
Hidden Markov Models

 Bonnie Dorr Christof Monz

 CMSC 723: Introduction to Computational Linguistics

 Lecture 5

 October 6, 2004

Hidden Markov Model (HMM)
 HMMs allow you to estimate probabilities

of unobserved events
 Given plain text, which underlying

parameters generated the surface
 E.g., in speech recognition, the observed

data is the acoustic signal and the words
are the hidden parameters

HMMs and their Usage
 HMMs are very common in Computational

Linguistics:
 Speech recognition (observed: acoustic signal,

hidden: words)
 Handwriting recognition (observed: image, hidden:

words)
 Part-of-speech tagging (observed: words, hidden:

part-of-speech tags)
 Machine translation (observed: foreign words,

hidden: words in target language)

Noisy Channel Model
 In speech recognition you observe an

acoustic signal (A=a1,…,an) and you want
to determine the most likely sequence of
words (W=w1,…,wn): P(W | A)

 Problem: A and W are too specific for
reliable counts on observed data, and are
very unlikely to occur in unseen data

Noisy Channel Model
 Assume that the acoustic signal (A) is already

segmented wrt word boundaries
 P(W | A) could be computed as

 Problem: Finding the most likely word
corresponding to a acoustic representation
depends on the context

 E.g., /'pre-z&ns / could mean “presents” or
“presence” depending on the context

!

P(W | A) = max
w
ia

i

" P(w
i
| a

i
)

Noisy Channel Model
 Given a candidate sequence W we need

to compute P(W) and combine it with P(W
| A)

 Applying Bayesʼ rule:

 The denominator P(A) can be dropped,
because it is constant for all W

!

argmax
W

P(W | A) = argmax
W

P(A |W)P(W)

P(A)

7

Noisy Channel in a Picture

Decoding
The decoder combines evidence from

 The likelihood: P(A | W)
 This can be approximated as:

 The prior: P(W)
 This can be approximated as:

!

P(W) " P(w1) P(w
i

i= 2

n

|w
i$1)

!

P(A |W) " P(a
i

i=1

n

|w
i
)

Search Space
 Given a word-segmented acoustic sequence list

all candidates

 Compute the most likely path

presentsexpressivebold
pressinactivebought

presenceexpensivebald
presidentsexcessiveboat
'pre-z&nsik-'spen-siv'bot

!

P(inactive |bald)
!

P('bot |bald)

Markov Assumption
 The Markov assumption states that

probability of the occurrence of word wi at
time t depends only on occurrence of
word wi-1 at time t-1
 Chain rule:

 Markov assumption:

!

P(w1,...,wn
) " P(w

i
|w

i#1)
i= 2

n

$
!

P(w1,...,wn
) = P(w

i
|w1,...,wi"1)

i= 2

n

#

The Trellis

Parameters of an HMM
 States: A set of states S=s1,…,sn
 Transition probabilities: A= a1,1,a1,2,…,an,n Each

ai,j represents the probability of transitioning
from state si to sj.

 Emission probabilities: A set B of functions of
the form bi(ot) which is the probability of
observation ot being emitted by si

 Initial state distribution: is the probability that
si is a start state

!

"
i

The Three Basic HMM Problems
 Problem 1 (Evaluation): Given the observation

sequence O=o1,…,oT and an HMM model
 , how do we compute the

probability of O given the model?
 Problem 2 (Decoding): Given the observation

sequence O=o1,…,oT and an HMM model
 , how do we find the state

sequence that best explains the observations?
!

" = (A,B,#)

!

" = (A,B,#)

 Problem 3 (Learning): How do we adjust
the model parameters , to
maximize ?

The Three Basic HMM Problems

!

" = (A,B,#)

!

P(O | ")

Problem 1: Probability of an Observation
Sequence

 What is ?
 The probability of a observation sequence is the

sum of the probabilities of all possible state
sequences in the HMM.

 Naïve computation is very expensive. Given T
observations and N states, there are NT

possible state sequences.
 Even small HMMs, e.g. T=10 and N=10,

contain 10 billion different paths
 Solution to this and problem 2 is to use dynamic

programming

!

P(O | ")

Forward Probabilities
 What is the probability that, given an

HMM , at time t the state is i and the
partial observation o1 … ot has been
generated?

!

" t (i) = P(o1...ot , qt = si | #)
!

"

Forward Probabilities

!

" t (j) = " t#1(i)aij
i=1

N

$
%

&
'

(

)
* b j (ot)

!

" t (i) = P(o1...ot , qt = si | #)

Forward Algorithm
 Initialization:

 Induction:

 Termination:!

" t (j) = " t#1(i)aij
i=1

N

$
%

&
'

(

)
* b j (ot) 2 + t + T,1+ j + N

!

"
1
(i) = #

i
b
i
(o
1
) 1$ i $ N

!

P(O | ") = #
T
(i)

i=1

N

$

Forward Algorithm Complexity
 In the naïve approach to solving problem

1 it takes on the order of 2T*NT

computations
 The forward algorithm takes on the order

of N2T computations

Backward Probabilities
 Analogous to the forward probability, just

in the other direction
 What is the probability that given an HMM

and given the state at time t is i, the
partial observation ot+1 … oT is
generated?

!

"t (i) = P(ot+1...oT |qt = si,#)!

"

Backward Probabilities

!

"t (i) = aijb j (ot+1)"t+1(j)
j=1

N

#
$

%
&
&

'

(
)
)

!

"t (i) = P(ot+1...oT |qt = si,#)

Backward Algorithm
 Initialization:

 Induction:

 Termination:

!

"
T
(i) =1, 1# i # N

!

"t (i) = aijb j (ot+1)"t+1(j)
j=1

N

#
$

%
&
&

'

(
)
)
t = T *1...1,1+ i + N

!

P(O | ") = #
i
$1(i)

i=1

N

%

Problem 2: Decoding
 The solution to Problem 1 (Evaluation) gives us

the sum of all paths through an HMM efficiently.
 For Problem 2, we wan to find the path with the

highest probability.
 We want to find the state sequence Q=q1…qT,

such that

!

Q = argmax
Q '

P(Q' |O,")

Viterbi Algorithm
 Similar to computing the forward

probabilities, but instead of summing over
transitions from incoming states, compute
the maximum

 Forward:

 Viterbi Recursion:

!

" t (j) = " t#1(i)aij
i=1

N

$
%

&
'

(

)
* b j (ot)

!

"t (j) = max
1# i#N

"t$1(i)aij[] bj (ot)

Viterbi Algorithm
 Initialization:
 Induction:

 Termination:

 Read out path:

!

"
1
(i) = # ib j (o1) 1$ i $ N

!

"t (j) = max
1# i#N

"t$1(i)aij[] bj (ot)

!

"t (j) = argmax
1# i#N

$t%1(i)aij
&
' (

)
* +
2 # t # T,1# j # N

!

p
*

=max
1" i"N

#T (i)

!

qT
*

= argmax
1" i"N

#T (i)

!

qt
*

="t+1(qt+1
*
) t = T #1,...,1

Problem 3: Learning
 Up to now weʼve assumed that we know the

underlying model
 Often these parameters are estimated on

annotated training data, which has two
drawbacks:
 Annotation is difficult and/or expensive
 Training data is different from the current data

 We want to maximize the parameters with
respect to the current data, i.e., weʼre looking
for a model , such that

!

" = (A,B,#)

!

"'

!

"'= argmax
"

P(O | ")

Problem 3: Learning
 Unfortunately, there is no known way to

analytically find a global maximum, i.e., a model
, such that

 But it is possible to find a local maximum
 Given an initial model , we can always find a

model , such that
!

"'

!

"'= argmax
"

P(O | ")

!

"

!

"'

!

P(O | "') # P(O | ")

Parameter Re-estimation
 Use the forward-backward (or Baum-

Welch) algorithm, which is a hill-climbing
algorithm

 Using an initial parameter instantiation,
the forward-backward algorithm iteratively
re-estimates the parameters and
improves the probability that given
observation are generated by the new
parameters

Parameter Re-estimation
 Three parameters need to be re-

estimated:
 Initial state distribution:
 Transition probabilities: ai,j
 Emission probabilities: bi(ot)

!

"
i

Re-estimating Transition Probabilities

 Whatʼs the probability of being in state si
at time t and going to state sj, given the
current model and parameters?

!

" t (i, j) = P(qt = si, qt+1 = s j |O,#)

Re-estimating Transition Probabilities

!

" t (i, j) =
t (i) ai, j b j (ot+1) $t+1(j)

t (i) ai, j b j (ot+1) $t+1(j)
j=1

N

%
i=1

N

%

!

" t (i, j) = P(qt = si, qt+1 = s j |O,#)

Re-estimating Transition Probabilities

 The intuition behind the re-estimation
equation for transition probabilities is

 Formally:
!

ˆ a i, j =
expected number of transitions from state si to state sj

expected number of transitions from state si

!

ˆ a i, j =

" t (i, j)
t=1

T#1

$

" t (i, j ')
j '=1

N

$
t=1

T#1

$

Re-estimating Transition Probabilities

 Defining

As the probability of being in state si,
given the complete observation O

 We can say:

!

ˆ a i, j =

" t (i, j)
t=1

T#1

$

% t (i)
t=1

T#1

$

!

" t (i) = # t (i, j)
j=1

N

$

Review of Probabilities
 Forward probability:

The probability of being in state si, given the partial
observation o1,…,ot

 Backward probability:
The probability of being in state si, given the partial
observation ot+1,…,oT

 Transition probability:
The probability of going from state si, to state sj, given
the complete observation o1,…,oT

 State probability:
The probability of being in state si, given the complete
observation o1,…,oT

!

"
t
(i)

!

"
t
(i)

!

" t (i, j)

!

"
t
(i)

Re-estimating Initial State Probabilities

 Initial state distribution: is the
probability that si is a start state

 Re-estimation is easy:

 Formally:
!

"
i

!

ˆ "
i
= expected number of times in state si at time 1

!

ˆ "
i
= #

1
(i)

Re-estimation of Emission Probabilities
 Emission probabilities are re-estimated as

 Formally:

Where
Note that here is the Kronecker delta function and is not
related to the in the discussion of the Viterbi algorithm!!

!

ˆ b
i
(k) =

expected number of times in state si and observe symbol vk

expected number of times in state si

!

ˆ b
i
(k) =

"(o
t
,v

k
)#

t
(i)

t=1

T

$

#
t
(i)

t=1

T

$

!

"(o
t
,v

k
) =1, if o

t
= v

k
, and 0 otherwise

!

"

!

"

The Updated Model
 Coming from we get to
 by the following update rules:

!

" = (A,B,#)

!

"'= (ˆ A , ˆ B , ˆ #)

!

ˆ b
i
(k) =

"(o
t
,v

k
)#

t
(i)

t=1

T

$

#
t
(i)

t=1

T

$

!

ˆ a i, j =

" t (i, j)
t=1

T#1

$

% t (i)
t=1

T#1

$

!

ˆ "
i
= #

1
(i)

Expectation Maximization
 The forward-backward algorithm is an

instance of the more general EM
algorithm
 The E Step: Compute the forward and

backward probabilities for a give model
 The M Step: Re-estimate the model

parameters

