Machine Learning and Music (IFT6080 Winter 08)
Prof. Douglas Eck, Universite de Montréal

These slides follow closely the (English) course textbook
Pattern Recognition and Machine Learning
by Christopher Bishop




Goals of the course

® Understand basic concepts behind machine
learning algorithms
Prerequisites: Common sense

® Understand some elements of learning theory
Prerequisites: Probability, statistics, linear algebra

® |mplement and use machine learning algorithms
Prerequisites: Algorithms, programming,
numerical analysis




What is machine learning?

Automatic discovery of regularities in data.

Algorithms and techniques that allow computers
to "learn”.The major focus is to extract
information from data automatically, by
computational and statistical methods

Applications: natural language processing, search
engines, medical diagnosis, bioinformatics, stock
market analysis, game playing and robot
locomotion.

http://en.wikipedia.org/wiki/Machine_learning
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Relation to

Learning is fundamental characteristic of human
intelligence

To learn is to change for the better

One way to measure change is in terms of behavior
of organism in new but similar situations

Generalization is key: it is easy to learn by heart,
difficult to learn general-purpose strategies

Useful distinction: innate versus acquired knowledge
(for us: priors versus data)
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Example: Digit Recognition

® Example: 28 x 28 pixel image as vector X, |[x|=78

® Build machine able to identify digit {0,1,...,9} as
output
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heuristics yield poor
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http://yann.lecun.com/exdb/mnist/

http://www.cs.toronto.edu/~roweis/data.html
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Basic terminology

Training Set: N digits {x1,...,xn}

Target Vector: Unique vector t for each
target digit

Learned Function: y(x)
Training Phase: Process for determining y(x)

Test Set: Some digit images not found in
training set




Feature extraction

Transform original input variables into
some new space

Autocorrelation, 8.0000-sec windows 1 sec frames

MW
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Kinds of Machine Learning

Supervised learning:
mapping inputs to targets

Unsupervised learning:
finding similar examples in data

Semi-supervised learning:
combining labeled and unlabeled examples

Reinforcement learning:
maximizing reward via appropriate action
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Supervised Learning

Input vector X is matched to a target vector ¢;

Classification: Regression :
ti falls into discrete €i is continuous
categories




Unsupervised Learning

Only input vector X;j present; no t;

B
¥

 Clustering (above): Discover groups of similar examples
within data

* Density estimation: Determine distribution of data

* Dimensionality reduction: Find low-dimensional
representations for, e.g., visualization




Reinforcement Learning

® Find suitable actions to take in a given situation in
order to maximize reward

® No explicit training targets

® Discovery via trial and error

internal state ““reward
X YT X
'l,/ \)\I .
;\.é -j‘ l environment
A~

observation




Polynomial curve fitting

® Training set: N observations of x; X = (21, ...,:EN)T
o Targetsz N observations of t; T = (tl, ...,tN)T

® Goal is generalization: predict x for some
unseen t

0
Plot of training data (10 points).

Green curve shows function sin(2 1T x ) used to generate data
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Polynomial curve fitting

® Polynomial functional form: y

y(z, W) = wo + w1z + waz? + ... + wrr! = ijxj
=0

® Fix coefficient values W via error minimization.
Simple choice: minimize sum of the squares of the
errors between predictions y(xn,W) for each point x;
and corresponding target values t,

N

Z(y(nna W) o tn)Q




Error function
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The error function corresponds to (one half of) the sum of the
squares of the displacements (shown by vertical green bars) of each
data point from the function y(x,w)
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n=1

® Error is quadratic function of coefficients w

® Minimization of function,is thus unique



Model selection
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® What is the appropriate polynomial order?

® Balance over-fitting and under-fitting

® RMS allows comparison between different datasets




Training versus testing

—©— Training
—6— Test

Graph of the RMS error evaluated on training set and
on an independent test set.

® What is the best model given these results?

® Why does M=3 perform better than M=9? (Taylor expansion of
generating function sine suggests that even M=% should work!)




Overfitting as function of training set size

Plots of the solutions obtained by minimizing
using M=9 for N=15 data points (left) and
N=100 data points (right).




Overtuning of parameters

M=0 M= M=6
Magnitude of coefficients increases 0.35
dramatically with model size 232.37
5321.83

M=9 can pass through all data points
for N=10

48568.3 1

23163.30

Minimizing least squares is example of 640042.26
maximum likelihood; Overfitting is 10618000.52

general problem 1042400.18
557682.99

Many solutions; With Bayesian model,
the effective number of parameters
adjusts automatically to size of dataset.

125201.43

Table of coefficients for w* the unique
solution of minimization of RMS for
various polynomial orders.




Regularization

Large weights generally lead to
inflexible solutions

Add penalty term to error function

1 A
i(y(ﬂfn,w) T tn)2 + §HWH2

where

W] = wiw = wi + wi + ... + wi,

Statistics term: shrinkage

Quadratic regularization yields ridge
regression

Neural networks : weight decay Plots of M=9 using regularized errér function
on same |0-point dataset as before




Results with regularization

0.35

232.37

5321.83

48568.31

23163.30

640042.26

10618000.52

1042400.18

557682.99

125201.43

Table of coefficients for w* the unique solution
of minimization of RMS for various values for
regularization parameter A in

1

A
§(y(ﬂ7mw) —t,)° + §HWH2
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Results with regularization

Training
Test

y

/

-35 -30 In )\ -25 -20
RMS error versus In A for the M=9 polynomial

Regularization effectively controls complexity of model
Regularization parameter ()\) a hyperparameter of model.
Possible to overfit hyperparameters

Simple safeguard: use validation set (distinct from test set and training set)
to optimize model complexity
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Generalization is difficult

In principle, any number of consistent solutions may exist
Occam’s Razor: prefer the simplest solution. But what is “simple’?
With curve fitting, perhaps smooth == simple

Can use prior knowledge to rank solutions
E.g. prefer a sparse model for regularization and efficiency

ML searches in the space of possible models;
Models themselves search through hyperparameters and parameters

ML balances engineering, embedding prior knowledge in the model, cost
of obtaining data, etc...




Probability Theory
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Simple example of two coloured boxes each
containing frut (apples in green, oranges in orange)

® Randomly select a box B =r or b [red or blue]
such that p(B=r) = .6

® Then randomly select a piece of fruit F = a or o [apple or orange]
with equal probability across pieces of fruit in a box




Probability by counting

2 random variables X and Y;
N trials;

X takes values x; ... xm;

Y takes values y; ... yi;

Example for deriving Number where X=x; and Y=y; is nj

sum and product rules
using 2 random
variables X and Y

Number where X=x; is ¢

Number where Y=y; is r;




Sum and Izroduct Rules

~—

X

Sum rule: p(X

Conditional probability: p(Y

Product rule:




Sum rule:

Product rule:

Bayes’ Theorem:

Bayes’ Theorem

p(X =2;,Y =y;) =p(Y = y;| X = 2;)p(X
p(X,Y) = p(Y|X)p(X)

p(X[Y)p(Y)

p(Y]X) =

(From product rule plus symmetry p(X)

property p(X,Y) = p(¥,.X))

-

\_

Denominator can be seen as normalizer p(X) = Z p(X|Y)p(Y)
to ensure conditionals sum to .0 =

27




Slmple example

X

p(X)




Marginal vs Conditional Distributions

p(Y)

Marginal p(Y)

X X

Marginal p(X) Conditional p(X|Y=1)




Probability densities

>
ox £

Probability density p(x) over continuous variable x

Probabilities over events can be extended to continuous variables

Pr. of falling in interval (x, x + 0x) given by p(x)0x for dx—0

b
Pr. that x will lie in interval (a,b) given by p(x € (a,b)) = / p(x)dx

a

Sum rule for densities: p(z) /p(a;,y)dy

Product rule for densities: p(z,v) p(y|x)p(x)




Expectations and covariances

Expectation of f(x) is average value of f(x) under prob. dist. p(x)

Discrete distribution:

Continuous variables:

Sample of N points:

Conditional expectation:




Variance and covariance of f(x)

Variance provides a measure of how much variability there is in the
function f(x) and is defined in terms of expectation. Note that the
variance of a variable x can be treated as a special case.

varlf] = E| 3[f (a
varlf] = E| 5[

var|r

Covariance expresses extent to which two variables x and y vary
together.

cov[z,y] = Ez,zy] — E[z]Ely]
For vectors of random variables, covariance is a matrix.

covix,y] = Exylxy'|-EXE[y"]
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Bayesian probabilities

Make inference about the properties of our parameters W using
p(W), called the prior

Effect of observed data D = {t), t,,... tn} is expressed through
conditional p(D|w) and is called likelihood

Evaluate uncertainty in W after observing D in form p(w|D),
called the posterior

p(w|D)

d

posterior o< likelihood X prior

Denominator p(D) is normalization term
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Frequentist vs Bayesian

* Frequentist:
Set W to value such that p(D|wW) is maximized
W considered a fixed parameter
Use estimator, e.g., minimization of negative log likelihood
Consider distribution of data sets D (e.g. training /testing)
* Bayesian:
* Only consider a single dataset D

* Model uncertainty using distribution over w




Gaussian distribution

N (x|p, 0?)

L

1
N (x|, 0?) = 270?12 ewp{ ~ 5

Always positive; sums to 1.0

precision (3 =1/07

expectation [E|z] = / N (z|p, 0%z dz =

variance var [x] —




Maximizing likelihood

p(x)

Likelihood function for Gaussian distribution (red). Black points denote
data set {xn}. Likelihood function corresponds to product of blue values.

Maximum likelihood  p(x|u, o2 H/\/ T, 0
Log likelihood In p(x|p, 02) =
Sample mean via ML

Sample variance via ML
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ML underestimates variance

AS
A
A

(c)
Three samples from the green Gaussian, each consisting of 2 blue data points. Averaged
across samples the mean is correct but the variance is systematically underestimated.

L4




Derivation of unbiased variance

Specific proof
We will demonstrate why s2 is an unbiased estimator of the population variance. An estimator é for a parameter 0 is unbiased if E(Q) — { . Therefore, to prove that s2 is

unbiased, we will show that E( 32 \ = 02 . As an assumption, the population which the x .are drawn from has mean p and variance 2.

). 1 ~~, .o
E(S‘\=E(n_lzzl:(z 1\)
_n—lZE

n—lZE -—;u-(.z—,u\\)

n—1 Z {E((xi —p)) —2E((z; —p)(@ —p) +E (T — p)?) }

n

1

(Fggm wikipedia’s variance entry)




Curve fitting revisited

® Goal: predict target t for new values of input x on basis of training
inputs X=(x,..,xn)" and targets t=(tj,..,tn)"

® To express uncertainty over targets, assume that given x, target t
has Gaussian with mean equal to y(x,w) of the polynomial curve,

thus:
p(tlz,w, B) = N (tly(z, w), 3 ")

A
t

y(z,w) ,




Curve fitting revisited

® Train using maximum likelihood. Assume samples independently
drawn from p(t|z, w, 3) = N (t|ly(xz, w), 37")

N
p(tx,w,8) = | [ N(tnly(zn, w, 37"
n=1

N
I pltpe,w. ) =~ Syl w) — )2+ 5 In B - 5 n (2m)
n=1

® ML solution wML obtained by maximizing w.r.t. w. Last 2 terms fall

away. Scaling via B does not alter maximum. Thus maximizing

likelihood is the same as minimizing sum-of-squares error:
N

Z(y(nna W) T tn)Q




Curve fitting revisited

® Can also use ML to determine precision (maximize w.r.t. B) :

B

® Now that we have predictions for w and 3 we can make
predictions about x. These are now based on predictive distribution:

p(tlz, W, Bur) = N (tly(z, waw), By,)

® Consider Gaussian prior over W

(M+1)/2
p(wla) = N(w[0,a7'1) = (- exp




Maximizing posterior

® Recall that posterior is proportional to prior and likelihood:
p(wlx,t, a, 3) o< p(tlx, w, B)p(w|a)

® Take negative log of egn above and combine with:

N N

In p(tlx, w, 3) = Z{y (2, W) =t} + = In = - In (27)

and:

(M+1)/2
p(wl|a) = N(w|0,a 'I) = (%) exp{ — %WTW}

allows us to maximize posterior (MAP) via minimum of:

éi{ (x W)—t}2—|—gWTW
2 L Y\ L, n 5

Yielding sum-of-squares with regularization of A = /3
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Model selection

With ML, performance on training set not a good measure

Can divide data into training set for fixing W, validation set for
comparing models and testing set for final performance test

With sparse data can re-use data using cross-validation

run 1

run 2

run 3

run 4

However must train models multiple times; slow

Many approaches exist (Bayesian versus non-Bayesian)
Ex: Akaike information criterion (AIC) In p(D|wnr) — M
which balances best-fit log likelihood with complexity of

model (M = number of parameters). [Later in the course...]
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