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Hidden Markov Model (HMM)

= HMMs allow you to estimate probabilities
of unobserved events

m Given plain text, which underlying
parameters generated the surface

m E.g., In speech recognition, the observed
data is the acoustic signal and the words
are the hidden parameters



HMMs and their Usage

= HMMs are very common in Computational
Linguistics:
m Speech recognition (observed: acoustic signal,
hidden: words)

= Handwriting recognition (observed: image, hidden:
words)

m Part-of-speech tagging (observed: words, hidden:
part-of-speech tags)

m Machine translation (observed: foreign words,
hidden: words in target language)



Noisy Channel Model

m [n speech recognition you observe an
acoustic signal (A=a,,...,a,) and you want
to determine the most likely sequence of
words (W=w,,...,w_): P(W 1 A)

m Problem: A and W are too specific for
reliable counts on observed data, and are
very unlikely to occur in unseen data



Noisy Channel Model

m Assume that the acoustic signal (A) is already
segmented wrt word boundaries

m P(WI A) could be computed as
P(W 1A)= Hmax P(w,la)

m Problem: Finding the most likely word

corresponding to a acoustic representation
depends on the context

m E.g., /'pre-z&ns / could mean “presents” or
“presence” depending on the context



Noisy Channel Model

m Given a candidate sequence W we need

to compute P(W) and combine it with P(W
| A)

m Applying Bayes’ rule:
P(AIW)P(W)

P(A)

m The denominator P(A) can be dropped,
because it Is constant for all W

argmax P(W | A) = argmax
%4 w



Noisy Channel in a Picture
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Decoding

The decoder combines evidence from
m The likelihood: P(A | W)
This can be approximated as:

PAIW) =[] Pa1w,)

m The prior: P(W)
This can be approximated as:

PW)=~Pw)] | POw,1w,.)



Search Space

m Given a word-segmented acoustic sequence list
all candidates

bot, ik-'spen-siv 'pre-z&ns
boat> P(botIbald) | @XCESSIVE A oresidents
ba!u%mm ) expensive \/ presence
bold \( expressive | presents
bought “+linactive Oress

m Compute the most likely path



Markov Assumption

m The Markov assumption states that
probability of the occurrence of word w; at
time t depends only on occurrence of
word w,_, at time t-1

m Chain rule:

P(Wl ..... Wn) = HP(Wl |W1 ’’’’ wi_l)
i=2

= Markov assumption:
P(w,,..,w, )= HP(WZ. lw. )
i=2
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Parameters of an HMM

m States: A set of states S=s,,...,S,

= Transition probabilities: A= a, ,a; »,...,a, , Each
a;; represents the probability of transitioning
from state s; to s;.

m Emission probabilities: A set B of functions of
the form b,(0,) which is the probability of
observation o, being emitted by s,

m Initial state distribution: 7;is the probability that
S. IS a start state



The Three Basic HMM Problems

m Problem 1 (Evaluation): Given the observation
sequence O=04,...,0; and an HMM model

A =(A,B,) , how do we compute the
probability of O given the model?

m Problem 2 (Decoding): Given the observation
sequence O=04,...,0; and an HMM model

A = (A,B,), how do we find the state
sequence that best explains the observations?



The Three Basic HMM Problems

m Problem 3 (Learning): How do we adjust
the model parameters A = (A,B,x), to
maximize P(O1A)?



Problem 1: Probability of an Observation
Sequence

m Whatis P(OIA)?

m The probability of a observation sequence is the
sum of the probabilities of all possible state
sequences in the HMM.

m Naive computation is very expensive. Given T
observations and N states, there are N
possible state sequences.

m Even small HMMs, e.g. T=10 and N=10,
contain 10 billion different paths

m Solution to this and problem 2 is to use dynamic
programming



Forward Probabilities

m What is the probability that, given an
HMM A | at time t the state is i and the
partial observation o, ... 0, has been
generated?

o, (i)=P(o,...0,,q, = s, | A)



Forward Probabilities

a,(i)=P(o,..0,,q, = s, A)
alphat_1(1)

Ea L()a, ]b (0,)

a,(j)=



Forward Algorithm

m Initialization: «,(i))=nb.(0) 1<i<N

m Induction:

11 :
o,(j)= E(xt_l(i)aij b(o) 2=<t=<T,l<j=<N
[ i-1 _

= Termination: P(O12) =) a,(i)



Forward Algorithm Complexity

m In the naive approach to solving problem
1 it takes on the order of 2T*NT
computations

m The forward algorithm takes on the order
of N°T computations



Backward Probabilities

m Analogous to the forward probability, just
In the other direction

m What is the probability that given an HMM
and gien the state at time t is i, the
partial observation o,,; ... 01 IS
generated?

/)) (l) P(Oz+1 |qt T Sia)\')



Backw
ard Probabillities

ﬁt(l) 3
P(o,,...0; lg, =s,,A)

j=1



Backward Algorithm

m Initialization: B .(i)=1, 1=<i<N

m Induction:

N

S a,b,(0,.)B,..())

j=1

B,(i) = t=T-1..11<i<N

m [ermination: !
P(O12) =Y 7, B,(i)



Problem 2: Decoding

m The solution to Problem 1 (Evaluation) gives us
the sum of all paths through an HMM efficiently.

m For Problem 2, we wan to find the path with the
highest probabillity.

= We want to find the state sequence Q=q;...qr,
such that

Q =argmax P(Q'l O,A)
p



Viterbi Algorithm

m Similar to computing the forward
probabilities, but instead of summing over
transitions from incoming states, compute
the maximum

m Forward: () =

Y a,_,(i) aij] b (0,)
m Viterbi Recursion:

6,() = | maxd, ,())a, | b,(0)

l=i=<



Viterbi Algorithm

= |nitialization:  §(G)=mb;(0) 1=i=N
® |Induction:

5.(j) = | maxs,_ (i) alj] b.(0,)

| I<i<

Y, (J) = argmaxét_l(i)al.j] 2<t=<T,l<j=<N
| I=<isN

= Termination: p = maxd, (i) g, =argmaxd, (i)
s I<isN

s Read out path: 4, =¥,.(¢q,,) t=T-1,..1



Problem 3: Learning

m Up to now we’ve assumed that we know the
underlying model A = (A,B,x)

m Often these parameters are estimated on
annotated training data, which has two
drawbacks:

= Annotation is difficult and/or expensive
= Training data is different from the current data

m We want to maximize the parameters with
respect to the current data, i.e., we're looking
for a model A', such that A'=argmax P(O1A)

A



Problem 3: Learning

m Unfortunately, there is no known way to
analytically find a global maximum, i.e., a model
. such that A'=argmax P(O|A)

m But it is possible to find a loéal maximum

m Given an initial model A, we can always find a
model j', such that p(p11)= P(OI1)



Parameter Re-estimation

m Use the forward-backward (or Baum-
Welch) algorithm, which is a hill-climbing
algorithm

m Using an initial parameter instantiation,
the forward-backward algorithm iteratively
re-estimates the parameters and
improves the probability that given

observation are generated by the new
parameters



Parameter Re-estimation

m Three parameters need to be re-
estimated:
= Initial state distribution: JT.
= Transition probabilities: a;;
m Emission probabilities: b,(o,)



Re-estimating Transition Probabillities

m What's the probability of being in state s
at time t and going to state s;, given the
current model and parameters?

§,(6,))=P(q, =5;.9,,, =5, 10,A)



Re-estimating Transition Probabillities
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Re-estimating Transition Probabillities

® The intuition behind the re-estimation
equation for transition probabillities is

A expected number of transitions from state s, to state s
a. . =

Y expected number of transitions from state s,
m Formally:
T-1
S (6.)
A Ll
a ;= T




Re-estimating Transition Probabilities
= Defining - e i)

As the probability of being in state s,
given the complete observation O

m We can say: g, ==!



Review of Probabilities

= Forward probability: o, (7)
The probability of being in state s;, given the partial
observation 0,,...,0;

= Backward probability: f3,(7)

The probability of being in state s;, given the partial
observation oy, ,...,07

= Transition probability: & (i, ])

The probability of going from state s;, to state s;, given
the complete observation o4,...,07
= State probability: ¥, (7)

The probability of being in state s;, given the complete
observation 04,...,071




Re-estimating Initial State Probabilities

m Initial state distribution: =z Is the
probability that s, is a start state

m Re-estimation is easy:
7, = expected number of times in state s. at time 1

m Formally: 7, =7,0)



Re-estimation of Emission Probabilities

m Emission probabilities are re-estimated as

expected number of times in state s, and observe symbol v,

b, (k) =
(k) expected number of times in state s,
= Formally: .
y 1 E 6(0[ 9Vk) )/t(l)
bl(k) — =1

T

PRAG

r=1

Where 6(o,,v,)=1,if o, =v,, and O otherwise

Note that O here is the Kronecker delta function and is not
related to the § in the discussion of the Viterbi algorithm!!



The Updated Model

m Coming fromA =(A,B,w) we get to
A'=(A,B,m) by the following update rules:

E,(0,)) D800 | |
a,, =3 by(k) = == 7 = 1(D)

PRAC 27




Expectation Maximization

m The forward-backward algorithm is an
instance of the more general EM
algorithm

m The E Step: Compute the forward and
backward probabilities for a give model

m The M Step: Re-estimate the model
parameters



