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ABSTRACT

We introduce a novel method for estimating beat
from digital audio. We compute autocorrelation
such that the distribution of energy in phase space is
preserved in a so-called Autocorrelation Phase Ma-
trix (APM). We estimate beat by computing indi-
vidual APMs over short overlapping segments of an
onset trace derived from audio. Then an adaptation
of Viterbi decoding is used to search the APMs for
metrical combinations of points that change smoothly
over time in the lag/phase plane. Because small
temporal perturbations are seen as local movements
on the APM, the Viterbi search can be bounded us-
ing a small 2D Gaussian window. The resulting
algorithm jointly estimates tempo, meter and beat.
As is always the case with Viterbi decoding, an on-
line version is possible although best performance
is achieved offline. We report results on an anno-
tated dataset of 60-second musical segments.

Index Terms— Correlation, Viterbi decoding,
beat induction, Autocorrelation Phase Matrix

1. INTRODUCTION

One challenge in estimating beat is that there is no
single correct answer. That is, several good beat as-
signments can exist in parallel. Furthermore, beat
can shift both in time (e.g. between different levels
of the metrical hierarchy) and in phase (e.g. from
unsyncopated to syncopated). Finally, beat can change
in the middle of a piece, such as when the meter
and tempo shifts are encountered. These observa-
tions suggest that beat estimation is a process where
multiple hypotheses about beat are considered in
parallel and where it is possible to switch between
these hypotheses.

A full full survey of computational beat mod-
els is impossible due to space constraints; we men-
tion two approaches here due to their relevance to

our approach. Scheirer [1] uses comb-filter res-
onator banks to estimate tempo. He argued that
phase could be recovered via an examination the
internal states of the bank delays. With reliable
phase information it should be possible to estimate
beat. The model from Klapuri et al. [2] uses a sim-
ilar two-stage estimation process where tempo pre-
diction is followed by phase recovery. To estimate
tempo, the model integrates evidence at tatum, tac-
tus and measure levels. This is achieved using a
Hidden Markov Model (HMM) with hand-encoded
transition probabilities set using prior knowledge
about human tapping rates. Viterbi decoding—a
technique common in speech recognition [3]—is
employed to find the most likely sequence of HMM
states over time.

Our work is perhaps most similar to that of Kla-
puri et al. in that we integrate evidence at different
timescales and we use Viterbi decoding to find an
optimal sequence of predictions. What differs in
our work is (a) instead of considering only tatum,
beat and tactus evidence, we consider arbitrarily-
deep metrical hierarchies, (b) we use autocorrela-
tion instead of comb filtering and (b) we estimate
tempo, beat and meter in a single step.

2. ALGORITHM

In previous work [4] we described a data structure—
the Autocorrelation Phase Matrix (APM)—that al-
lows for the computation of autocorrelation without
loss of phase information. To sum, instead of stor-
ing the results for a particular lag-k correlation in a
single value, the results over time (t) are stored in
row k of the APM. The column index for storing
the correlation for x(t)x(t + k) is indexed using
tmodk. By summing row-wise across the matrix,
standard autocorrelation is recovered. More impor-
tantly phase information about the distribution of
autocorrelation energy can be used to perform beat



tracking.
Background: As in most if not all beat estimation
models, the first step is to extract an onset trace us-
ing an onset detection function. In developing the
algorithm we tried several existing approaches in-
cluding that of Scheirer [1]. See Bello et al. [5]
for an overview. In the end none of the complex
approaches worked better than computing a 1024-
point Constant-Q spectrogram, differentiating the
log magnitude of the spectrogram over time and
summing over frequency to yield an envelope. Fig-
ure 1 shows the signal, the envelope and the auto-
correlation of the envelope. We compute the spec-
trogram such that a frame comprises 10msec of au-
dio data with 512-points of overlap. The hop size
h of the spectrogram is calculated as follows: h =
fsorig/fsenv + 512 where fsorig is the sampling
rate of the signal, fsenv is the desired sampling rate
for our envelope (100Hz) and 512 is the number of
overlapped points. In the figure the actual tempo of
the song (484ms; 124 BPM) is marked with a ver-
tical line. This tempo and its integer multiples are
also marked with stars. Levels in the metrical hi-
erarchy (periodicity of quarter note, half note, etc.)
are marked with triangles.
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Fig. 1. Timeseries (top), envelope (middle) and auto-
correlation (bottom) of a ChaChaCha from the ISMIR
2004 Tempo Induction contest (Albums-Cafe Paradiso-
08.wav). A vertical line marks the actual tempo (484
msec, 124bpm). Stars mark the tempo and its integer
multiples. Triangles mark levels in the metrical hierar-
chy.

Autocorrelation Phase Matrix (APM): The APM
is an extension of standard autocorrelation. For
each lag k of interest, the APM stores intermedi-
ate results of autocorrelation in a vector of length k
such that the results of the dot product from the au-
tocorrelation are distributed into that vector by their
phase (φ). Phase is constrained such that for all k,
φ < k hence resulting in triangular matrices. Ob-

serve that the APM (here denoted as P ) preserves
the distribution of autocorrelation energy in phase
space.

P (k, φ) =
(N/k)−1∑

i=0

x(ki + φ)x(k(i + 1) + φ) (1)

At the same time, a counter matrix C allows for the
computation of unbiased autocorrelation: C(k, φ) =
N/k.

For applications such as beat induction, it is
useful to have a causal model so that processing can
be done online. The pseudo-code in Algorithm 1
describes one simple causal version of the APM.
Our own Matlab/C++ implementation is implemented
using an optimized version of this algorithm.

Algorithm 1 Update for single timestep t.
Input: X {buffered signal}
Input: K {set of m lags; max lag is n}
Input: P,C {APM and counter; size [m,n]}

1: for i← 0 to m− 1 do
2: if t >= K[i] then
3: φ← mod(t, K[i])
4: P [i, φ]← P [i, φ] + X[t] ∗X[t−K[i]]
5: C[i, φ]← C[i, φ] + 1
6: end if
7: end for

The key idea behind the APM is its ability to
reveal repeating phase-correlated structure in a sig-
nal. This can be seen in the row-wise repetition of
structure (Figure 2), which was computed from the
same ChaChaCha song used above. Autocorrelation

Fig. 2. The APM for Albums-Cafe Paradiso-08.wav, the
same song as shown in Figure 1. On the left the autocor-
relation is recovered by summing rows in the matrix.

a(k) and unbiased autocorrelation a′(k) can be re-



covered from the APM by summing all phase val-
ues for each lag, where the unbiased version is nor-
malized using counter matrix C. Let P ′ = P/C
(where “/” is point-wise division) be the unbiased
APM. Then:

a(k) =
k−1∑
i=0

P (k, i) (2)

a′(k) =
1
k

k−1∑
i=0

P ′(k, i) (3)

Estimating Beat: Beat is estimated by looking for
persistent high-magnitude < phase, lag > values
in the APM. It is possible to do this using online up-
dating of a single APM. In this case a decay term
would enforce “forgetting”, thus keeping the APM
from saturating over time. However, it is a chal-
lenge to compute an optimal trajectory through time
using this updating scheme. Instead we compute
APMs over overlapping segments of the signal1.
We can then use efficient Viterbi decoding to com-
pute an optimal trajectory over time through the
APMs. Once we have a generated this optimal se-
quence, beats can be generated using the predicted
< phase, lag > values.

Viterbi decoding [3] is a two-pass process over
a lattice of states. In our case presume that we have
computed a sequence of unbiased APMs P ′

1...P
′
j

over short segments. To compute a Viterbi decod-
ing, we must know the probability of transition-
ing from any < phase, lag > state in Pj to any
< phase, lag > state in Pj+1. Viterbi decoding
can then be computed using a two-pass process.
In the forward pass, two values Vj (value) and Bj

(backtrace) are computed for each < phase, lag >
state in each of the j APMs. Value Vj stores the
optimal value for a state given previous context.
Backtrace Bj stores which previous state yielded
this optimal value. The optimal sequence is com-
puted using a second pass that moves backwards in
time starting with the final APM P ′

j and following
the index stored in Bj to select the optimal value
for P ′

j−1. Viterbi decoding is used in speech recog-
nition for finding an optimal sequence of phonemes
for an utterance. One advantage of Viterbi decod-
ing is that it is capable of switching rapidly in re-
sponse to changing evidence. An online version of
Viterbi decoding can be computed with some loss
in performance.

1Segment length and overlap amount are hyper-parameters
whose values did not prove to be overly-important to perfor-
mance. We use a segment length of 5 seconds with an overlap
of 2.5 seconds.

In general Viterbi decoding is slow to compute
for an APM, which has ∼ N = 10, 000 states. The
slow step is the forward pass where for each state
we must consider which previous state yielded the
best results. This yields a complexity of N2 for
each step j. We can greatly lower this complex-
ity by implementing a local smoothness constraint.
Observe that changes in beat resulting from tempo
variation are generally small in magnitude. On the
APM these small timing perturbations are seen as
local movement on the APM. That is, slight changes
in tempo yield small movements up and down (in
lag; relating to tempo shift) or left and right (in
phase; relating to jitter). We can take advantage
of this local geometry to impose a constraint on the
search done in the Viterbi forward step. Specifi-
cally we use a small (e.g. w = 11) 2-dimensional
Gaussian highest at its center and tailing off to some
base probability σbase to be used as the probabil-
ity for all states outside of the Gaussian. We com-
pute the global maximum state value for an entire
APM P ′

j and multiply it by σbase. For each state
in the APM we only need to compute the value
Vj for the values inside of the Gaussian window.
Yet it remains possible to transition away from the
Gaussian window by following the global maxi-
mum. This yields a tractable and, in practice, well-
performing Viterbi decoding procedure that requires
N + Nw2 ∼= 100K operations per step rather
than N2 ∼= 1M operations per step, and runs well
in Matlab in a few seconds.

Integrating Metrical Evidence: In practice the al-
gorithm described above does not work very well
for some performances, especially those lacking per-
cussive rhythm instrumentation. One problem is
that at any single level of the metrical hierarchy (a
row in the APM) there can be considerable noise.
This noise can be lowered significantly by incorpo-
rating evidence from multiple levels in the metrical
hierarchy. In our simulations we considered four
meters: 2/4, 3/4, 4/4 and 12/8 though others are
possible. Evidence from the different levels sug-
gested by these meters were incorporated by adding
in phase-aligned values from different metrically-
aligned levels of the APM. Thus a single APM is
transformed into several (four in our case) “maps”
that store in a single < phase, lag > state the orig-
inal state value plus the phase-aligned value for the
subdivided lag and the sum of phase-aligned values
for the super-division. Viterbi alignment can be
performed individually over each of the maps and a
single winning meter chosen (as is done for the re-
sults reported here) or can be performed over the
combined state space of these four maps, allow-



ing for switching between meters in the middle of
a performance.

3. RESULTS

We present beat estimation results using the 220-
song annotated database from [6]. This database
spans six styles including Dance (N=40), Rock/Pop
(N=68) Jazz (N=40) Folk (N=22) Classical (N=30)
and Choral (N=22) and offers two metrical levels
of beat annotation.

In Figure 3 we report an error measure from
Dixon [7]: Dacc = n

n+F−+F+ where n is the num-
ber of matched pairs (within±70ms), F+ are false
positives and F− are false negatives. The values
reported are taken from the best-performing hierar-
chical level of the best performing meter for each
song. The mean Dacc values are in general good,
especially if we ignore the (very difficult) Choral
pieces. The global median is significantly higher
than the global mean, indicating that the model failed
catastrophically on a few songs, lowering the mean
but leaving the median high. Note that this is pre-
liminary work. We are currently in the process of
implementing other models and other error mea-
sures for better comparison.

Genre (N) Dacc mean Dacc median
Dance (40) 0.91 0.98

Rock/Pop (68) 0.80 0.94
Jazz (40) 0.76 0.92
Folk (22) 0.62 0.59

Classical (30) 0.60 0.57
Choral (22) 0.20 0.17

Not Choral (200) 0.76 0.93
All (222) 0.71 0.88

Fig. 3. Hainsworth dataset results. See text for descrip-
tion.

4. FUTURE WORK AND CONCLUSIONS

Though the APM has been shown to be good at pre-
dicting tempo [4], the research presented here is the
first to be done on beat estimation. Thus there are
many directions for future research (some of them
already underway): first we can replace the indi-
vidual Viterbi decodings over specific meters with
a single Viterbi decoding that searches all meters
at once. This will give us a principled way to se-
lect among meters. It will also allow the model to
switch among meters during a performance, some-
thing that is impossible now. Second, we can re-

place the onset detection function with a richer (nu-
meric) representation of the signal, allowing us to,
e.g., track pitch correlations over time.

We have demonstrated that the Autocorrelation
Phase Matrix (APM) can be used for beat estima-
tion. Despite the high-dimensionality of the APM,
it is possible using a prior assumption that tempo
perturbations are small over time to perform an ef-
ficient Viterbi decoding over the state matrix. One
advantage of our approach is that it fits in the gen-
eral framework of correlation-based analysis and
can thus be extended to other vectorial represen-
tations of audio, including those which represent
pitch. The error rates we report are promising but
far from conclusive. However we consider the per-
formance of the model to be good enough to war-
rant further research.
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