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Hidden Markov Model (HMM)
 HMMs allow you to estimate probabilities

of unobserved events
 Given plain text, which underlying

parameters generated the surface
 E.g., in speech recognition, the observed

data is the acoustic signal and the words
are the hidden parameters



HMMs and their Usage
 HMMs are very common in Computational

Linguistics:
 Speech recognition (observed: acoustic signal,

hidden: words)
 Handwriting recognition (observed: image, hidden:

words)
 Part-of-speech tagging (observed: words, hidden:

part-of-speech tags)
 Machine translation (observed: foreign words,

hidden: words in target language)



Noisy Channel Model
 In speech recognition you observe an

acoustic signal (A=a1,…,an) and you want
to determine the most likely sequence of
words (W=w1,…,wn): P(W | A)

 Problem: A and W are too specific for
reliable counts on observed data, and are
very unlikely to occur in unseen data



Noisy Channel Model
 Assume that the acoustic signal (A) is already

segmented wrt word boundaries
 P(W | A) could be computed as

 Problem: Finding the most likely word
corresponding to a acoustic representation
depends on the context

 E.g., /'pre-z&ns / could mean “presents” or
“presence” depending on the context
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Noisy Channel Model
 Given a candidate sequence W we need

to compute P(W) and combine it with P(W
| A)

 Applying Bayesʼ rule:

 The denominator P(A) can be dropped,
because it is constant for all W
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Noisy Channel in a Picture



Decoding
The decoder combines evidence from

 The likelihood: P(A | W)
   This can be approximated as:

 The prior: P(W)
   This can be approximated as:
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Search Space
 Given a word-segmented acoustic sequence list

all candidates

 Compute the most likely path

presentsexpressivebold
pressinactivebought

presenceexpensivebald
presidentsexcessiveboat
'pre-z&nsik-'spen-siv'bot

! 

P(inactive |bald)
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P('bot |bald)



Markov Assumption
 The Markov assumption states that

probability of the occurrence of word wi at
time t depends only on occurrence of
word wi-1 at time t-1
 Chain rule:

 Markov assumption:
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The Trellis



Parameters of an HMM
 States: A set of states S=s1,…,sn
 Transition probabilities: A= a1,1,a1,2,…,an,n Each

ai,j represents the probability of transitioning
from state si to sj.

 Emission probabilities: A set B of functions of
the form bi(ot) which is the probability of
observation ot  being emitted by si

 Initial state distribution:     is the probability that
si is a start state
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The Three Basic HMM Problems
 Problem 1 (Evaluation): Given the observation

sequence O=o1,…,oT and an HMM model
                         , how do we compute the

probability of O given the model?
 Problem 2 (Decoding): Given the observation

sequence O=o1,…,oT and an HMM model
                       , how do we find the state

sequence that best explains the observations?
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 Problem 3 (Learning): How do we adjust
the model parameters                   , to
maximize              ?

The Three Basic HMM Problems
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Problem 1: Probability of an Observation
Sequence

 What is               ?
 The probability of a observation sequence is the

sum of the probabilities of all possible state
sequences in the HMM.

 Naïve computation is very expensive. Given T
observations and N states, there are NT

possible state sequences.
 Even small HMMs, e.g. T=10 and  N=10,

contain 10 billion different paths
 Solution to this and problem 2 is to use dynamic

programming

! 

P(O | ")



Forward Probabilities
 What is the probability that, given an

HMM    , at time t the state is i and the
partial observation o1 … ot has been
generated?

! 

" t (i) = P(o1...ot , qt = si | #)
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Forward Probabilities
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Forward Algorithm
 Initialization:

  Induction:

 Termination:! 
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Forward Algorithm Complexity
 In the naïve approach to solving problem

1 it takes on the order of 2T*NT

computations
 The forward algorithm takes on the order

of N2T computations



Backward Probabilities
 Analogous to the forward probability, just

in the other direction
 What is the probability that given an HMM

and given the state at time t is i, the
partial observation ot+1 … oT is
generated?
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"t (i) = P(ot+1...oT |qt = si,#)! 
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Backward Probabilities
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Backward Algorithm
 Initialization:

 Induction:

 Termination:
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Problem 2: Decoding
 The solution to Problem 1 (Evaluation) gives us

the sum of all paths through an HMM efficiently.
 For Problem 2, we wan to find the path with the

highest probability.
 We want to find the state sequence Q=q1…qT,

such that

! 

Q = argmax
Q '

P(Q' |O,")



Viterbi Algorithm
 Similar to computing the forward

probabilities, but instead of summing over
transitions from incoming states, compute
the maximum

 Forward:

 Viterbi Recursion:

! 

" t ( j) = " t#1(i)aij
i=1

N

$
% 

& 
' 

( 

) 
* b j (ot )

! 

"t ( j) = max
1# i#N

"t$1(i)aij[ ] bj (ot )



Viterbi Algorithm
 Initialization:
 Induction:

 Termination:

 Read out path:
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Problem 3: Learning
 Up to now weʼve assumed that we know the

underlying model
 Often these parameters are estimated on

annotated training data, which has two
drawbacks:
 Annotation is difficult and/or expensive
 Training data is different from the current data

 We want to maximize the parameters with
respect to the current data, i.e., weʼre looking
for a model     , such that
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Problem 3: Learning
 Unfortunately, there is no known way to

analytically find a global maximum, i.e., a model
, such that

 But it is possible to find a local maximum
 Given an initial model    , we can always find a

model    , such that
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Parameter Re-estimation
 Use the forward-backward (or Baum-

Welch) algorithm, which is a hill-climbing
algorithm

 Using an initial parameter instantiation,
the forward-backward algorithm iteratively
re-estimates the parameters and
improves the probability that given
observation are generated  by the new
parameters



Parameter Re-estimation
 Three parameters need to be re-

estimated:
 Initial state distribution:
 Transition probabilities: ai,j
 Emission probabilities: bi(ot)
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Re-estimating Transition Probabilities

 Whatʼs the probability of being in state si
at time t and going to state sj, given the
current model and parameters?

! 

" t (i, j) = P(qt = si, qt+1 = s j |O,#)



Re-estimating Transition Probabilities

! 

" t (i, j) =
# t (i) ai, j b j (ot+1) $t+1( j)

# t (i) ai, j b j (ot+1) $t+1( j)
j=1

N

%
i=1

N

%

! 

" t (i, j) = P(qt = si, qt+1 = s j |O,#)



Re-estimating Transition Probabilities

 The intuition behind the re-estimation
equation for transition probabilities is

 Formally:
! 

ˆ a i, j =
expected number of transitions from state si to state sj

expected number of transitions from state si
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Re-estimating Transition Probabilities

 Defining

As the probability of being in state si,
given the complete observation O

 We can say:
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Review of Probabilities
 Forward probability:

The probability of being in state si, given the partial
observation o1,…,ot

 Backward probability:
The probability of being in state si, given the partial
observation ot+1,…,oT

 Transition probability:
The probability of going from state si, to state sj, given
the complete observation o1,…,oT

 State probability:
The probability of being in state si, given the complete
observation o1,…,oT
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Re-estimating Initial State Probabilities

 Initial state distribution:     is the
probability that si is a start state

 Re-estimation is easy:

 Formally:
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Re-estimation of Emission Probabilities
 Emission probabilities are re-estimated as

 Formally:

Where
Note that     here is the Kronecker delta function and is not
related to the     in the discussion of the Viterbi algorithm!!
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The Updated Model
 Coming from                   we get to
                       by the following update rules:
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Expectation Maximization
 The forward-backward algorithm is an

instance of the more general EM
algorithm
 The E Step: Compute the forward and

backward probabilities for a give model
 The M Step: Re-estimate the model

parameters


