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Abstract. We present an algorithm that predicts musical genre and artist from
an audio waveform. Our method uses the ensemble learner AdaBoost to select
from a set of audio features that have been extracted from segmented audio and
then aggregated. Our classifier proved to be the most effective method for genre
classification at the recent MIREX 2005 international contests in music information
extraction, and the second-best method for recognizing artists. This paper describes
our method in detail, from feature extraction to song classification, and presents
an evaluation of our method on three genre databases and two artist-recognition
databases. Furthermore, we present evidence collected from a variety of popular
features and classifiers that the technique of classifying features aggregated over
segments of audio is better than classifying either entire songs or individual short-
timescale features.

Keywords: genre classification, artist recognition, audio feature aggregation, mul-
ticlass AdaBoost, MIREX

1. Introduction

Personal computers and portable digital music players are increasingly
popular platforms for storing and playing music. (Apple alone has sold
more than 42 million iPod players and more than a billion songs from
their iTunes Store.) As personal music collections continue to grow, the
task of organizing and selecting music becomes more challenging. This
motivates research in automatic methods for search, classification, and
recommendation.

We deal here with one aspect of this challenge, the prediction of the
genre or artist of a song based on features extracted from its audio
waveform. This task is challenging for at least two reasons. First, the
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raw musical signal is very high dimensional. In CD quality audio, a
single monophonic waveform contains 44100 values per second. Thus a
stereo 3 minute song contains nearly 16 million samples. More compact
acoustic features can be extracted from the waveform. However, many
of these are computed over short frames of audio, thus reducing the
degree of compression achieved. Second, music databases can be very
large. The website www.itunesregistry.com recently reported an av-
erage iTunes collection size of 3, 542 songs. Commercial databases for
online music services can contain 500, 000 or more (personal commu-
nication, Benjamin Masse, president radiolibre.ca). To be useful for
real world applications, a classifier must scale to large datasets.

In this paper we present a genre and artist classifier that addresses
these issues. We use the ensemble learner AdaBoost, which performs
large-margin classification by iteratively combining the weighted votes
of a collection of weak learners. This approach has two advantages in
the context of the challenges we face. First, our model uses simple
decision stumps, each of which operates on a single feature dimension.
Thus our model performs feature selection in parallel with classifica-
tion. Although a feature set with redundant or non-informative fea-
tures will slow down computation, those features will be left behind by
AdaBoost as it iteratively selects informative features. Second, Ad-
aBoost scales linearly with the number of training points provided. If
we limit the number of learning iterations, our model has the potential
to deal with very large datasets. This compares favorably with other
state-of-the-art large margin classifiers such as SVMs, which have an
overall computational complexity that is quadratic in the number of
data points.

This paper makes two contributions. First we provide experimental
evidence that our algorithm is competitive with other state-of-the-art
classifiers for genre and artist recognition. Second we explore the issue
of feature extraction, focusing on the challenge of aggregating frame-
level acoustic features into a form suitable for classification. We analyze
experiments on several classifiers using different aggregation segment
sizes. The results support the general claim that aggregation is a useful
strategy, and suggest reasonable limits on segment size.

The paper is structured as follows: in Section 2 we discuss previous
attempts at music genre and artist recognition, focusing separately
on feature extraction, feature aggregation and classification. In Sec-
tion 3 we describe our AdaBoost model and aggregation technique.
In Section 4 we provide experimental results for our model. This section
includes a discussion of the results of the MIREX (Music Information Re-
trieval Evaluation eXchange) 2005 genre prediction contest and artist
recognition contests where our algorithms won first and second prizes,
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respectively. In Section 5 we present the experimental results from
our investigation of segment length for feature aggregation. Finally in
Section 6 we offer concluding remarks and discuss future work.

2. Genre and Artist Classification

In the following section we treat genre and artist classification as a
three-step process. While we do not provide a survey, we note that
much previous work in music classification fits in this framework and
describe it below. The first step is the extraction of acoustic features
from short frames of audio data that capture information such as timbre
and rhythm. The second step is the aggregation of frame-level features
into more compressed segment-level features. The third step is the
prediction of genre or artist for a song using these compressed features
as input to a classifier.

2.1. Feature Extraction and Aggregation

To our knowledge there is no accepted theory of which features are
best for music classification tasks such as genre and artist recognition.
Many different methods have been tried, including Fourier analysis
and related measures such as cepstral analysis (yielding MFCCs). In
addition to the family of Fourier methods, results have been reported
for wavelet analysis (Lambrou et al., 1998), autoregression (Ahrendt
and Meng, 2005) and the collection of statistics such as zero-crossing
rate, spectral centroid, spectral roll-off and spectral spread. A survey by
Aucouturier and Pachet (2003) describes a number of popular features
for music similarity and classification, and research continues (e.g. Bello
et al. (2005), Pampalk et al. (2005)). In Section 3 we describe the
specific features we use in our model.

In order to capture relatively fine-timescale structure such as the
timbre of specific instruments, features are often extracted from short
(∼ 50ms) frames of data. Our goal, however, is to predict something
about an entire song which encompasses many frames (∼ 20 per second
in our implementation). This raises the question of how to use this
frame level information.

One option is to compress these frame-level features into a single set
of song-level features. Tzanetakis and Cook (2002) and Li et al. (2003)
fit individual Gaussians to each feature (diagonal covariance among
Gaussians). More recently, Mandel and Ellis (2005a) generated song-
level features using Gaussian densities with full-covariance. Gaussian
mixtures have also been used to generate song-level features by, e.g.,
Aucouturier and Pachet (2002) and Pampalk et al. (2005).
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On the other end of the spectrum it is also possible to first classify
directly the frame-level features themselves, and then to combine the
individual classifiers into song labels by a majority vote. Xu et al.
(2003), for example, reports good genre classification results on a small
dataset using this approach. West and Cox (2004), however, note a
significant improvement in performance when they use a “memory”
feature, which is the mean and variance of frame-level features over the
previous second.

A third option is to aggregate frame-level features over an audio
segment that is longer than a single frame but shorter than an entire
song. As in the second approach, individual segment classifications
are combined to make a decision about an entire song. This tech-
nique was described in Tzanetakis and Cook (2002), who summarized
a one-second ’texture window’ with feature means and variances before
performing classification. In a similar work, Ahrendt and Meng (2005)
used an auto-regressive model in place of Gaussians. West and Cox
(2005) used an onset detection algorithm to partition the song into
segments that correspond to single notes.

While promising results have been reported for a wide range of
segment sizes (all the way from the frame to the song), no one to
our knowledge has undertaken a systematic exploration of the effects
of segment size on classification error. In Section 5 we investigate this
question by training several algorithms using the same dataset. For
all experiments we use the popular technique of fitting independent
Gaussians (diagonal covariance) to each feature in a segment. We then
vary segmentation size and analyze results for evidence that certain
segment lengths work better than others.

2.2. Classification

A wide range of algorithms have been applied to music classification
tasks. These include minimum distance and K-nearest neighbor in Lam-
brou et al. (1998), and Logan and Salomon (2001). Tzanetakis and
Cook (2002) used Gaussian mixtures. West and Cox (2004) classify
individual frames by Gaussian mixtures, Linear Discriminant Analysis
(LDA), and regression trees. Ahrendt and Meng (2005) classify 1.2s
segments using multiclass logistic regression.

Several classifiers have been built around Support Vector Machines
(SVMs). Li et al. (2003) reported improved performance on the same
dataset as Tzanetakis and Cook (2002) using both SVM and LDA.
Mandel and Ellis (2005b) used an SVM with a kernel based on the
symmetric KL divergence between songs. Their model performed par-
ticularly well at MIREX 2005, winning the Artist Recognition contest
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and performing well in the Genre Recognition contest as well. While
SVMs are known to perform very well on small data sets, the quadratic
training time makes it difficult to apply them on large music databases.
This motivates research on applying equally well-performing but more
time efficient algorithms to music classification.

3. Algorithm

In this section we describe a genre and artist classifier based on mul-
ticlass AdaBoost. In keeping with the organization of Section 2, we
organize this section around feature extraction, feature aggregation,
and classification.

3.1. Acoustic Feature Extraction and Aggregation

For all experiments, we break an audio waveform into short frames
(46.44ms, or 1024 samples of audio at 22050Hz). The feature sets for
experiments presented in this work are drawn from the following list.1

Those unfamiliar with standard methods of audio signal processing may
refer to Kunt (1986) for background.

− Fast Fourier transform coefficients (FFTCs). Fourier analysis is
used to analyze the spectral characteristics of each frame of data.
In general we computed a 512-point Fourier transform F(s) of each
1024-point frame s. The 32 lowest frequency points were retained
for our experiments.

− Real cepstral coefficients (RCEPS). Cepstral analysis is commonly
used in speech recognition to separate vocal excitation from the
effects of the vocal tract. See Gold and Morgan (2000) for an
overview. RCEPS is defined as real(F ′(log(|F(s)|))) where F is
the Fourier transform and F ′ is the inverse Fourier transform.

− Mel-frequency cepstral coefficients (MFCC). These features are
similar to RCEPS, except that the input x is first projected accord-
ing to the Mel-scale (Junqua and Haton, 1996), a psycho-acoustic
frequency scale on which a change of 1 unit carries the same
perceptual significance, regardless of the position on the scale.

− Zero-crossing rate (ZCR). The zero-crossing rate (ZCR) is the rate
of sign-changes along the signal. In a signal with a single pitched

1 Our feature extractor is available as a C program from the first author’s website:
http://www-etud.iro.umontreal.ca/~bergstrj.
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instrument, the ZCR is correlated with the dominant frequency
(Kedem, 1986).

− Spectral spread, spectral centroid, spectral rolloff Spectral spread
and spectral centroid are measures of how power is distributed over
frequency. Spectral spread is the variance of this distribution. The
spectral centroid is the center of mass of this distribution and is
thus positively correlated with brightness. Spectral rolloff feature
is the a-quantile of the total energy in |Fs|.

− Autoregression coefficients (LPC). The k linear predictive coeffi-
cients (LPC) of a signal s are the product of an autoregressive
compression of the spectral envelope of a signal. These coefficients
can be computed efficiently from the signal’s autocorrelation by
the Levinson-Durbin recursion (Makhoul, 1975).

After computing these frame-level features, we group non-overlapping
blocks of m consecutive frames into segments. We summarize each
segment by fitting independent Gaussians to the features (ignoring co-
variance between different features). The resulting means and variances
are the input to weak learners in AdaBoost.

3.2. Classification with AdaBoost

After extracting the segment-level features, we classified each segment
independently using AdaBoost. The training set was created by la-
beling each segment according to the song it came from. AdaBoost
(Freund and Schapire, 1997) is an ensemble (or meta-learning) method
that constructs a classifier in an iterative fashion. It was originally
designed for binary classification, and it was later extended to multi-
class classification using several different strategies. In this application
we decided to use AdaBoost.MH (Schapire and Singer, 1998) due to
its simplicity and flexibility.

In each iteration t, the algorithm calls a simple learning algorithm
(the weak learner) that returns a classifier h(t) and computes its coeffi-
cient α(t). The input of the weak classifier is a d-dimensional observation
vector x ∈ Rd containing the features described in Section 2.1, and the
output of h(t) is binary vector y ∈ {−1, 1}k over the k classes. If h

(t)
` = 1

the weak classifier “votes for” class ` whereas h
(t)
` = −1 means that it

“votes against” class `. After T iterations, the algorithm outputs a
vector-valued discriminant function

g(x) =
T∑

t=1

α(t)h(t)(x).
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To obtain a single label, we take the class that receives the “most vote”,
that is, f(x) = arg max` g`(x) .

When no a-priori knowledge is available for the problem domain,
small decision trees or, in the extreme case, decision stumps (decision
trees with two leaves) are often used as weak classifiers. Assuming that
the feature vector values are ordered beforehand, the cost of the weak
learning is O(nkd), so the whole algorithm runs in O

(
nd(kT + log n)

)
time. In the rest of the paper, we will refer to this version of Ad-
aBoost.MH as AB.Stump. We also experimented with small decision
trees as weak learners, and we refer to this version of AdaBoost.MH
as AB.Tree.2

Note that if each weak classifier depends on only one feature (as
a decision stump does) and the number of iterations T is much less
than the number of features d, then AdaBoost.MH acts as an im-
plicit feature extractor that selects the T most relevant features to the
classification problem. Even if T > d, one can use the coefficients α(t)

to order the features by their relevance.

4. Experiment A – MIREX 2005

In this section we present results from our entry in the 2005 MIREX
(Music Information Retrieval Evaluation eXchange) contest. MIREX is
an annual series of contests whose main goal is to present and compare
state-of-the-art algorithms from the music information retrieval com-
munity. It is organized in parallel with the ISMIR conference. We par-
ticipated in two contests: Audio Genre Classification (Bergstra et al.,
2005a), and Audio Artist Identification (Bergstra et al., 2005b). Both
contests were straightforward classification tasks. Two datasets were
used to evaluate the submissions: Magnatune3, and USPOP4. Both
databases contain mp3 files of commercially produced full-length songs.
The Magnatune database has a hierarchical genre taxonomy with 10
classes at the most detailed level (ambient, blues, classical, electronic,
ethnic, folk, jazz, new age, punk, rock), whereas the USPOP database
has 6 genres (country, electronic and dance, new age, rap and hip hop,
reggae, rock). Each of the datasets has a total of 77 artists. Table 4
summarizes the parameters of the experimental setup.

Competition rules demanded that every algorithm must train a
model and make a class prediction for the elements of the test set

2 Our implementation of AdaBoost.MH is available as a C++ program from
http://sourceforge.net/projects/multiboost.

3 www.magnatune.com
4 www.ee.columbia.edu/~dpwe/research/musicsim/uspop2002.html
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Table I. Summary of databases used in our experiments.

Database Magnatune USPOP Tzanetakis

Type Genre Artist Genre Artist Genre

Number of training files 1005 1158 940 1158 800

Number of test files 510 642 474 653 200

Number of classes 10 77 6 77 10

Average song length ∼ 200s 30s

within 24 hours. Due to the large number of contest submissions, con-
test organizers could not perform a K-fold cross validation of results.
Only a single train/test run was performed for each <entry, database>
pair.

4.1. Parameter Tuning

The 24 hour limit on the training time required us to take extra care
in setting the hyper-parameters of the algorithm: the number of boost-
ing iterations T and the number of frames per segment m. Since the
contest databases Magnatune and USPOP were kept secret, we tuned
our algorithm using a database of song excerpts, furnished to us by
George Tzanetakis. This is the same dataset used in Tzanetakis et al.
(2002), Tzanetakis and Cook (2002), and Li and Tzanetakis (2003).
This database has a total of 1000 30-second song openings. Each ex-
cerpt is labeled as one of ten genres (blues, classical, country, disco,
hiphop, jazz, metal, pop, reggae, rock). To our ears, the examples are
well-labeled, and exhibit a wide range of styles and instrumentation
within each genre. Although the artist names are not associated with
the songs, our impression from listening to the music is that no artist
appears twice. Thus, the so-called producer effect, observed in Pampalk
et al. (2005) is not a concern for these parameter tuning experiments.5

To tune the hyper-parameters we extracted frame-level features (256
RCEPS, 64 MFCC, 32 LPC, the lowest 32 of 512 Fourier coefficients,
16 spectral rolloff, 1 LPC error, and the zero-crossing rate) from the

5 The producer effect comes from the fact that songs from the same album tend
to look the same through the lens of popular feature-extractors. If an album is
split between training and testing sets, then we can expect artificially high test-set
performance.
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Tzanetakis database, and estimated parameter performance by 5-fold
cross-validation. This gave us 800 training points, slightly lower than in
the MIREX contests. More importantly, the length of a song excerpt in
the Tzanetakis database is 30s, much shorter than the average length of
a commercially produced song which we estimated to be ∼ 200s. This
means that using the same segment length m and number of iterations
T , 24 hours of training on the Magnatune and USPOP databases would
be roughly equivalent to 3 hours of training on the Tzanetakis database.
Thus, we set the time limit in our tuning experiments to 2 hours.

Although AdaBoost is relatively resistant to overfitting, the test
error may increase after a large number of iterations. To avoid over-
fitting, we can validate T using data held-out from the training set.
In our trials, we did not observe any overfitting so we decided not
to validate T . Instead we let the algorithm run the longest possible
within the time limit. In fact, given the time limit, underfitting was a
more important concern. Since the number of training examples n (and
so the training time) is inversely proportional to the segment length
m, selecting a small m might prevent our algorithm from converging
within 24 hours. In Section 5 we present an experimental study in
which we determined that the optimal segment length is between 50
and 100 frames, if AdaBoost is permitted to converge. Based on our
performance on the Tzanetakis database, however, we estimated that
setting m = 100 could result in our algorithm being terminated before
converging. Thus, to avoid underfitting, in the contest submission we
set m = 300 which corresponds to segments of length 13.9s. Since the
Tzanetakis database did not contain different song excerpts from the
same authors, we did not tune the algorithm separately for the artist
recognition contest: our submissions in the two contests were identical.

4.2. Results

The overall performance of each entry was calculated by averaging the
raw classification accuracy on USPOP with a hierarchical classification
accuracy on Magnatune.6 Table II and Table III summarize the contest
results.7

Our submissions based on AB.stump and AB.tree ranked first
and second on both genre tasks. On the artist databases, our algorithms
placed first and third, and second and third.

6 More details regarding the evaluation procedure can be found at http:

//www.music-ir.org/mirex2005/index.php/{Audio_Genre_Classification,

Audio_Artist_Identification}.
7 More detailed results, including class confusion matrices and brief descrip-

tions of each algorithm, can be found at http://www.music-ir.org/evaluation/

mirex-results/audio-{genre,artist}/index.html.
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Table II. Summarized results for the Genre Recognition contest at MIREX 2005.

Rank Participant Overall Magnatune USPOP

1 AB.tree 82.34% 75.10% 86.92%

2 AB.stump 81.77% 74.71% 86.29%

3 Mandel & Ellis 78.81% 67.65% 85.65%

4 West, K. 75.29% 68.43% 78.90%

5 Lidy & Rauber [1] 75.27% 67.65% 79.75%

6 Pampalk, E. 75.14% 66.47% 80.38%

7 Lidy & Rauber [2] 74.78% 67.65% 78.48%

8 Lidy & Rauber [3] 74.58% 67.25% 78.27%

9 Scaringella, N. 73.11% 66.14% 75.74%

10 Ahrendt, P. 71.55% 60.98% 78.48%

11 Burred, J. 62.63% 54.12% 66.03%

12 Soares, V. 60.98% 49.41% 66.67%

13 Tzanetakis, G. 60.72% 55.49% 63.29%

Table III. Summarized results for the Artist Identification contest at MIREX 2005.

Rank Participant Mean Performance Magnatune USPOP

1 Mandel & Ellis 72.45% 76.60% 68.30%

2 AB.stump 68.57% 77.26% 59.88%

3 AB.tree 66.71% 74.45% 58.96%

4 Pampalk, E. 61.28% 66.36% 56.20%

5 West & Lamere 47.24% 53.43% 41.04%

6 Tzanetakis, G. 42.05% 55.45% 28.64%

7 Logan, B. 25.95% 37.07% 14.83%

Note that all the tests were done on single folds (not cross-validation)
and there were only around 500 test files in each database, so the sig-
nificance of the differences is difficult to assess. However we can assert
that in trials before the contest, our model obtained a classification rate
of 83% on the Tzanetakis database. This compares favorably with the
best published classification rate on the Tzanetakis database, of 71%
obtained by Li et al. (2003).
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5. Experiment B – Choosing Segment Length

In this section we investigate the effect of segment length on classifica-
tion error. Selecting the correct segment length m is crucial both for
achieving the highest possible classification accuracy and for calibrating
training time. In the experiments described below we examine how the
segment length affects classification accuracy given unlimited training
time. Based on our experiments we conclude that for several popular
genre prediction algorithms, the optimal segment length is around 3.5
seconds, with good values ranging from approximately 2 to 5 seconds.

To pursue this question, we tested four classifiers on the Tzanetakis
database: AB.stump, AB.tree, sigmoidal neural network (ANN), and
SVM with Gaussian kernel. The ANN (Bishop, 1995) was a feed-forward
network of 64 hidden nodes, fit by gradient descent. An implicit L2-
norm weight-decay was introduced by initializing the network param-
eters to small values, and performing early-stopping using a validation
set. No explicit regularization was applied during optimization. Clas-
sification was performed by a bagged ensemble of 10 networks, as
described in (Breiman, 1996). To train our SVM (Cortes and Vap-
nik, 1995), we optimized the width of the kernel first—using a rel-
atively low value of the soft-margin parameter—and then optimized
the soft-margin parameter C, while fixing the optimal width. Both of
the optimizations were done on a validation set and the optimal set of
hyper-parameters was selected by 5-fold cross-validation. Both versions
of AdaBoost.MH were trained for 2500 iterations, which sufficed to
reach a plateau in performance.

To evaluate the robustness of the segmentation procedure across
different feature types, we ran separate experiments with four differ-
ent feature sets described in Section 2: 64 MFCC, 128 RCEPS, 128
FFTC, and 19 MISC (including 1 ZCR, 1 Spectral Centroid, 1 Spectral
Spread, and 16 Rolloff). Each of the 16 <feature set,classifier> pairs
was evaluated using m ∈ {40, 50, 75, 100, 150, 300, 600} frames/segment
(corresponding to 1.8s, 2.3s, 3.5s, 4.6s, 7.0s, 13.9s, and 27.9s, respec-
tively). All tests were done using 5-fold cross-validation. For all tests,
we split the dataset at the song level to ensure that the segments from
a single song were put into either the training or test set.

Figures 1 and 2 show the results. In all experiments, the general
trend was that the segment classification rate rose monotonically with
the segment length, and the whole-song classification rose and then
fell. Although the fold variance makes it difficult to identify a clear
peak, it appears that whole-song performance is optimal at around
3.5s segments across feature types and classification algorithms, except
for the SVM that seems to prefer slightly longer segments. In the case
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Figure 1. The classification accuracy on four different feature sets trained with
AdaBoost.MH using segment lengths m ∈ {40, 50, 75, 100, 150, 300, 600}.

of the neural network, we do not see the same degradation in segment-
level performance as with AdaBoost, but we see the same rise and
fall of the whole-song performance. The performance of the SVM is
comparable to that of AdaBoost and the neural net when we use
MFCC and RCEPS features, but it is much worse on the FFTC and
MISC features. Note that it was impractical to obtain results using
the 2.3- and 1.8-second segments with the SVM due to the training
time which is quadratic in the number of training points. Figure 3
summarizes the results for every feature and algorithm on an entire
song and on a segment size of 3.5 seconds.

The general rise and fall of the song-level classification can be ex-
plained in terms of two conflicting effects. On one hand, by partitioning
songs into more pieces, we enlarge our training set. This is universally
good for statistical learning, and indeed, we see the benefits in each
classifier. On the other hand, smaller segments mean that our aggregate
features (frame-level sample-means and sample-variances) have higher
variance. For small-enough segments, the value of aggregating frame-
level features is null, and previous work, particularly West and Cox
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Figure 2. The classification accuracy on four different feature sets trained with ANN
and SVM using segment lengths m ∈ {40, 50, 75, 100, 150, 300, 600}.
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Figure 3. The classification accuracy on four feature types and four classification
algorithms using 3.5s segments.

(2004), supports the general claim that some amount of aggregation is
necessary for good performance.

6. Conclusions and Future Work

In this work, we have presented a supervised learning algorithm for
classifying recorded music. We have demonstrated with results on three
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databases that this algorithm is effective in genre prediction; to our
knowledge, at the time of writing these results are the highest genre pre-
diction rates published for each of Tzanetakis’ database, Magnatune,
and for the USPOP database. We attribute this effectiveness to our
particular strategy for aggregating frame-level features, and to the use
of AdaBoost to produce a classifier.

Recent work by Lippens et al. (2004) and an earlier work by Soltau
(1997) (described in Aucouturier and Pachet (2003)) suggest standards
to which we may hold these results. Lippens et al. (2004) conducted a
study in which people were asked to do genre-recognition on a small
dataset involving six quite different genres. It was found that on aver-
age, people were correct only around 90% of the time. In a Turing-test
conducted by Soltau (1997), he finds that his automatic music classifier
is similar in performance to 37 subjects who he trained to distinguish
rock from pop using the same training and test sets. Given the steady
and significant improvement in classification performance since 1997,
we wonder if automatic methods are not already more efficient at
learning genres than some people.

Future work would explore the value of segmentation when addi-
tional frame-level features act on longer frames to compute rhythmic
fingerprints and short-term timbre dynamics. This includes evaluating
features extracted from the beat histogram (Tzanetakis and Cook,
2002) and the autocorrelation phase matrix (Eck and Casagrande,
2005). We could also enrich the label set. Although in our experi-
ments we considered a single label for each observation (each song
belongs to one and only one category), it is more realistic to use hier-
archical, or generally overlapping class labels for labeling music by its
style. AdaBoost.MH extends naturally to multi-label classification by
allowing the label vectors to contain more than one positive entry.

Music classification algorithms are approaching a level of maturity
where they can aid in the hand labeling of data, and can verify large
labeled collections automatically. However, to be useful in a commercial
setting, these algorithms must run quickly and be able to learn from
training sets that are one, two, even three orders of magnitude larger
than the ones dealt with in our experiments. To this end, it would be
useful to establish large databases of music that can be legally shared
among researchers.
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