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Structure of Talk

• Overview: machine music listening

• Audio feature extraction

• Feature selection using boosting

• Predicting artist and genre from audio features 

• Predicting arbitrary tags from audio features



3 Current Commercial Approaches

• Collaborative Filtering (Amazon) 
+  Captures popularity and similarity among discs; unquestionably useful
-  More than books, songs are multipurpose (dinner party, jogging, close 

listening) but are purchased only once

• Social Recommendation (Last.FM)
+  Better view of current musical tastes than Amazon
+  Measures popularity
-  Cold-start problem 
-  "All roads lead to Radiohead" (Popularity bias)

• Human Labeled Content-Based Recommendation (Pandora)
Pandora: 40 experts label music on ~=400 params (7000 songs/month)
+  Can capture multidimensional similarity
+-  No popularity bias 
-  Not scalable (slow; what happens if they want the 401st parameter?)



Alternative: listen to music with machine learning
• Map acoustic features onto classes or distributions using labeled data

• Embed music, even new music, in a multidimensional space useful for 
– Automatic annotation (“autotagging”)
– Similarity measure 
– Visualization

• Augment/regularize social tags & other web data

Pros 

• More scalable than human expert annotation (Pandora)

• Can predict attributes not likely to be tagged (e.g. tempo in BPM; "highly compressed")
• Tells us something about content of music audio on the web

Cons
• Acoustic features not predictive of some attributes (e.g. "Protest music")
• Hard to measure quality (John Coltrane was just another bebop sax player?)

• Engineering is challenging (db construction, large-scale ML)



Automatic annotation (“Autotagging”)

Waveform

Feature (e.g. MFCC)

Training 
Tags

Training 
Features

ClassifierFeature Extractor

Trained Model

Unseen 
Features

Predicted
Tags

1. Extract features 2. Train on labeled data 3. Predict unseen data



Challenges and previous work

• Challenges
– What features to use? 
– What machine learning algorithm to use?
– How to scale to huge datasets?

• Previous approaches (genre and artist prediction):
– SVM  (Ellis & Mandel 2006)
– Decision Trees (West, 2005)
– Nearest Neighbors (Palmpalk, 2005)
– AdaBoost (Bergstra, Casagrande, Erhan, Eck & Kegl 2006) 

• Current approach (extension of our 2006 AdaBoost method):
– Iteratively apply feature selection to build small feature set 
– Boost simple classifiers on individual features 
– Predict lots of independent classes (social tags)



Feature Extraction

• Extract features from audio which reveal musical content

• Many features come from speech recognition

• Three major categories:

– Spectral features (Fourier Transform;  time-->frequency)

Example: Spectrogram

– Cepstral features (Fourier transform of spectral features; time-->frequency-->time)

Example: Cepstral coefficients; Mel-Frequency cepstral coefficients; Autocorrelation

– Statistical features 

Example: zero crossing rate over time, LPCs



Spectral feature (Log spectrogram ~= Constant-Q transform)

Short timescale Fourier transform (STFT) with 100ms hops; 
frequencies sampled logarithmically



Cepstral feature (Autocorrelation)

Compare:
Cepstrum = ifft (log(fft(x))) 
Autocorr  = ifft (|(fft(x))|^2)



Example: Pink Floyd "Money"

Autocorrelation
Temporal structure
(rhythm, meter)

Spectrogram
Pitch, timbre distributed 
over many coeffs.

MFCC
Timbre compressed
Into a few coeffs.



High-dimensional features

• 1 minute of CD-quality PCM audio 
44025 * 2 *60 ~= 5.3M values per min

• 512-point spectrogram computed with 50ms frames 
512* 20 * 60 = 614,440 values per min (8.6x compression)

• 13-point Mel Frequency Cepstral Coeffs with 50ms frames
13 * 20 * 60 = 15600 values per min (340x compression)

?

Waveform

MFCC=340x compression



Aggregate Features

• Aggregate chunks of 
feature frames into 
longer-timescale segments

• Method: independent 
Gaussians

• More complex approaches 
possible (e.g. mixture of 
Gaussians, virtually any 
dim. reduction algorithm)

• Question: What is the best 
segment size? 

1-second segments

4-second segments

8-second segments

16-second segments

Pink Floyd "Money" 



Voting

• Spectral features more predictive over short timescales

• Train segments individually using song-level label

• Vote to choose winner

• Segment size is important

Voted winner

One learner per segment

Classes



What is the best segment size?

• Tested range of segment sizes for four features: FFT, RCEPS, MFCC, MiscStat

• Tested 4 different learners (2 Boosters, ANN, SVM) with 
• 1000-song 10-class dataset

• Segments trained individually and voted for prediction
• Result: segment size between 3 and 8 sec is optimal

Accuracy of
Individual segments

Accuracy when voting across
all segments for a song

MFCC / AdaBoost using stumps



AdaBoost (Freund & Schapire 1995)

Build an initial model using a single weak learner

While (error criterion not met) :

1. ID wrongly-classified points in the dataset

2. Boost these points so that they will receive more attention

3. Add best weak learner over boosted dataset to model





Observations

• In our case the ht(x) weak learners are decision stumps on individual features

• We perform feature selection based on minimization of empirical error

• Slow to converge relative to Sims but linear complexity w.r.t. dataset size

• Multi-class learning done using AdaBoost.MH (weak learners are 1-versus-all)

• Many improvements address weaknesses of AdaBoost (e.g. not good with noisy data)



Task 1: Genre & Artist Prediction

1. 1000-song 10-class dataset from Tzanetakis

2. Genre prediction contest from 2005 MIREX Contest at ISMIR
3. Artist prediction contest from 2005 MIREX 

Used spectral and cepstral features + several additional features:
– 256 RCEPS
– 64 MFCC
– 32 Fourier coefficients 
– 32 LPCs (linear predictive coefficients)
– 16 Rolloff coefficients
– 1 linear prediction error
– 1 zero crossing rate



Tzanetakis Database

• 1000 30sec audio segments
• 10 classes:  blues, classical, country, disco, 

hiphop,   jazz, metal, pop, reggae, 
rock

Model Correct rate

G. Tzanetakis (2002) 61%

T. Li (2003) 71%

Our approach 83%



MIREX Artist Identification (2005)

• "MAGNATUNE" database (www.magnatune.com)
– 1005 training and 510 testing files (1515 total)
– 77 artists 

• "USPOP" database (Dan Ellis, Columbia)
– 940 training and 474 testing files (1414 total)
– 77 artists

Rank Participant Overall Magnatune USPOP

1 Mandel & Elllis (SVM) 72.45% 76.60% 68.30%

2 Our approach A (AdaBoost w/ stumps) 68.57% 77.26% 59.88%

3 Our approach B (AdaBoost w/ trees) 66.71% 74.45% 58.96%

4 Pampalk (Nearest neighbors) 61.28% 66.36% 56.20%

5 West & Lamere (Decision Trees) 47.24% 53.43% 41.04%

http://www.magnatune.com
http://www.magnatune.com


MIREX Genre Prediction (2005)

• "MAGNATUNE" database (www.magnatune.com)
– 1005 training and 510 testing files (1515 total)
– 10 genre (hierarchical)  

• "USPOP" database (Dan Ellis, Columbia)
– 940 training and 474 testing files (1414 total)
– 6 genre (flat)

Ran
k

Participant Overall Magnatune USPOP

1 Our approach B  (AdaBoost w/ trees) 82.34% 75.10% 86.92%

2 Our approach A (AdaBoost w/ stumps) 81.77% 74.71% 86.29%

3 Mandel & Elllis (SVM) 78.81% 67.65% 85.65%

4 West (Decision Trees) 75.29% 68.43% 78.90%

5 Lidy & Rauber (SVM) 75.27% 67.65% 79.75%

http://www.magnatune.com
http://www.magnatune.com


Task 2: Automatic Annotation of Social Tags 

• Collected tags and tag frequencies for over 50k artist from Last.FM 
• Genre, mood, instrumentation account for 77% of tags

Top 20 tags applied to “The Shins”



What can we learn from tags?

• Focus on tag types that are learnable from 
audio features (e.g. genre, mood)

• Regression or ranking would be difficult
– Uneven coverage
– Many untagged songs
– Difficult to normalize
– Distribution constantly in flux

• Classification of binned tag data 
(e.g. no rock, some rock,a lot of rock)

• K bins with same # songs per bin
– K=3 except classical where K=2

Histogram of tag “Rock” frequency / song

Our bins



Autotagging experiments

• Simplified feature set
– MFCCs (20)
– Log spectrogram coefficients (85)
– Autocorrelation coefficients (88)

• Learn tags independently (not 1-vs-all)
– Currently: 13 hand-chosen tags related to genre

• Use magnitudes of weak learner predictions to form graded 
prediction (regression)



Summary of results

Test error % (1 fold of 5-fold cross-validation) with 2000 single-stump learners.

2 bins; all others had 3 bins

Songs Segments
alternative 55.4% 59.3%
britpop 59.1% 62.3%
classic rock 56.7% 60.4%
classical 86.8% 90.0%
country 58.9% 64.9%
electronic 58.0% 61.1%
folk 59.9% 62.6%
indie 53.7% 57.5%
jazz 58.0% 62.5%
punk 59.4% 63.4%
reggae 61.3% 64.8%
rock 54.9% 58.7%
soul 55.5% 58.8%



Classic rock
1 INXS 11 Meat Loaf 21 The Rolling Stones 31 Violent Femmes
2 Creedence Clearwater Revival 12 Jimmy Buffett 22 The Housemartins 32 The B-52's
3 Steppenwolf 13 Tom Petty and the Heartbreakers 23 The Beatles 33 Gin Blossoms
4 The Cars 14 ZZ Top 24 Al Green 34 Joe Jackson
5 The Psychedelic Furs 15 The Mamas & The Papas 25 Darlene Love 35 The Commitments
6 The Zombies 16 The Byrds 26 Fugazi 36 Lloyd Cole and the Commotions
7 Eric Burdon and the Animals 17 Tina Turner 27 Bob Dylan 37 Talking Heads
8 The Lovin' Spoonful 18 X 28 Arlo Guthrie 38 Cream
9 Crowded House 19 Guns N' Roses 29 Elvis Costello 39 Bryan Ferry
10 Ramones 20 Elvis Costello & The Attractions 30 Jeff Wayne 40 The Band

1 Sasha & John Digweed 11 The Crystal Method 21 Olive 31 Kraftwerk
2 Paul van Dyk 12 Les Rythmes Digitales 22 Laurent Garnier 32 Underworld
3 Aqua 13 808 State 23 Eiffel 65 33 John Lydon
4 Paul Oakenfold 14 Orbital 24 The Shamen 34 Sneaker Pimps
5 Sasha 15 Nortec Collective 25 The Chemical Brothers 35 Electronic
6 John Digweed 16 Hybrid 26 Basement Jaxx 36 Boom Boom Satellites
7 BT 17 ATB 27 Chicane 37 Massive Attack vs. Mad Professor
8 Juno Reactor 18 Leftfield 28 bis 38 Kid Loco
9 Ministry of Sound 19 Tangerine Dream 29 Aaliyah 39 Fatboy Slim
10 Fluke 20 Daft Punk 30 Brazilian Girls 40 The Other Two

Electronic

Reggae
1 Bunny Wailer 11 D'Angelo 21 Parliament 31 Ursula 1000
2 Burning Spear 12 Third World 22 Ben Harper 32 Erykah Badu
3 The Abyssinians 13 OutKast 23 Johnny Nash 33 Bebel Gilberto
4 Dennis Brown 14 Sublime 24 John Lennon & Yoko Ono 34 Los Amigos Invisibles
5 Jimmy Cliff 15 Aaliyah 25 Big Audio Dynamite 35 Us3
6 Fugees 16 Jill Scott 26 Gilberto Gil 36 Mandalay
7 Peter Tosh 17 George Clinton 27 The Police 37 _Weird Al_ Yankovic
8 Steel Pulse 18 Missy Elliott 28 Joss Stone 38 Prince
9 The Melodians 19 Fela Kuti 29 Ernest Ranglin 39 Al Green
10 Culture 20 Dispatch 30 Sneaker Pimps 40 Soul Coughing



Examples…

Near-neighbor artists using Euclidian distance across all 13 genre

britpop classical classicrock electronic indie jazz reggae rock
Gustav Mahler -3.145 2.604 -1.313 -1.258 -1.022 -1.715 -4.076 -1.080
Wilco 0.187 -3.011 0.142 0.139 0.960 -1.322 -1.603 1.234
The Beatles 0.110 -2.887 0.972 -0.146 0.512 -0.614 -0.907 1.239
New Order 0.954 -2.678 0.355 1.214 0.874 -1.475 -1.249 1.173
Jamiroquai -0.302 -2.017 -0.475 0.805 0.033 -0.579 0.164 0.254
Thelonious Monk -3.200 -1.451 -1.159 -1.221 -1.417 1.440 -3.590 -1.250
Tom Waits -1.661 -1.485 -0.312 -0.498 -0.295 0.441 -1.227 -0.212



Visualization



Results 2

• In later work (NIPS 2007) trained 60 tags

• One day of processing per tag

• Currently working on new FilterBoost 
model with ~2hrs per tag 30

These segment predictions can then be combined to yield artist-level predictions. This can be
achieved in two ways: a winning class can be chosen for each segment (in this example the class “a
lot” would win with 2.6) and the mean over winners can be tallied for all segments belonging to an
artist. Alternately we can skip choosing a winner and simply take the mean of the raw outputs for an
artist’s segments. Because we wanted to estimate tag frequencies using booster magnitude we used
the latter strategy.

The next step is to transform these class for our individual social tag boosters into a bag of words to
be associated with an artist. The most naive way to obtain a single value for rock is to look solely
at the prediction for the “a lot” class. However this discards valuable information such as when a
booster votes strongly “none”. A better way to obtain a measure for rock-ness is to take the center
of mass of the three values. However, because the values are not scaled well with respect to one
another, we ended up with poorly scaled results. Another intuitive idea is simply to subtract the
value of the “none” bin from the value of the “a lot” bin, the reasoning being that “none” is truly
the opposite of “a lot”. In our example, this would yield a rock strength of 7.16. In experiments
for setting hyperparameters, this was shown to work better than other methods. Thus to generate
our final measure of rock-ness, we ignore the middle bin (“some”). However this should not be
taken to mean that the middle “some” bin is useless: the booster needed to learn to predict “some”
during training thus forcing it to be more selective in predicting “none” and “a lot”. As a large-
margin classifier, AdaBoost tries to separate the classes as much as possible, so the magnitude of the
values for each bin are not easily comparable. To remedy this, we normalize by taking the minimum
and maximum prediction for each booster, which seems to work for finding similar artists. This
normalization would not be necessary if we had good tagging data for all artists and could perform
regression on the frequency of tag occurrence across artists.

4 Experiments

To test our model we selected the 60 most popular tags from the Last.fm crawl data described in
Section 2. These tags included genres such as “Rock”, “Electronica”, and “Post Punk”, mood-
related terms such as “Chillout”. The full list of tags and frequencies are available in the “extra
materials”. We collected MP3s for a subset of the artists obtained in our Audioscrobbler crawl.
From those MP3s we extracted several popular acoustic features. In total our training and testing
data included 89924 songs for 1277 artists and yielded more than 1 million 5s aggregate features.

4.1 Booster Errors

As described above, a classifier was trained to map audio features onto aggregate feature segments
for each of the 60 tags. A third of the data was withheld for testing. Because each of the 60
boosters needed roughly 1 day to process, we did not perform cross-validation. However each
booster was trained on a large amount of data relative to the number of decision stumps learned,
making overfitting a remote possibility. Classification errors are shown in Table 2. These errors are
broken down by tag in the annex for this paper. Using 3 bins and balanced classes, the random error
is about 67%.

Mean Median Min Max
Segment 40.93 43.1 21.3 49.6
Song 37.61 39.69 17.8 46.6

Table 2: Summary of test error (%) on predicting bins for songs and segments.

4.2 Evaluation measures

We use three measures to evaluate the performance of the model. The first TopN compares two
ranked lists, a target “ground truth” list A and our predicted list B. This measure is introduced in
[2], and is intended to place emphasis on how well our list predicts the top few items of the target
list. Let kj be the position in list B of the jth element from list A. αr = 0.51/3, and αc = 0.52/3,

5



Similarity Measures
• How to measure fit to some known list of similar 

artists?

• TopN measures how well we fit the top N artists. 
Let kj be the position in list B of the jth element 
from list A.  

• TopBucket is percentage of commen elements in 
top N positions of two ranked lists
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as in [2]. The result is a value between 0 (dissimilar) and 1 (identical top N ),

si =
∑N

j=1 αj
rα

kj
c

∑N
l=1(αr ∗ αc)l

(2)

For the results produced below, we look at the top N = 10 elements in the lists.

Our second measure is Kendall’s Tau, a classic measure in collaborative filtering which measures
the number of discordant pairs in 2 lists. Let RA(i) be the rank of the element i in list A, if i is not
explicitly present, RA(i) = length(A) + 1. Let C be the number of concordant pairs of elements
(i, j), e.g. RA(i) > RA(j) and RB(i) < RB(j). In a similar way, D is the number of discordant
pairs. We use τ ’s approximation in [8]. We also define TA and TB the number of ties in list A and
B. In our case, it’s the number of pairs of artists that are in A but not in B, because they end up
having the same position RB = length(B) + 1, and reciprocally. Kendall’s tau value is defined as:

τ =
C −D

sqrt((C + D + TA)(C + D + TB))
(3)

Unless otherwise noted, we analyzed the top 50 predicted values for the target and predicted lists.
Finally, we compute what we call the TopBucket, which is simply the percentage of common ele-
ments in the top N of 2 ranked lists. Here as in Kendall we compare the top 50 predicted values
unless otherwise noted.

4.3 Constructing ground truth

As has long been acknowledged [4] one of the biggest challenges in addressing this task is to find a
reasonable “ground truth” against which to compare our results. We seek a similarity matrix among
artists which is not overly biased by current popularity, and which is not built directly from the
social tags we are using for learning targets. Furthermore we want to derive our measure using
data that is freely available data on the web, thus ruling out commercial services such as AllMusic
(www.allmusic.com). Our solution is to construct our ground truth similarity matrix using correla-
tions from the listening habits of Last.fm users. If a significant number of users listen to artists A
and B (regardless of the tags they may assign to that artist) we consider those two artists similar.

One challenge, of course, is that some users listen to more music than others and that some artists
are more popular than others. Text search engines must deal with a similar problem: they want
to ensure that frequently used words (e.g., system) do not outweigh infrequently used words (e.g.,
prestidigitation) and that long documents do not always outweigh short documents. Search engines
assign a weight to each word in a document. The weight is meant to represent how important that
word is for that document. Although many such weighting schemes have been described (see [11]
for a comprehensive review), the most popular is the term frequency-inverse document frequency
(or TF×IDF) weighting scheme. TF×IDF assigns high weights to words that occur frequently in a
given document and infrequently in the rest of the collection. The fundamental idea is that words
that are assigned high weights for a given document are good discriminators for that document from
the rest of the collection. Typically, the weights associated with a document are treated as a vector
that has its length normalized to one.

In the case of LastFM, we can consider an artist to be a “document”, where the “words” of the
document are the users that have listened to that artist. The TF×IDF weight for a given user for a
given artist takes into account the global popularity of a given artist and ensures that users who have
listened to more artists do not automatically dominate users who have listened to fewer artists. The
resulting similarity measure seems to us to do a reasonable enough job of capturing artist similarity.
Furthermore it does not seem to be overly biased towards popular bands. See “extra material” for
some examples.

4.4 Similarity Results

One intuitive way to compare autotags and social tags is to look at how well the autotags reproduce
the rank order of the social tags. We used the measures in Section 4.2 to measure this on 100 artists
not used for training (Table 3). The results were well above random. For example, the top 5 autotags
were in agreement with the top 5 social tags 61% of the time.

6

These segment predictions can then be combined to yield artist-level predictions. This can be
achieved in two ways: a winning class can be chosen for each segment (in this example the class “a
lot” would win with 2.6) and the mean over winners can be tallied for all segments belonging to an
artist. Alternately we can skip choosing a winner and simply take the mean of the raw outputs for an
artist’s segments. Because we wanted to estimate tag frequencies using booster magnitude we used
the latter strategy.

The next step is to transform these class for our individual social tag boosters into a bag of words to
be associated with an artist. The most naive way to obtain a single value for rock is to look solely
at the prediction for the “a lot” class. However this discards valuable information such as when a
booster votes strongly “none”. A better way to obtain a measure for rock-ness is to take the center
of mass of the three values. However, because the values are not scaled well with respect to one
another, we ended up with poorly scaled results. Another intuitive idea is simply to subtract the
value of the “none” bin from the value of the “a lot” bin, the reasoning being that “none” is truly
the opposite of “a lot”. In our example, this would yield a rock strength of 7.16. In experiments
for setting hyperparameters, this was shown to work better than other methods. Thus to generate
our final measure of rock-ness, we ignore the middle bin (“some”). However this should not be
taken to mean that the middle “some” bin is useless: the booster needed to learn to predict “some”
during training thus forcing it to be more selective in predicting “none” and “a lot”. As a large-
margin classifier, AdaBoost tries to separate the classes as much as possible, so the magnitude of the
values for each bin are not easily comparable. To remedy this, we normalize by taking the minimum
and maximum prediction for each booster, which seems to work for finding similar artists. This
normalization would not be necessary if we had good tagging data for all artists and could perform
regression on the frequency of tag occurrence across artists.

4 Experiments

To test our model we selected the 60 most popular tags from the Last.fm crawl data described in
Section 2. These tags included genres such as “Rock”, “Electronica”, and “Post Punk”, mood-
related terms such as “Chillout”. The full list of tags and frequencies are available in the “extra
materials”. We collected MP3s for a subset of the artists obtained in our Audioscrobbler crawl.
From those MP3s we extracted several popular acoustic features. In total our training and testing
data included 89924 songs for 1277 artists and yielded more than 1 million 5s aggregate features.

4.1 Booster Errors

As described above, a classifier was trained to map audio features onto aggregate feature segments
for each of the 60 tags. A third of the data was withheld for testing. Because each of the 60
boosters needed roughly 1 day to process, we did not perform cross-validation. However each
booster was trained on a large amount of data relative to the number of decision stumps learned,
making overfitting a remote possibility. Classification errors are shown in Table 2. These errors are
broken down by tag in the annex for this paper. Using 3 bins and balanced classes, the random error
is about 67%.

Mean Median Min Max
Segment 40.93 43.1 21.3 49.6
Song 37.61 39.69 17.8 46.6

Table 2: Summary of test error (%) on predicting bins for songs and segments.

4.2 Evaluation measures

We use three measures to evaluate the performance of the model. The first TopN compares two
ranked lists, a target “ground truth” list A and our predicted list B. This measure is introduced in
[2], and is intended to place emphasis on how well our list predicts the top few items of the target
list. Let kj be the position in list B of the jth element from list A. αr = 0.51/3, and αc = 0.52/3,

5
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Similarity Measures continued
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as in [2]. The result is a value between 0 (dissimilar) and 1 (identical top N ),

si =
∑N

j=1 αj
rα

kj
c

∑N
l=1(αr ∗ αc)l

(2)

For the results produced below, we look at the top N = 10 elements in the lists.

Our second measure is Kendall’s Tau, a classic measure in collaborative filtering which measures
the number of discordant pairs in 2 lists. Let RA(i) be the rank of the element i in list A, if i is not
explicitly present, RA(i) = length(A) + 1. Let C be the number of concordant pairs of elements
(i, j), e.g. RA(i) > RA(j) and RB(i) < RB(j). In a similar way, D is the number of discordant
pairs. We use τ ’s approximation in [8]. We also define TA and TB the number of ties in list A and
B. In our case, it’s the number of pairs of artists that are in A but not in B, because they end up
having the same position RB = length(B) + 1, and reciprocally. Kendall’s tau value is defined as:

τ =
C −D

sqrt((C + D + TA)(C + D + TB))
(3)

Unless otherwise noted, we analyzed the top 50 predicted values for the target and predicted lists.
Finally, we compute what we call the TopBucket, which is simply the percentage of common ele-
ments in the top N of 2 ranked lists. Here as in Kendall we compare the top 50 predicted values
unless otherwise noted.

4.3 Constructing ground truth

As has long been acknowledged [4] one of the biggest challenges in addressing this task is to find a
reasonable “ground truth” against which to compare our results. We seek a similarity matrix among
artists which is not overly biased by current popularity, and which is not built directly from the
social tags we are using for learning targets. Furthermore we want to derive our measure using
data that is freely available data on the web, thus ruling out commercial services such as AllMusic
(www.allmusic.com). Our solution is to construct our ground truth similarity matrix using correla-
tions from the listening habits of Last.fm users. If a significant number of users listen to artists A
and B (regardless of the tags they may assign to that artist) we consider those two artists similar.

One challenge, of course, is that some users listen to more music than others and that some artists
are more popular than others. Text search engines must deal with a similar problem: they want
to ensure that frequently used words (e.g., system) do not outweigh infrequently used words (e.g.,
prestidigitation) and that long documents do not always outweigh short documents. Search engines
assign a weight to each word in a document. The weight is meant to represent how important that
word is for that document. Although many such weighting schemes have been described (see [11]
for a comprehensive review), the most popular is the term frequency-inverse document frequency
(or TF×IDF) weighting scheme. TF×IDF assigns high weights to words that occur frequently in a
given document and infrequently in the rest of the collection. The fundamental idea is that words
that are assigned high weights for a given document are good discriminators for that document from
the rest of the collection. Typically, the weights associated with a document are treated as a vector
that has its length normalized to one.

In the case of LastFM, we can consider an artist to be a “document”, where the “words” of the
document are the users that have listened to that artist. The TF×IDF weight for a given user for a
given artist takes into account the global popularity of a given artist and ensures that users who have
listened to more artists do not automatically dominate users who have listened to fewer artists. The
resulting similarity measure seems to us to do a reasonable enough job of capturing artist similarity.
Furthermore it does not seem to be overly biased towards popular bands. See “extra material” for
some examples.

4.4 Similarity Results

One intuitive way to compare autotags and social tags is to look at how well the autotags reproduce
the rank order of the social tags. We used the measures in Section 4.2 to measure this on 100 artists
not used for training (Table 3). The results were well above random. For example, the top 5 autotags
were in agreement with the top 5 social tags 61% of the time.

6

A third measure is Kendall’s Tau. Here is the text from the NIPS paper:



Ground truth

• Used Last.fm social tags for popular artists 
as ground truth. 

• Correlations from listening habits
• If significant number of listeners all listen 

to artist A and B, we treat A and B as 
similar

• TF/IDF adjustment used to normalize

• Treat artists as documents, users as 
words

33



TopN 10 Kendall (N=5) TopBucket (N=5)
autotags 0.636 -0.099 61.0%
random 0.111 -0.645 8.1%

Table 3: Results for all three measures on tag order for 100 out-of-sample artists.

A more realistic way to compare autotags and social tags is via their artist similarity predictions.
We construct similarity matrices from our autotag results and from the Last.fm social tags used for
training and testing. The similarity measure we used wascosine similarity scos(A1, A2) = A1 ∗
A2/(||A1|| ||A2||) where A1 and A2 are tag magnitudes for an artist. In keeping with our interest in
developing a commercial system, we used all available data for generating the similarity matrices,
including data used for training. (The chance of overfitting aside, it would be unwise to remove The
Beatles from your recommender simply because you trained on some of their songs). The similarity
matrix is then used to generate a ranked list of similar artists for each artist in the matrix. These lists
are used to compute the measures describe in Section 4.2. Results are found at the top in Table 4.

One potential flaw in this experiment is that the ground truth comes from the same data source as
the training data. Though the ground truth is based on user listening counts and our learning data
comes from aggregate tagging counts, there is still a clear chance of contamination. To investigate
this, we selected the autotags and social tags for 95 of the artists from the USPOP database [2]. We
constructed a ground truth matrix based on the 2002 MusicSeer web survey eliciting similarity rank-
ings between artists from appro 1000 listeners [2]. These results show much closer correspondence
between our autotag results and the social tags from Last.fm than the previous test. See bottom,
Table 4.

Groundtruth Model TopN 10 Kendall 50 TopBucket 20
Last.FM social tags 0.26 -0.23 34.6%

autotags 0.118 -0.406 22.5%
random 0.005 -0.635 3.9%

MusicSeer social tags 0.237 -0.182 29.7%
autotags 0.184 -0.161 28.2%
random 0.051 -0.224 21.5%

Table 4: Performance against Last.Fm (top) and MusicSeer (bottom) ground truth.

It is clear from these previous two experiments that our autotag results do not outperform the social
tags on which they were trained. Thus we asked whether combining the predictions of the autotags
with the social tags would yield better performance than either of them alone. To test this we blended
the autotag similarity matrix Sa with the social tag matrix Ss using αSa + (1 − α)Ss. The results
shown in Figure 3 show a consistent performance increase when blending the two similarity sources.
It seems clear from these results that the autotags are of value. Though they do not outperform the
social tags on which they were trained, they do yield improved performance when combined with
social tags. At the same time they are driven entirely by audio and so can be applied to new, untagged
music. With only 60 tags the model makes some reasonable predictions. When more boosters are
trained, it is safe to assume that the model will perform better.

5 Conclusion and future work

The work presented here is preliminary, but we believe that a supervised learning approach to au-
totagging has substantial merit. Our next step is to compare the performance of our boosted model
to other approaches such as SVMs and neural networks. The dataset used for these experiments
is already larger than those used for published results for genre and artist classification. However,
a dataset another order of magnitude larger is necessary to approximate even a small commercial
database of music. A further next step is comparing the performance of our audio features with other
sets of audio features.
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Similarity results
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More similarity results
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Figure 3: Similarity performance results when autotag similarities are blended with social tag simi-
larities. The horizontal line is the performance of the social tags against ground truth.

We plan to extend our system to predict many more tags than the current set of 60 tags. We expect
the accuracy of our system to improve as we extend our tag set, especially as we add tags such as
Classical and Folk that are associated with whole genres of music. We will also continue exploring
ways in which the autotag results can drive music visualization. See “extra examples” for some
preliminary work.

Our current method of evaluating our system is biased to favor popular artists. In the future, we
plan to extend our evaluation to include comparisons with music similarity derived from human
analysis of music. This type of evaluation should be free of popularity bias. Most importantly, the
machine-generated autotags need to be tested in a social recommender. It is only in such a context
that we can explore whether autotags, when blended with real social tags, will in fact yield improved
recommendations.
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Low dimensional music space

• Create low-dimensional space from 
autotags

• Find shortest path using Isomap
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Compare two “classical” to “heavy”

40

Beethoven to The Prodigy Mozart to Nirvana



Conclusions

• A simple framework for machine music listening:
– Audio feature extraction + segmentation
– Ensemble learning (boosting)
– Classification of social tags using binning strategy  

• Can be improved in many ways:
– Ranking or regression
– Regularization via weight sharing among song segments
– Features derived from human audition
– Many, many more features (source identification e.g. is there a female voice?)

• With relatively-simple machine learning, one can:
– “Listen to” audio files to know their *musical* content
– Embed songs and artists in a rich music space

• Important for companies like Last.FM and Pandora (music recommenders)

• Crucial for any company wanting to know what is going on with music on the web
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