 111]. These IearE\'atistics these methods make alternate assumptions
ing rules are similar to those derived in Lee et ak,cp a5 the non-stationarity of the sources [149], or
(1997) [113]. a minimum phase mixing system [50]. By itself,
Choi et al. (1999) [114] have proposednan- however, second order conditions are not sufficient
holonomicconstraint for multichannel blind decon-for separation. Sufficient conditions for separation
volution. Non-holonomic means that there are somge given in [150, 15]. The main advantage of SOS
restrictions related to the direction of the update. The that they are less sensitive to noise and outliers
non-holonomic constraint has been applied for boff1 3], and hence require less data for their estimation
a feed-forward and a feedback network. The nopsQ, 150, 151, 34, 152]. The resulting algorithms are

holonomic constraint was applied to allow the natuften also easier to implement and computationally
ral gradient algorithm by Amari et al. (1997) [98]efficient.

to cope with over-determined mixtures. The non-

holonomic constraint has also been used in [115, 116, o o
117, 118, 119, 120, 121, 122]. Some drawbacks in 9-2-1. Minimum-phase mixing
terms of stability and convergence in particular whegr13

there are large power fluctuations within each signS own that two source sianals can be separated
(e.g. for speech) have been addressed in [115]. S S9 o€ sep
by decorrelation if the mixing system is minimum

_ Many algorithms have been derived from (32)hase. The FIR coupling filters have to be strictly
directly using Maximum Likelihood (ML) [123]. c5ysal and their inverses stable. The condition for
The ML approach has been applied in [124, 12§tability is given as|aia(z)asi(z)] < 1, where
126, 127, 128, 129, 99, 130, 131, 132]. A mEthoglg(Z) andas; () are the two coupling filters (see
closely related to the ML is the Maximum a Posterjq re 5). These conditions are not met if the mixing
r|or|_(MAP) methods. In MAP methods, prior |nfor-process is non-minimum phase [153]. Algorithms
mation about the parameters of the model are takghseq on second order statistic assuming minimum-
into account. MAP has been used in [23, 133, 13ﬁhase mixing can be found in [154, 38, 39, 51, 50,
135, 136, 137, 138, 139, 140, 141]. 155, 156, 52, 157, 158].

The convolutive blind source separation problem
has also been expressed in a Bayesian formulation ) )
[142]. The advantage of a Bayesian formulation is ©-2-2. Non-stationarity
that one can derive an optimal, possibly non-line , :
estimator of the sources enabling the estimation aérPe fact that many signals are non-stationary

. as been successfully used for source separation.
more sources than the number of available sensogs y P

. : jeech signals in particular can be considered non-
The Bayesian framework has also been applied Isrtgltionary on time scales beyond 10 ms [159, 160]).

rly work by Gerven and Compernolle [88] had
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The temporally varying statistics of non-stationaritgstimated at different timesdiffer and provide in-
sources provides additional information for separalependent conditions on the filteW¥ (w). This al-
tion. Changing locations of the sources, on thgorithm has been successfully used on speech sig-
other hand, generally complicate source separatioals [172, 173] and investigated further by Ikram and
as the mixing channel changes in time. Separatidforgan (2000, 2001, 2002, 2005) [174, 175, 176]
based on decorrelation of non-stationary signals was determine the trade-offs between filter length, es-
proposed by Weinstein et al. (1993) [29] who sugimation accuracy, and stationarity times. Long fil-
gested that minimizing cross-powers estimated duers are required to cope with long reverberation
ing different stationarity times should give sufficientimes of typical room acoustics, and increasing fil-
conditions for separation. Wu and Principe (1999¢r length also reduces the error of using the cir-
proposed a corresponding joint diagonalization algoular convolution in (35) (see Section 6.3). How-
rithm [103, 161] extending an earlier method devekver, long filters increase the number of parameters
oped for instantaneous mixtures [162]. Kawamotim be estimated and extend the effective window of
et al. (1998) extend an earlier method [163] for intime required for estimating cross-powers thereby
stantaneous mixtures to the case of convolutive migetentially loosing the benefit of non-stationarity of
tures in the time domain [164, 153] and frequencspeech signals. A number of variations of this al-
domain [165]. This approach has also been employgdrithm have been proposed subsequently, includ-
in [166, 167, 168, 169] and an adaptive algorithring time domain implementations [177, 178, 179],
was suggested by Aichner et al. (2003) [170]. Bwnd other method that incorporate additional assump-
combining this approach with a constraint based dions [180, 174, 181, 182, 183, 184, 185, 186, 187].
whiteness, the performance can be further improvédrecursive version of the algorithm was given in
[171]. Ding et al. (2003) [188]. In Robeldo-Arnuncio and

Note that not all of these papers have used sltang (2005) [189], a version with non-causal sep-
multaneous decorrelation, yet, to provide sufficierfation filters was suggested. Based on a differ-
second-order constraints it is necessary to minimi2&t way to express (35), Wang et al. (2003, 2004,
multiple cross-correlations simultaneously. An ef2005) [190, 191, 148, 192] propose a slightly dif-
fective frequency domain algorithm for simultaneoufgrent separation criterion, that leads to a faster con-
diagonalization was proposed by Parra and Spen¢@gence than the original algorithm by Parra and
(2000) [149]. Second-order statistics in the freSpence (2000) [149].
guency domain is captured by the cross-power spec- Other methods that exploit non-stationarity have
trum, been derived by extending the algorithm of Molgedey

and Schuster (1994) [193] to the convolutive case
R,(w,t) = FE [Y(w,t)YH(w,t)} (34) [194, 195] including a common two step approach
i of 'sphering’ and rotation [159, 196, 197, 198, 199].
= W(w)Ryo(w, )W (w), (35) (Any matrix, for instance matri¥%, can be repre-
where the expectations are estimated around soﬁﬁ?ted as a concatenation of a rotation with subse-
time ¢t. The goal is to minimize the cross-powers offuent scaling (W.h'Ch can pe used to remove second-
the off-diagonal of this matrix, €.g. by minimizing: order moments, i.e. sphering) and an additional rota-

tion).
J:ZHRyy(wJ)*Ay(wat)Hza (36) In Yin and Sommen (1999) [160] a source
o separation algorithm was presented based on non-

stationarity and a model of the direct path. The re-
where A, (w,t) is an estimate of the cross-powererberant signal paths are considered as noise. A
spectrum of the model sources and is assumed tothiie domain decorrelation algorithm based on differ-
diagonal. This cost function simultaneously capturest cross-correlations at different time lags is given
multiple times and multiple frequencies, and has @ Ahmed et al. (1999) [200]. In Yin and Som-
be minimized with respect t8 (w) and A,(w,t) men (2000) [201] the cost function is based on min-
subject to some normalization constraint. If thémization of the power spectral density between the
source signals are non-stationary the cross-powers
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source estimates. The model is simplified by assuris-used as additional criteria to improve separation
ing that the acoustic transfer function between thgerformance.

source and closely spaced microphones is similar.

The simplified model requires fewer computations. .

An algorithm based on joint diagonalization is sug- 9.-2.4. Non-whiteness

gested in Rahbar and Reilly (2003, 2005) [152, 152]. . . . .

This approach exploits the spectral correlation b Jany natural signals, in particular acoustic signals,

tween the adjacent frequency bins in addition to nofif® temporally correlated. Capturing this property

stationarity. Also in [202, 203] a diagonalization cri-&n be beneficial for separation. For instance, captur-

terion based on non-stationarity has been used. ing temporal correlations of the signals can be used

to reduce a convolutive problem to an instantaneous
In Olsson and Hansen (2004) [139, 138] the no nixture problem, which is then solved using addi-

stationary assumption has been included in a sta Bnhal properties of the signal [35, 25, 36, 37, 38, 39,
space Kalman filter model. ~40]. In contrast to instantaneous separation where
In Buchner et al. (2003) [204], an algorithmyecorrelation may suffice for non-white signals, for
that uses a combination of non-stationarity, noRspnyolutive separation additional conditions on the
Gaussianity and non-whiteness has been sugges@gtem or the sources are required. For instance, Mei
This has also been applied in [205, 206, 207]. Igng Yin (2004) [223] suggest that decorrelation is

the case of more source signals than sensors, anglfficient provided the sources are an ARMA pro-
gorithm based on non-stationarity has also been sygssg.

gested [70]. In this approach, it is possible to sep-
arate three signals: a mixture of two non-stationary
source signals with short-time stationarity and orn3. Sparseness in the Time/Frequency domain
signal which is long-term stationary. Other algo-
rithms based on the non-stationary assumptions climerous source separation applications are limited
be found in [208, 209, 210, 211, 212, 213, 214]. by the number of available microphones. Itis in not
always guaranteed that the number of sources is less
than or equal to the number of sensors. With linear
5.2.3. Cyclo-stationarity filters it is in general not possible to remove more
) . _ thanM — 1 sources from the signal. By using non-
If a signal is assumed to be cyclo-stationary, the sigpnear techniques, in contrast, it may be possible to
nals’ cumulative distribution is invariant with respeckyiract a larger number of source signals. One tech-
to time shifts of some period’ or any integer mul- pigue to separate more sources than sensors is based
tiples of T'. Further, a signal is said to be widegp sparseness. If the source signals do not overlap in
sense cyclo-stationary if the signals mean and aui@e time-frequency (T-F) domain it is possible to sep-
correlation is invariant to shifts of some peri@tor 5rate them. A mask can be applied in the T-F domain

any integer multiples of" [215], i.e.: to attenuate interfering signal energy while preserv-
ing T-F bins where the signal of interest is dominant.
E[s(t)] = Els(t+ oT)] (37) oftena binary mask is used giving perceptually satis-

E[s(t1),s(t2)] = E[s(t1 +aT),s(t2 + oT\B8) factory results even for partially overlapping sources
[224, 225]. These methods work well for anechoic
An example of a cyclo-stationary signal is a ranmixtures (delay-only) [226]. However, under rever-
dom amplitude sinusoidal signal. Many communiberant conditions, the T-F representation of the sig-
cation signals have the property of cyclo-stationaritpals is less sparse. In a mildly reverberant environ-
and voiced speech is sometimes considered appraxent (I < 200 ms) under-determined sources have
imately cyclo-stationary [216]. This property hadveen separated with a combination of independent
been used explicitly to recover mixed source in e.gomponent analysis (ICA) and T-F masking [47].
[216, 217, 218, 55, 219, 220, 34, 118, 221, 222]. Ifhe first N — M signals are removed from the mix-
[220] cyclo-stationarity is used to solve the frequendyres by applying a T-F mask estimated from the di-
permutation problem (see Section 6.1) and in [118]tiection of arrival of the signal (cf. Section 7.1). The
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remainingM sources are separated by convention&l4. Priors from Auditory Scene Analysis and
BSS techniques. When a binary mask is applied toRsycho-Acoustics

signal, artifacts (musical noise) are often introduced.

In order to reduce the musical noise, smooth mask®me methods rely on insights gained from studies of
have been proposed [227, 47]. the auditory system. The work by Bergman [241] on

Sparseness has also been used as a post proc%ggi_tory scene analysis characterized the cues used
ing step. In [77], a binary mask has been applied gg humans to segregate so_und sources. This has mo-
post-processing to a standard BSS algorithm. TiHated computational algorithms that are referred to
mask is determined by comparison of the magn®S qomputational auditory scene ana!ysis (CASA).
tude of the outputs of the BSS algorithm. Hereby 50T instance, the phenomenon of auditory masking,
higher signal to interference ratio is obtained. This®:» the dominantperception of the signal with largest
method was further developed by Pedersen et §l9nal power has motivated the use of T-F masking
(2005, 2006) in order to segregate under-determinfQf many years [242]. In addition to the direct T-F
mixtures [228, 229]. Because the T-F mask can grasking methods outllneq ak_)ove, separated sources
applied to a single microphone signal, the segregatB@'e Peen enhanced by filtering based on perceptual
signals can be maintained as e.g. stereo signals. masking and auditory hearing thresholds [191, 243].

Most of the T-F masking methods do not effec- Another important perceptual cue that has been
tively utilize information from more than two micro- US€d in source separation is pitch frequency, which
phones because the T-F masks are applied to a sin%%'ca”y differs for simultaneous speakers [135, 244,
microphone signal. However, some methods hagé>: 137, 138, 147]. In Tordini and Piazza (2000)

been proposed that utilize information from mor&L35] pitch is extracted from the signals and used
than two microphones [225, 230]. in a Bayesian framework. During unvoiced speech,
Clustering has also been used for sparse sou?’t‘:’giCh lacks a well-defined pitch they use an ordi-
separation [231, 232, 233, 234, 140, 141, 235, 23%ary bI.|nd aIgonthm. In order to st_aparate two sig-
ngls with one microphone, Gandhi and Hasegawa-

230]. If the sources are projected into a space whe Shnson (2004) [137] have proposed a state-space
each source groups together, the source separafion

problem can be solved with clustering algorithms. igeparation approach with strorgpriori informa-

| . ; . . Both pitch and Mel-frequency cepstral coeffi-
46, 45] the mask is determined by clusterin wnlﬂpn ) . ;
Eespect]to amplitude and delay diffeyrences. 9 Wiients (MFCC) were used in their method. A pitch

) ’ . codebook as well as an MFCC codebook have to be
In particular when extracting sources from_ SINknown in advance. Olsson and Hansen [138] have
gle channels sparseness becomes an essential C[jlgsq 4 Hidden-Markov Model, where the sequence of
rion. Pearlmutter and Zador (2004) [237] use stronghssible states is limited by the pitch frequency that is
prior information on the source statistic in additioRyyiracted in the process. As a pre-processing step to
to knowledge of the head-related transfer functiong,,rce separation, Furukawa et al. (2003) [245] use

(HRTF). An a priori dictionary of the source sig- yiich in order to determine the number of source sig-
nals as perceived through a HRTF makes it possibigs.

to separate source signals with only a single micro-

phone. In [238]a priori knowledge is used to CON" censors is given in Barros et al. (2002) [244]. They

struct basis functions for each source signals to S€d 1 bined ICA with CASA techniques such as pitch

regate different musical signals from their mixture, X . o . .
Similarly, in [239, 240] sparseness has been assumt([:%ckmg and auditory filtering. Auditory filter banks

in order to extract different music instruments are used in order to model the cochlea. In [244]
' wavelet filtering has been used for auditory filter-

Techniques based on Sparseness are further gigs Another commonly used auditory filter bank is
cussed in the survey by O'Grady et al. (2005) [21]. {he Gammatone filter-bank (see e.g. Patterson (1994)
[246] or [247, 248]). In Roman et al. (2003) [248]
binaural cues have been used to segregate sound
sources, whereby inter-aural time and inter-aural in-
tensity differences (ITD, 1ID) have been used to

A method for separation of more sources than
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group the source signals. a separate problem, the source signals in each fre-
quency bin may be estimated with an arbitrary per-
6. TIME VERSUS FREQUENCY DoMAIN ~ Mutation and scaling, i.e.:

_ ) _ Y(w,t) = P(w)A(w)S(w,t). (41)
The blind source separation problem can either be ex-
pressed in the time domain If the permutationP (w) is not consistent across fre-
1 quency then converting the signal back to the time
domain will combine contributions from different
t) = Wix(t —1 39 . . .
y(t) Z G ) (39) sources into a single channel, and thus annihilate the

=0 separation achieved in the frequency domain. An

or in the frequency domain overview of the solutions to this permutation prob-
lem is given in Section 7. The scaling indeterminacy
Y(w,t) = W(w) X (w,t). (40) ateach frequency — arbitrary solution ffw) — will

. . ] _result in an overall filtering of the sources. Hence,
A survey of frequency-domain BSS is provided ireven for perfect separation the separated sources may

[22]. In Nishikawa et al. (2003) [249] the advantagegave a different frequency spectrum than the original
and disadvantages of the time and frequency domajgyrces.

approaches have been compared. This is summarized
in Table 3.

An advantage of blind source separation in th@2. Time-Frequency Algorithms
frequency domain is that the separation problem cagn . ) . o
be decomposed into smaller problems for each fr Igorithms that define a separation criteria in the

quency bin in addition to the significant gains in comiMé domain do typically not exhibit frequency per-

putational efficiency. The convolutive mixture prob—ml“'t‘?jt'.On Erofblems, eve; when Cmeutgtlonfs arehexe-
lem is reduced to “instantaneous” mixtures for eactHt€d In the frequency domain. A number of authors

frequency. Although this simplifies the task of cont ave therefore used time-domain criteria combined

volutive separation a set of new problems arise: THY! frequency domain implementations that speed

frequency domain signals obtained from the DFT af# computations. [254, 113, 255, 256, 121, 101, 257,
complex-valued. Not all instantaneous separation 479, 171]. Howgver, note that secqnd—order criteria
gorithms are designed for complex-valued signald12y e susceptible to the permutation problem even
Consequently, it is necessary to modify existing algd-they are formulated in the time domain [184].
rithms correspondingly [250, 251, 252, 5]. Another
problem that may arise in the frequency domain ig 5
that there are no longer enough data points available
to evaluate statistical independence [131]. For somMghen the convolutive mixture in the time domain is
algorithms [149] it is necessary that the frame sizgcpressed in the frequency domain by the DFT, the

T of the DFT is much longer than the length of theonyolution becomes separate multiplications, i.e.:
room impulse responsE (see Section 6.3). Long

frames result in fewer data samples per frequencyg () = A x s(t) «—— X (w,t) ~ A(w)S(w, t).

[131], which complicates the estimation of the in- (42)

dependence criteria. A method that copes with thisowever, this is only an approximation which is ex-

issue has been proposed by Serviere (2004) [253].act only for periodics(t) with period T, or equiva-
lently, if the time convolution igircular:

Circularity Problem

6.1. Frequency Permutations

w(t) = A® s(t) — X(w) = A(w)S(w). (43)
Another problem that arises in the frequency domain
is the permutation and scaling ambiguity. If the corfFor alinear convolutionerrors occur at the frame
volutive problem is treated for each frequency asoundary, which are conventionally corrected with
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Table 3: Advantages and disadvantages for separation itinfeedomain or separation in the frequency

domain.

Advantages

Time Domain

Disadvantages

Advantages

Frequency Domain

Disadvantages

e The independence ag
sumption holds better fo
full-band signals

e Possible high conver
gence near the optimg
point

- ¢ Degradation of conver

gence in strong reverber

ant environment

e Many parameters nee

| to be adjusted for each it

eration step

e The convolutive mix-
- ture can be transforme
into instantaneous mix
ture problems for each
frequency bin
e Due to the FFT, com-
putations are saved con
pared to an implementa

e For each frequency
i band, there is a pert

mutation and a scaling

ambiguity which needs tg

be solved

e Problem with too few
- samples in each frequeng
- band may cause the inde

h

tion in the time domain pendence assumption 1
fail

e Circular convolution de-
teriorates the separatio
performance.

e Inversion of W is not

guaranteed

[]

e Convergence is faster

the overlap-save method. However, a correct overlapecessary to express the Toeplitz matrices in circu-

save algorithm is difficult to implement when comiant Toeplitz form [23, 260, 261, 195, 121, 171]. A

puting cross-powers such as in (35) and typically theethod that avoids the circularity effects but main-

approximate expression (42) is assumed. tains the computational efficiency of the FFT has
The problem of linear/circular convolution hag®een presented in [262]. Further discussion on the

been addressed by several authors [62, 149, 258, 1¢itcularity problem can be found in [189].

121]. Parra and Spence (2000) [149] note that the

frequency domain approximation is satisfactory pr A

vided that the DFT lengtil" is significantly larger .4, Subband filtering

than the length of the mixing channels. In order tthstead of the conventional linear Fourier domain
reduce the errors due to the circular convolution, thgyme authors have used subband processing. In [142]
filters should be at least two times the length of thg |ong time-domain filter is replaced by a set of short
mixing filters [131, 176]. independent subband-filters, which results in faster

To handle long impulse responses in the freeonvergence as compared to the full-band methods
guency domain, a frequency model which is equij214]. Different filter lengths for each subband fil-
alent to the time domain linear convolution has beasr have also been proposed motivated by the vary-
proposed in [253]. When the time domain filter exing reverberation time of different frequencies (typ-
tends beyond the analysis window the frequency rieally low-frequencies have a longer reverberation
sponse is under-sampled [258, 22]. These errors aime) [263].
be mitigated by spectral smoothing or equivalently by
windowing in the time domain. According to [259]
the circularity problem becomes more severe when /- THE PERMUTATION AMBIGUITY
the number of sources increases. o . .

Time domain algorithms are often derived usinghe majority of algorithms operate in the frequency
Toeplitz matrices. In order to decrease the compled9Main due to the gains in computational efficiency,
ity and improve computational speed, some calcul¥hich are important in _partlcular for acoustic mix-
tions involving Toeplitz matrices are performed ustures that require long filters. However, in frequency

ing the fast-Fourier transform. For that purpose, it {S0main algorithms the challenge is to solve the per-
mutation ambiguity, i.e., to make the permutation
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matrix P(w) independent of frequency. Especialljpetween the permutation alignment and the spectral
when the number of sources and sensors is large, resolution of the filters. Moreover, restricting the fil-
covering consistent permutations is a severe probletar length may be problematic in reverberant environ-
With N model sources there a®¥! possible per- ments where long separation filters are required. As
mutations in each frequency bin. Many frequencg solution they have suggest to relax the constraint on
domain algorithms providad hocsolutions, which filter length after the algorithm converges to satisfac-
solve the permutation ambiguity only partially, thusory solutions [176].

requiring a combination of different methods. Ta-  Another suggestion is to assess continuity after
ble 4 summarizes different approaches. They can Bgcounting for the arbitrary scaling ambiguity. To do
grouped into two categories so, the separation matrix can be normalized as pro-

) ) o posed in [265]:
1. Consistency of the filter coefficients

2. Consistency of the spectrum of the recovered W(w) = W(w)A(w), (44)
signals where A(w) is a diagonal matrix andV (w) is a

The first exploits prior knowledge about the mixingnatrix with unit diagonal. The elements & (w),

filters, and the second uses prior knowledge aboWt,,,, (w) are the ratios between the filters and these

the sources. Within each group the methods differ Bre used to assess continuity across frequencies [48,

the way consistency across frequency is establish@0].

varying sometimes in the metric they use to measure |pstead of restricting thenmixingfilters, Pham

distancebetween solutions at different fl‘equenCieS.et a|_ (2003) [202] have Suggested to require Conti_

nuity in themixingfilters, which is reasonable as the

mixing process will typically have a shorter time con-

stant. A specific distance measure has been proposed

Different methods have been used to establish cddy Asano et al. (2003) [284, 267]. They suggest to

sistency of filter coefficients across frequency, sudtse the cosine between the filter coefficients of dif-

as constraints on the length of the filters, geometrigrent frequencies; andw,:

information, or consistent initialization of the filter =

weights. a,, (wi)an(w2) (45)

7.1. Consistency of the Filter Coefficients

) _ oS Ay, = T3 ,
Consistency across frequency can be achieved afl (wi)llan(w2)|l

by requiring continuity of filter values in the fre- h is the m'th col ‘A
quency domain. One may do this directly by compa‘r‘yh,erﬁ an(w) is then't hco umn vector of A(w),
ing the filter values of neighboring frequencies afté¥hich is estimated as the pseudo-inversdiofw).

adaptation, and pick the permutation that minimiZMeasuring distance in the space of separation filters

the Euclidean distance between neighboring freque}%ﬁ-ther than mixing filters was also suggested because

cies [269, 74]. Continuity (in a discrete frequenc{'€S€ May better reflect the spacial configuration of
domain) is also expressed as smoothness, which#§ SOUrces [285].

equivalent with a limited temporal support of the fil-  In fact, continuity across frequencies may also be
ters in the time domain. The simplest way to imassessed in terms of the estimated spatial locations
plement such a smoothness constraint is by zef@-sources. Recall that the mixing filters are impulse
padding the time domain filters prior to performingesponses between the source locations and the mi-
the frequency transformation [264]. Equivalentlycrophone locations. Therefore, the parameters of the
one can restrict the frequency domain updates to hay@paration filters should account for the position of
a limited support in the time domain. This methodhe source in space. Hence, if information about the
is explained in Parra et al. [149] and has been us&@nsor location is available it can be used to address
extensively [283, 161, 269, 174, 190, 188, 201, 11#)e permutation problem.

122, 192]. Ikram and Morgan [174, 176] evaluated To understand this, consider the signal that ar-
this constraint and point out that there is a trade-offves at an array of sensors. Assuming a distant
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Table 4: Categorization of approaches to solve the permuatptoblem in the frequency domain.

Class Metric Reference
Consistency of Smooth spectrum [264, 149]
the filter Source locations [265]
coefficients Directivity pattern [266, 175, 73]
Location vectors [267]
DOA [184, 268, 72]
Adjacent matrix distance [269]
Invariances [48]
Split spectrum [270]
Frequency link in update process [127]
Initialization [250, 271]
Moving sources [167]
Vision [148]
Consistency of Amplitude modulation [159, 197, 272, 126, 203]
the spectrum Pitch [135, 147]
of the recovered Psychoacoustics [243, 243]
signals Fundamental frequency [244]
Cyclo-stationarity [273]
Periodic signals [221]
Cross-correlation [62, 274, 209]
Cross-cumulants [275]
Kurtosis [86]
Source distribution [276, 134]
Multidimensional prior [277, 278]
Clustering [230, 279]
Time-frequency FIR polynomial [23, 254, 113, 255]
information TD cost function [178]
Apply ICA to whole spectrogram [280]
Combined [106, 258, 281, 282]
approaches

source in an reverberation-free environment the sigh. (1993) [286].

nal approximates a plane-wave. If the plane-waves To be specific, each row in the separation ma-
arrives at an angle to the microphone array it wilkrix W () defines alirectivity pattern and therefore
impinge on each microphone with a certain delagach row can be thought of as a separate beamformer.
(see Figure 6). This delay is given by the micro- This directivity pattern is determined by the transfer
phone distancé, the velocity of the wave, and the function between the source and the filter output. The
direction-of-arrival (DOA) angl®: magnitude response of theth output is given by

T= %sin@, (46) ro(w,0) = |wf2’(w)a(w,0)|27 (47)

Filters that compensate for this delay can add the mitherea(w) is anM x 1 vector representing the prop-
crophone signals constructively (or destructively) tagation of a distant source with DGAto the sensor
produce a maximum (or minimum) response in tharray. When\/ sensors are available, it is possible to
DOA. Hence, the precise delay in filters (which irplace M — 1 nulls in each of the\/ directivity pat-
the frequency domain correspond to precise phase temns i.e., directions from which the arriving signal
lationships) establishes a relationship between diffés canceled out. In an ideal, reverberation-free en-
ent frequencies that can be used to identify corregironment separation is achieved if these nulls point
permutations. This was first considered by Soon &t the directions of the interfering sources. The lo-
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mated with the MuSIC algorithm [292]. A subspace
method has been used in order to avoid constraints
on the number of sensors. Knaak et al. (2003) [222]
include DOA information as a part of the BSS algo-
rithm in order to avoid the permutation. Although all
these methods assume a reverberation-free environ-
ment they give reasonable results in reverberant en-
vironments as long as the source has a strong direct
path to the sensors.

Two other methods also utilize geometry. In the
case of moving sources, where only one source is
moving, the permutation can be resolved by noting
that only one of the parameters in the separation ma-
trix changes [167]. If visual cues are available, they

Figure 6: A sensor array consisting 8f sensors may also be used to solve the permutation ambiguity
linearly distributed with the distancé to the adja- [148].
cent sensor. The sensors are placed in a free field. Instead of using geometric information as a sep-
A source signal is considered coming from a poirdrate step to solve the permutation problem Parra
source of a distance away from the sensor array.and Alvino (2002) include geometric information di-
The source signal is placed in the far-field, ize>> rectly into the cost function [184, 185]. This ap-
d. Therefore the incident wave is planar and the aproach has been applied to microphone arrays under
rival anglef is the same for all the sensors. reverberant conditions [187]. Baumann et al. (2003)
[72] have also suggested a cost function, which in-
cludes the DOA estimation. The arrival angles of the
signals are found iteratively and included in the sep-
cations of these nulls, as they may be identified kytation criterion. Baumann et al. [73] also suggest a
the separation algorithm, can be used to resolve thfaximum likelihood approach to solve the permuta-
permutation ambiguity [266, 287, 288, 81, 77, 13%jon problem. Given the probability of a permuted or
289, 290]. These techniques draw strong paralled®n-permuted solution as function of the estimated
between source separation solutions Bedmform- zero directions, the most likely permutation is found.

ing. The DOA’; do not have to be known in ad-  gtanda et al. (2003) [270] have proposed a
vance and can instead be extracted from the resyffaihod to reduce the permutation problem based on
ing separation filters. Note, however, that the ability, o split spectral difference, and the assumption that
to identify source locations is limited by the physicgach source is closer to one microphone. The split

of wave propagation and sampling: distant micraspecirum is obtained when each of the separated sig-

phones will lead to grading lobes which will conyy5i5 are filtered by the estimated mixing channels.
fuse the source locations, while small aperture lim- _. . . .
Finally, for iterative update algorithms a proper

its spatial resolution at low frequencies. lkram and... .. " : . . ]
Morgan (2002) [175] extend the idea of Kurita et al|‘n|t|aI|zat|on of the separation filters can re

(2000) [266] to the case where the sensor spaceélélt in consistent permutations across f_requenmes.
: maragdis [250] proposed to estimate filter values
wider than one half of the wavelength. Source loca-

) . ; . s%quentially starting with low frequencies and ini-
tions are estimated at lower frequencies, which do "QaJizing filter values with the results of the previous
exhibit grating lobes. These estimates are then u ed g P

to determine the correct nulls for the higher frequenc-’wer. frequency. This will tend to select solutions

: . with filters that are smooth in the frequency domain,
cies and hereby the correct permutations. In ordgF equivalently, filters that are short in the time do-
to resolve permutations when sources arrive fromt%eain Filter vélues mav also be initialized to sim-
same direction, Mukai et al. (2004) [291] use a near; _, * Y

field model. Mitianoudis and Davies (2004) [268 le beamforming filters that point to estimated source

suggested frequency alignment based on DOA esg_catlons. The separation algorithm will then tend
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to converge to solutions with the same target source % &
across all frequencies [184, 271]. W M
7.2. Consistency of the Spectrum of the Recov- LM

ered Signals ; ;
Some solutions to the permutation ambiguity are ¢« l @ l
based on the properties of speech. Speech signals %
have strong correlations across frequency due to a | ,
common amplitude modulation.

At the coarsest level the power envelope of th
speech signal changes depending on whether there r r

is speech or silence, and within speech segments

the power of the carrier signal induces correlatiorsigure 7: For speech signals, it is possible to esti-
among the amplitude of different frequencies. A simmate the permutation matrix by using information on

ilar argument can be made for other natural soundse envelope of the speech signal (amplitude mod-
Thus, it is fair to assumed that natural acoustic sigiation). Each speech signal has a particular enve-
nals originating from the same source have a cdbpe. Therefore, by comparison with the envelopes

related amplitude envelope for neighboring frequenf the nearby frequencies, it is possible to order the
cies. A method based on this co-modulation progrermuted signals.

erty was proposed by Murata et al. (1998) [159, 196].
The permutations are sorted to maximize the cor-
relation between different envelopes. This is illus-
trated in Figure 7. This method has also been used in Another solution based on amplitude correlation
[293, 198, 199, 287, 263, 203]. Rahbar and Reillip the so-called Amplitude Modulation Decorrelation
(2001, 2005) [209, 152] suggest efficient methodéMDecor)-algorithm presented by Anemdller and

for finding the correct permutations based on croskollmeier (2000, 2001) [272, 126]. They propose to
frequency correlations. solve, the source separation problem and the permu-

Asano and lkeda (2000) [294] report that théatiqn problemg simultangously. An amplitude m‘.)d'
method sometimes fails if the envelopes of the di llation correlation is defined, where the correlation

ferent source signals are similar. They propose tiRgtween the ;r/equency cg;nnebar_]dwl |0f tlhe t(\j/vo
following function to be maximized in order to esti-SPectrogram¥’, (w, ) and¥’(w, ) is calculated as

mate the permutation matrix: c(Ya(w, t), Y(,(w, f,)) _

N T w1 ) . E[lY a(w, )Y (w, )]
P(W):argigl%z_:Z[P(w)y(w,t)] y(j. 1), —EB[|Y o(w, )| B[ Y b (w, 1)]]. (49)

_ (48) This correlation can be computed for all combina-
wherey is the power envelope of and P(w) is  tions of frequencies. This results in a square matrix
the permutation matrix. This approach has also begn(ym Y,) with sizes equal to the number of fre-
adopted by Peterson and Kadambe (2003) [232]. Kggencies in the spectrogram, whdséth element is
mata et al. (2004) [282] report that the correlatioegg,en by (49). Since the unmixed signgi&) have to

between envelopes of different frequency channglg independent, the following decorrelation property
may be small, if the frequencies are too far from eaghj st be fulfilled

other. Anemiller and Gramms (1999) [127] avoid

the permutations since the different frequencies are Cn(Y,,Yy) =0 Va#b,VEk,L (50)
linked in the update process. This is done by seri-

ally switching from low to high frequency compo-This principle also solves the permutation ambiguity.
nents while updating. The source separation algorithm is then based on the
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minimization of a cost function given by the Frobe- Non-speech signals typically also have properties
nius norm of the amplitude modulation correlationvhich can be exploited. Two proposals for solving
matrix. the permutation in the case of cyclo-stationary sig-
A priori knowledge about the source distribunals can be found in Antoni et al. (2005) [273]. For
tions has also been used to determine the corré@@chine acoustics, the permutations can be solved
permutations. Based on assumptions of Laplaci@&sily since machine signals are (quasi) periodic.
distributed sources, Mitianopudis and Davies (2001 his can be employed to find the right component in
2002) [251, 276, 134] propose a likelihood ratio teghe output vector [221].
to test which permutation is most likely. A time-  Continuity of the frequency spectra has been used
dependent function that imposes frequency couplilyy Capdevielle et al. (1995) [62] to solve the permu-
between frequency bins is also introduced. Based tation ambiguity. The idea is to consider the slid-
the same principle, the method has been extendedrtg Fourier transform with a delay of one point. The
more than two sources by Rahbar and Reilly (2008)oss correlation between different sources are zero
[152]. A hierarchical sorting is used in order todue to the independence assumption. Hence, when
avoid errors introduced at a single frequency. Thifie cross correlation is maximized, the output be-
approach has been adopted in Mertins and Russmhgs to the same source. This method has also been
(2003) [212]. used by Serviere (2004) [253]. A disadvantage of
Finally, one of the most effective convolutivethis method is that it is computationally very expen-
BSS methods to-date (see Table 5) uses this stafée since the frequency spectrum has to be calcu-
tical relationship of signal powers across frequetated with a window shift of one. A computation-
cies. Rather than solving separate “instantaneoudty less expensive method based on this principle
source separation problems in each frequency ba@s been suggested by Dapena and Serviere (2001)
Kim et al. (2006) [295, 278, 277] propose a mu|t|.[274] The permutation is determined from the so-
dimensional version of the density estimation algdution that maximizes the correlation between only
rithms described in Section 5.1.3. The density funéwo frequencies. If the sources have been whitened
tion captures the power of the entire model sour@s part of separation, the approach by Capdevielle et
rather than the power at individual frequencies. Agl-(1995) [62] does not work. Instead, Kopriva et
a result, the joint-statistics across frequencies are &- (2001) [86] suggest that the permutation can be

fectively captured and the algorithm converges to sétolved by independence tests based on kurtosis. For
isfactory permuta’[ions in each frequency_ the same reason, Mejuto et al. (2000) [275] consider
urth order cross-cumulants of the outputs at all fre-

Other properties of speech have also been sy .
gested in order to solve the permutation indeter encies. If the extracted sources belong to the same
urces, the cross-cumulants will be non-zero. Oth-

nacy. Apitch-based method has been suggested 5¢4"°€S .
Tordini and Piazza (2002) [135]. Also Sanei et afTwise, if the sources belong to different sources, the
(2004) [147] use the property of different pitch frerosS-cumulants will be zero.

quency for each speaker. The pitch and formants Finally, Hoya et al. (2003) [296] use pattern
are modeled by a coupled hidden Markov modégcognition to identify speech pauses that are com-

(HMM). The model is trained based on previous timg1on across frequencies, and in the case of over-
frames. complete source separation, K-means clustering has

Motivated by psycho-acoustics, Guddeti anaegn suggested. The clusters with the smallgst
Mulgrew (2005) [243] suggest to disregard frequenc riance are assumed to c?rrespond to theI desired
bands that are perceptually masked by other frources [230]. Dubnov et al. (2004) [279] also ad-
quency bands. This simplifies the permutation profi/€SS the case of more sources than sensors. Cluster-
lem as the number of frequency bins that have to & IS used at each frequency and Kalman tracking is
considered is reduced. In Barros et al. (2002) [244?,erformed in order to link the frequencies together.
the permutation ambiguity is avoided duestqriori
information of the phase associated with the funda-
mental frequency of the desired speech signal.
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7.3. Global permutations SIR in the recorded mixtures. A state-of-the art al-
gorithm can be expected to improve the SIR by 10-

In many applications only one of the source signals 20 dB for two stationary sources. Typically a few

desired and the other sources are only consideredsagonds of data (2 s-10 s) will be sufficient to gener-

interfering noise. Even though the local (frequencyjte these results. However, from this survey nothing

permutations are solved, the global (external) permgan be said about moving sources. Note that only 8

tation problem still exists. Only few algorithms ad{of over 400) papers reported separation of more than

dress the problem of selecting the desired source s@ysources indicating that this remains a challenging

nal from the available outputs. In some situations, groblem.

can be assumed that the desired signal arrives from

a certain direction (e.g. the speaker of interest is in

front of the array). Geometric information can deter-

mine which of the signals is the target [184, 171]. In

other situations, the desired speaker is selected as the

most dominant speaker. In Low et al. (2004) [289],

the most dominant speaker is determined on a critg/e have presented a taxonomy for blind separation

rion based on kurtosis. The speaker with the highest convolutive mixtures with the purpose of provid-

kurtosis is assumed to be the dominant. In separatipiy a survey and discussion of existing methods. Fur-

techniques based on clustering, the desired souther we hope that this might stimulate the develop-

is assumed to be the cluster with the smallest varirent of new models and algorithms which more ef-

ance [230]. If the sources are moving it is necessafigiently incorporate specific domain knowledge and

to maintain the global permutation by tracking eacbiseful prior information.

source. For block-based algorithm the global permu- |, the title of the BSS review by Torkkola (1999)

tation might change at block-boundaries. This proby3) it was asked:Are we there yet?Since then

lem can often be solved by initializing the filter withyymerous algorithms have been proposed for blind

the estimated filter from the previous block [186].  separation of convolutive mixtures. Many convolu-
tive algorithms have shown good performance when
the mixing process is stationary, but still only few

8. RESULTS methods work in real-world, time-varying environ-

ments. In real-time-varying environments, there are

The overwhelming majority of convolutive sourcg0oo many parameters to update in the separation fil-

separation algorithms have been evaluated on siters, and too little data available in order to estimate

ulated data. In the process, a variety of simulatdébie parameters reliably, while the less complicated

room responses have been used. Unfortunately, itngethods such as null-beamformers may perform just

not clear if any of these results transfer to real datas well. This may indicate that the long de-mixing fil-

The main concerns are the sensitivity to microphoriers are not the solution for real-world, time-varying

noise (often not better than -25 dB), non-linearity iknvironments such as the cocktail-party party situa-

the sensors, and strong reverberations with a possikign.

weak direct path. It is suggestive that only a small

subset of research teams evaluate their algorithms on

actual recordings. We have considered more than 400

references and found results on real room recordings

in only 10% of the papers. Table 5 shows a coni cknowledgments

plete list of those papers. The results are reported as

signal-to-interference ratio (SIR), which is typically\y s p. was supported by the Oticon Foundation.
averaged over multiple output channels. The resufit s p. and J.L. are partly also supported by the Eu-
ing SIR are not directly comparable as the results feggpean Commission through the sixth framework IST
a given algorithm are very likely to dependent on theletwork of Excellence: Pattern Analysis, Statistical

recording equipment, the room that was used, and thtodelling and Computational Learning (PASCAL).

9. CONCLUSION
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Table 5: An overview of algorithms applied in real
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