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Abstract. Humans are able to perform a large variety of periodic activ-
ities in different modes, for instance cyclic rehearsal of phone numbers,
humming a melody sniplet over and over again. These performances are,
to a certain degree, robust against perturbations, and it often suffices
to present a new pattern a few times only until it can be “picked up”.
From an abstract mathematical perspective, this implies that the brain,
as a dynamical system, (1) hosts a very large number of cyclic attractors,
such that (2) if the system is driven by external input with a cyclic motif,
it can entrain to a closely corresponding attractor in a very short time.
This chapter proposes a simple recurrent neural network architecture
which displays these dynamical phenomena. The model builds on echo
state networks (ESNs), which have recently become popular in machine
learning and computational neuroscience.
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1 Introduction

One scientific metaphor for the brain is to see it as a nonlinear dynamical system.
This view has become popular in cognitive (neuro)science since about a decade
[1] [2] and is particularly inviting when it comes to rhythmic or periodic phe-
nomena. However, one should be aware that dynamical systems modeling still
has narrow limitations. The mathematical tools of nonlinear dynamcal systems
have been developed – mainly by mathematicians and theoretical physicists –
for systems which are low-dimensional or structurally or dynamically homoge-
neous. In contrast, the (human) brain is high-dimensional, and its neural state
variables are coupled in complex network structures with few symmetries, and
are governed by local dynamical laws which differ greatly between locations and
neuron types. Mathematical tools to capture the behaviour of high-dimensional,



heterogeneous dynamical systems are in their infancy. The contribution of this
chapter is to expand the power of the nonlinear dynamcial systems metaphor a
small but definite step further toward structural and dynamical complexity.

To set the stage, we remark that many everyday human behaviours are pe-
riodic, and to a certain degree stable against perturbation. Familiar examples
include

– repeating a phone number in one’s mind;
– picking up a beat or ostinato motif from a piece of music and keep on tapping

or humming it even when the instruments take a pause or after the piece
has finished;

– in some children’s games, the players are challenged to repeat arbitrary ges-
tures.

For the amusement of the reader, and as a further example, we have put a
few audiofiles online3, which start with some random tone sequence, then repeat
a short motif two to four times, then stop. The reader will find it more or less
easy, on first hearing, to identify the periodic motif and continue reproducing
it (covertly or overtly, to varying degrees of muscial precision). Figure 1 gives a
graphical impression.
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Fig. 1. A periodic pattern that sets in after a non-periodic preceding context can easily
be recognized visually and acoustically (if one is instructed to watch out for repetitions).
The figure depicts a little melody with discrete time steps and 12 half-tone pitches; its
notes (marked by squares) are connected by lines.

Intriguingly, these phenomena combine dynamical and discrete-combinatorial
aspects. From the dynamics angle, one will see periodic attractors at work, and
would naturally investigate issues like stability, period length, and entrainment.
From the combinatorial angle, one will remark that at least some of these ex-
amples can be seen as periodic symbol sequences (this is natural e.g. for the

3 A zip file with ten demo files (.wav format) can be fetched from
http://www.faculty.jacobs-university.de/hjaeger/pubs/melodyPickDemos.zip



phone number rehearsal or muscial motifs), with an essentially arbitrary chain-
ing of symbols from a finite “alphabet”. In this perspective, one might find the
descriptive tools from computer science and discrete mathematics appropriate,
and might wish to investigate how many periodic sequences are combinatorially
possible, what is the information of observing or generating one of them, etc.

Here we present an entirely “dynamical” model, fleshed out as a recurrent
neural network (RNN), which can simultaneously account for the dynamical
sides of stable periodic pattern generation, as well as for the combinatorial side.
Specifically, we describe an RNN architecture with the following properties:

1. the system can generate many periodic patterns which can be seen as symbol
sequences;

2. the generation of such a pattern is robust against perturbations, i.e. it can
be understood as a periodic attractor;

3. the number of different periodic attractors that the RNN can generate is
exponential in the size of the RNN – this is the “combinatorial” aspect;

4. the RNN can be locked into each of its periodic attractors by driving it with
a few (two to three) repeated external presentations of a corresponding cue
pattern, from a random previous context (as in the demo examples illustrated
in Fig. 1).

To preclude a likely misunderstanding, we emphasize that our system does
not include an aspect of long-term storage, learning or recall. The periodic at-
tractors hosted by the system have not been learnt, and they are not “stored”.
Our system realizes a purely dynamical, transient phenomenon, where a motif is
picked up and kept “alive” in what one might call a dynamic short-term memory
for a while – and that is all.

In order to facilitate the following discussion, we want to give a name to
systems with the properties listed above, and call any such system a “cue-
addressable periodic attractor system” (CAPAS).

CAPAS’ have been variously considered in the cognitive and neurosciences. A
well-known case is the cyclic rehearsal subsystem in Baddeley’s influential model
of acoustic/linguistic STM [3], where in the phonological loop cyclic rehearsal
prevents memory traces from decaying. Baddeley’s model of short-term memory
includes a number of further modules and can explain intricate effects observed
in human auditory short-term recall, which add important additional structure
and functionality beyond go beyond the CAPAS phenomenon.

Instances of short-term imitation of a periodic pattern have been addressed
in robotics (e.g., [4] [5]). As a basis for technical realization, coupled oscilla-
tor systems are typcially invoked, which become entrained to the external pe-
riodic cue signal (but compare [6] for an approach which rests on a chaotic
neural network). The phenomena modeled in this kind of research are, on the
one hand, simpler than CAPAS’ insofar as either the external driving signal
persists, reducing the phenomenon to pure entrainment (without the need for
autonomous continuation); on the other hand they are more complex, because
the imitation/entrainment often includes a mode or coordinate transformation



of the driving signal, for instance from external visual 2-D input to motor control
signals.

CAPAS are also related to some basic aspects of music cognition. Specifically,
they relate to empirical and theoretical research on a listener’s entrainment to
the rhythmical patterns in a piece of music (overview in [7]). A particular chal-
lenge for modelling lies in the fact that the rhythmical patterns in real-life music
are complicated, non-stationary, and replete with exceptions. A seemingly easy
recognition task such as detecting the dominant beat can become arbitrarily
challenging for cognitive modeling. Apart from symbolic/rule-based approaches,
which we will ignore here, there are two major types of “dynamical” approaches.
The first builds on neural oscillators which become entrained by the music signal
(e.g. [8] [9]). The second type of approach calls methods and mechanisms from
linear signal processing (such as delay line memory, coincidence detectors, cor-
relation detectors) which are used to build up a representation of the rhythmic
patterns in terms of autocorrelation measures as the stimulus music evolves (e.g.
[10] [11]). A general problem for oscillator-based explanations is that the time it
takes for the oscillators to synchronize with the driving signal is longer than what
is observed in humans (but see [5] where in a motion control domain oscillators
become entrained very quickly by adjusting their time constants). A possible
problem for autocorrelation-based models is that these do not lend themselves
directly (as do oscillator-based models) to be run in a generative mode; however,
this is typically outside the scope of investigation.

Periodic (and non-periodic) motor behaviour, linguistic STM and music un-
derstanding and generation are phenomenologically and neurally connected in
many ways. They are subserved by numerous coupled subsystems in the human
cerebrum (see e.g. [12] for fMRI studies of multi-modal brain responses or [13]
for therapeutic exploits of these interactions). In ecologically plausible settings,
different sensory modes are active simultaneously and interact, as do perception
vs. production modes.

Furthermore, we want to point out that much previous work on periodic at-
tractors in recurrent neural networks exists, but it is of a different nature than
CAPAS. Previous work almost invariably concerned the training of a network to
stably reproduce a periodic teacher signal – in the early days of neural network
research this was a frequently used challenge to demonstrate the performance of
learning algorithms. Another important venue of research concerns the mathe-
matical analysis of the (bifurcation) dynamics of small recurrent neural networks,
where the typical finding is that even very small networks (2 neurons) exhibit
a host of periodic and other attractors across different weight settings, see, for
instance, [14]. Our present study aims at something quite different and has, as
far as we can perceive, no precedent. Namely, we wish to set up (and analyze)
a recurrent neural network which hosts a large (even huge) number of periodic
attractors with one given, fixed setting of weights, such that the network can be
driven into any of these attractors by a suitable cue input. The network is not
previously trained to any of these attractors in particular, but acts as a kind of
“periodic attractor reservoir”.



The concrete model which we are going to develop here is based on Echo State
Networks (ESNs, [15] [16]). The reason for choosing ESNs as a core component
is that we need a delay line memory with certain additional stability properties;
these are offered by ESNs, and the delay line / dynamical STM properties of
ESNs are rather well understood [17].

The chapter is organized as follows. First we provide a more detailed moti-
vation for exploring periodic motif reproducing systems, by discussing related
phenoma that occur in music processing (Section 2). We proceed through the
technical part of our contribution, by explicating the naive CAPAS intuition in
the terms of nonlinear dynamical systems (Section 3), giving a short introduction
to ESNs (Section 4), and explaining how we encode temporal data (Section 5).
After describing our connectionist architecture (Section 6), we report the find-
ings from two simulation studies, which highlight two complementary aspects
of the architecture: its behaviour under limitations of resources (the biologically
and cognitively relevant situation), and its behaviour when virtually unlimited
resources are available (interesting from a theoretical nonlinear dynamics per-
spective).

All computations were done with Matlab on a notebook PC. The basic code
is available online at http://www.faculty.iu-bremen.de/hjaeger/pubs/Me-

lodyMatlab.zip. This chapter is an adaptation of a technical report [18], where
the theoretically inclined reader can find the mathematical analyses behind this
chapter.

2 Repetition and Content-Addressability in Melody

Generation

We have noted that our model is capable of hosting a large number of periodic
attractors, which can be activated by driving the system with the desired periodic
trajectory for a few repetitions. In this sense, the host of attractors can be called
content addressable. Note that this behavior is very different from that of a
traditional recurrent neural network, which is capable of learning to repeat only
patterns similar to those on which it has been trained. This property of content-
addressable repetition turns out to be crucial for modeling melody production
and perception. The vast majority of Western music is metrical, that is, built
on a temporal framework of hierarchically-nested periodicities [19]. For example,
part of what makes a waltz stylistically identifiable is its metrical structure of
three events per measure (“3/4”). Meter lends stability to music in the sense that
it provides a temporal framework around which a piece of music is organized.
The impact of meter is seen, for example, in how musical repetition is carried out
in Western music: when long segments of music are repeated in a piece of music,
the repeated segments almost always fit neatly at some level of the metrical
hierarchy. For example, in the nursery rhyme “Mary Had a Little Lamb”, the
melody repeats after exactly four measures (16 quarter notes).

The framework of meter gives rise to the perhaps unexpected side effect of
content-addressability in music. Once a temporal framework has been established



via meter, almost any sequence of notes can fit the style provide that sequence
(a) obeys local stylistic constraints, e.g. what key and what scale is used and
(b) repeats at the appropriate times. Musically-experienced readers will realize
that we are simplifying things greatly. Our goal here is to highlight the fact
that almost any sequence of notes (even a random one!) becomes melodic as
soon as it is repeated at appropriate intervals. This suggests that a model able
to discern melodies from non-melodies must at least be able to recognize that
such repetition of arbitrary patterns is taking place. This amounts to recognizing
that sequence S = s0, s1, ..., sk has been repeated, regardless of the actual com-
bination of symbols sk (here representing musical notes). We invite the listener
to compare randomly-generated music to random music repeated at metrically-
aligned intervals. To our ears, the random music sounds drifting and meaningless
while the repeated music is strongly melodic4.

Given that music has this content-addressable quality it is perhaps not sur-
prising that previous attempts to learn melodies using dynamical systems (in all
cases mentioned here, recurrent neural networks) have not worked very well.
Mozer [20] introduced a model called “CONCERT” which used a recurrent
neural network trained with Back-Propagation Through Time (BPTT) [21]) to
learn a musical style by listening to examples (a task very similar to PPMM).
Mozer trained the model on melodic sequences and then sampled from the
trained model to see whether model-generated melodies were stylistically similar.
Though CONCERT regularly outperformed (in terms of likelihood) third-order
transition table approaches, it failed in all cases to find global musical struc-
ture and was unable to generate new waltzes when trained on examples from
Strauss5. Similar results were had in other attempts early attempts to use neural
networks to learn melody [22, 23]. In short: local interactions between events are
easy to learn; global structure is hard.

One reason that dynamical neural networks have difficulty with musical
melody is that long-range dependencies are difficult to learn using gradient de-
scent. Specifically, for a wide class of dynamical systems, error gradients flowing
“backwards in time” either decay exponentially or explode, yielding the so-called
“vanishing gradient problem”[24]. In previous work by the second author [25]
this problem was addressed (to some extent at least) using the Long Short-Term
Memory (LSTM) hybrid recurrent network [26]. Because LSTM can learn to
bridge appropriate long-timescale lags it was able to learn to improvise blues
music. However it was not able to respond effectively or generate music that was
much different from what it had heard. That is, LSTM was able to bridge long
time-lags and thus learn the global regularities that make up a musical style,
but it was unable to deal with content addressability, having learned a set of
recurrent weights specific to the examples on which it was trained.

4 For the review versions of this manuscript, reviewers may find these audio files at
http://www.iro.umontreal.ca/∼eckdoug/repetition/

5 In his interesting and well-argued paper, Mozer cannot be faulted for making inflated
claims. He described the output of CONCERT as “music only its mother could love”.



Thus we argue that two qualities are valuable for addressing CAPAS with a
dynamical system. First the system must discover repeated sequences (content-
addressability; periodicity). Second the system must have a short-term memory
capable of bridging long timespans. In following sections we will show that these
qualities are met by an ESN-based CAPAS architecture.

3 CAPAS Spelled out as Dynamical Systems

In this section we give a more formal account of the particular version of CA-
PAS which will subsequently be realized as an RNN, and introduce some basic
notation.

The CAPAS’s that we consider operate in discrete time and generate (and are
driven by) discrete-valued signals which assume only a finite (and small) number
of different values. To aid intuition, we employ a music-inspired terminology and
refer to the possible different values as “pitches”. We assume that there are p
different pitches which are coded as equidistant values i/(p − 1) between 0 and
1 (where i = 0, 1, ..., p − 1).

We furthermore assume that a CAPAS is initially driven by an external cue
signal m(n) (think of it as a “melody”), which itself has two phases. The first
phase establishes a “distractor” context through a random sequence of length
M0 of pitch values, which is followed by r repetitions of a periodic motif of length
k. All in all, the cue signals will have length M0 + rk.

Our CAPAS’s are driven by the cue m(n) for times n = 1, . . . , N0 + rk; after
which point the cue signal stops. The CAPAS’s generate an open-ended output
y(n) for times n = 1, 2, . . ..

Working in discrete time, we will thus be designing a model of the general
type x(n + 1) = f(x(n),m(n)), y(n + 1) = h(x(n + 1)), where x(n + 1) is the
system state, f, h are some nonlinear functions. This scheme only captures the
cueing phase. When it ends, the system gets the input signal m(n) no longer. It
is then replaced by the output signal y(n) to yield a system of type x(n + 1) =
f(x(n), y(n)), y(n+1) = h(x(n + 1)). In short, the driving input to the system
can either be m(n)) or the fed-back own productions y(n):

x(n + 1) = f(x(n), {m(n)|y(n)}) (1)

y(n + 1) = h(x(n + 1)) (2)

Having decided on the basic mathematical format, we can now express the
basic dynamical properties desired from our system:

1. After the system has been driven with a two-phase cue signal, it should con-
tinue to run autonomously after time M0 +rk (with its own output fed back
to its input channels). The output generated should be periodic of period
length k, and this periodic pattern should be stable against perturbations.
In other words, after the cueing the system should be locked into a periodic
attractor. The output signal of this attractor should be close to the periodic
motif of the cue.



2. The system (1) must be able to lock into a combinatorially large number of
different attractors. By “combinatorially large” we mean that each attractor
(modulo cyclic shift) corresponds to a sequence of length k, where each
element may be one out of p possible elements. There exist in the order of
pk such sequences (due to shift symmetries the exact number is smaller and
hard to calculate, but still at least exponential in a factor of k).

3. The system (1), when driven by an eventually periodic cue m(n), should
become entrained to this driving signal quickly. Concretely, we desire that
the locking occurs within 2 to 4 repetitions.

We are not aware of a previous connectionist model or abstract nonlinear dynam-
ical system which could satisfy these requirements. Specifically, the combination
of noise robustness with fast entrainment appears hard to realize. As pointed
out in Section 1, existing models for related periodic entrainment phenomena
typically build on coupled oscillators – which do not synchronize with the driv-
ing cue quickly enough – or on linear operators (synchrony detection, delay line
memory) which lack the desired stability in the free production phase.

4 Basic ESN Concepts and Notation

One component of the model proposed in this chapter is a delay-line memory,
that is a subsystem whose input signal u(n) is available on the output side in
delayed versions u(n− 1), u(n− 2), ..., u(n− k). Such delay lines are elementary
filters in linear signal processing, but a neurally plausible realization is not to be
immediately found. In the context of precise short-term timing tasks, a number
of short-term neural timing mechanisms have been proposed [27]. One of these
models [28] explains cerebellar timing by assuming that the input signal elicits
transient nonlinear responses in an essentially randomly connected neural sub-
system (the granule cells); from this complex network state the timing outputs
are obtained by adaptive readout-neurons (Purkinje cells). The basis of temporal
processing, in the view of this model, is a combination of the temporal evolu-
tion of a high-dimensional nonlinear input response in a large random network,
with task-specific readout neurons that compute the desired output from the
information implicit in this apparently random state.

This idea is also constitutive for the twin approaches of Echo State Net-
works (ESNs) [15] [29] [16] and Liquid State Machines (LSMs) [30] [31] [32].
Developed simultaneously and independently, these approaches devise a generic
neuro-computational architecture which is based on two components. First, a dy-
namical reservoir (or liquid). This is a large, randomly connected, recurrent neu-
ral network which is dynamically excited by input signals entering the reservoir
through, again, essentially random input connections. Second, adaptive readout
mechanisms compute the desired overall system response signals from the dy-
namical reservoir states. This happens typically by a linear combination which
can be learned by solving a linear regression problem (for which the Widrow-Hoff
learning rule [33] provides a biologically realizable implementation). While this



basic idea is shared between ESNs and LSMs, they differ in their background
motivation and the type of neurons that are typically used. ESNs originated
from an engineering perspective of nonlinear signal processing and use simple
sigmoid or leaky integrator neurons for computational efficiency and precision;
LSMs arose in computational neuroscience, aim at the biological modeling of
cortical microcircuits and typically use spiking neuron models.

Here we use ESNs because we are not claiming neurophysiological adequacy,
and because ESNs are easier to analyze. Specifically, we can benefit from the
analysis of their dynamic short-term memory properties given in [17].

For a comprehensive introduction to Echo State Networks the reader is re-
ferred to the cited literature. The remainder of this section only serves to fix
the notation. We consider discrete-time ESN networks with K input units,
N internal network units and L output units. The activations of input units
at time step n are u(n) = (u1(n), . . . , uK(n))T, of internal units are x(n) =
(x1(n), . . . , xN (n))T, and of output units y(n) = (y1(n), . . . , yL(n))T, where ·T

denotes transpose. Real-valued connection weights are collected in a N × K
weight matrix Win = (win

ij ) for the input weights, in an N×N matrix W = (wij)
for the internal connections, and in an L × (K + N) matrix Wout = (wout

ij ) for
the connections to the output units. Here we do not use backprojections from
the output units to the internal units or connections between output units. Note
that connections directly from the input to the output units are allowed.

The activation of internal units is updated according to

x(n + 1) = f(Wx(n) + Winu(n + 1)), (3)

where f are the internal unit’s output functions – here we use the identity,
applied element-wise to the network state vector. The ESN thus becomes a
linear network, as far as the reservoir activations are concerned. The output is
computed according to

y(n) = fout(Wout(x(n);u(n)), (4)

where (x(n);u(n)) is the concatenation of vectors x(n) and u(n), and fout is the
output activation function – here we use 1/2+tanh /2, which is a sigmoid ranging
strictly between 0 to 1 with a value of 1/2 for a zero argument. Introducing a
sigmoid-shaped nonlinearity here is crucial for achieving a stable reproduction
of the motif.

5 Signal Coding

To recall, the input signals which we will use are sequences m(n), where n =
1, 2, ... and m(n) can take p equidistant values i/(p− 1) between 0 and 1 (where
i = 0, 1, ..., p − 1). In order to feed such a signal to the ESN, it is space-coded
by mapping m(n) on a p-dimensional binary vector b(n). Specifically, the space
coding transforms m(n) = i/(p−1) to a binary vector b(n) whose i-th component
is one.



The ESN will be trained to function as a delay line memory, generating
various time-delayed versions of such space-coding vectors b(n) as its output
signals. Because we use a (0, 1)-ranging sigmoid fout for the output activation
function, this would make it impossible for the network to produce zero or unit
values in b(n) output vectors. To accommodate for this circumstance, we shift
and scale the vectors b(n) to vectors u(n) whose components range in (ν, µ) =
(0.1, 0.9):

u(n)[i] = (µ − ν) b(n)[i] + ν = 0.8 b(n)[i] + 0.1. (5)

Such code vectors u(n) have components ν = 0.1 and µ = 0.9 where b(n) have
0 and 1. They provide the data format which the network finally receives as
inputs, and which it should produce as outputs.

6 Architecture

The core of the CAPAS proposed here is a delay line memory. We realized this
as a nonlinear recurrent neural network of the “Echo State Network” type. A
number of reasons invited us to use such a network to implement the delay line,
and not a linear tapped delay line made from concatenated unit delay filters,
which would appear as the most standard implementation:

– We wish to create stable periodic dynamics, i.e., periodic attractors. Linear
systems cannot generate stable perdiodic patterns. Nonlinear dynamics are
needed, and ESNs have proven in the past to sustain periodic attractors [17].

– Theoretical results on the delay-line memory capacity of ESNs are available
[17] [34].

– Ultimately we aim at connectionist models of cognitive and neural phenom-
ena. The central mechanism of ESNs, an excitable random nonlinear dy-
namical medium (the “reservoir”), has been suggested as a neurobiological
explanation for cerebellar timing [27], which adds further to our motivation
to use these models.

The ESN delay line memory is the only trainable part of our CAPAS archi-
tecture. We first describe how this subsystem is set up and trained, and then
proceed to describe the surrounding control architecture, likewise implemented
in a connectionist fashion, which provides the CAPAS functionality.

The delay line subsystem is a standard ESN, as specified in eqns. (3), (4),
with p input units, a linear reservoir of size N , and p d sigmoid output units
which for clarity are arranged in a p × d grid (see figure 2). For each delay j,
we assign a separate output weight matrix Wout

j of size p × (K + N), whose
elements are determined by the training procedure.

The delay line memory task solved by this network is to replicate, in the jth
column of output units, the p-dimensional input signal u(n) with a delay of j,
that is, the signal vector u(n− j). The ESN is trained on the delay-line memory
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Fig. 2. The core ESN delay line memory setup.

task in the standard fashion described, for instance, in [17]. Details are reported
in the appendices.

This (trained and operative) delay line memory is embedded in a larger feed-
back cycle which is outlined in figure 3. The working principle can be outlined,
as follows.

– The network’s output (that is, d delayed versions of the current input) are
monitored for how well they predict the current input. In the presence of an
input which is periodic with period k, the k-delay block of outputs will be
in consistent good agreement with the input. The prediction agreement for
each of the d delayed output vectors is integrated over time and the “winner”
output block is allowed to feed its signal back into the input channel.

– Technically, this requires (i) measuring and integrating the prediction error
for the d output blocks, (ii) using the accumulated error as a basis for a
competitive vote among the d outputs to determine one (or several) winners,
(iii) feed the winning output(s) back into the input.

– In our simulations we operate the systems in two distinct phases. First, in the
cueing phase, an external cue input (consisting in a transient random initial
melody followed by two repetitions of a motif) is used as input. After that,
the external input is replaced by the fed-back output(s) which are linearly
combined according to the strength of their respective votes.

The details of our implementation are documented in Appendix A.

7 Simulations Studies

We ran two suites of numerical experiments to demonstrate two complementary
aspects of our CAPAS architecture.

The first series of simulations used a small ESN of N = 100 throughout and
explored a number of dynamical phenomena, of potential relevance for cognitive
modelling, that arise from resource limitations.

The second suite served to demonstrate that the proposed architecture is fit
to host a number of periodic attractors which is exponential in network size. To
this end, a series of CAPAS architectures of increasing size was shown to host
periodic attractors whose number grew exponentially with the size.
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Fig. 3. The overall CAPAS architecture.

7.1 Study 1: CAPAS with Limited Resources

All details of this study can be found in Appendix B. Here we present an intuitive
overview of the setup and the findings.

An relatively small (N = 100) ESN was trained as a delay line memory in a
setup with p = 10 input units and d = 10 delays. In the light of findings reported
in [17], an ESN capable of perfect performance on this delay line memory task
would need a memory capacity of p d = 100, the theoretical maximum for a 100-
unit ESN. Because this theoretical maximum will not be reached, we can expect
suboptimal learning performance especially on longer delays. In fact, a plot of
the normalized mean root square errors (NRMSE) on training data shows that
the NRMSE of recalling inputs with a longer delay is rather poor (see figure 4).
The difficulties the ESN has with larger delays are also reflected in the large
output weights earned on larger delays (figure 4, right panel). A detrimental
consequence of large output weights is high sensitivity to noise. We can expect
that if the trained network is used and noise is added to its operation, the
produced outputs on the larger-delay channels will strongly deteriorate.

While we could have easily achieved a more accurate and more noise-resistant
performance for the larger delays by using a larger reservoir (as we did in the
second suite of experiments), we did not do so in order to investigate how the



CAPAS performance deteriorates when the length of the motif ranges into the
limits of the underlying short-term memory.
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Fig. 4. Left: Delay learning test error (NRMSE) for the ten pitches (x-axis). Each plot
line corresponds to one delay, larger delays give higher test error. Note that a NRMSE
of 1 would correspond to completely uncorrelated test/teacher signals. Right: average
absolute output weights for the various pitches (x-axis) and delays. Larger delays give
larger weights.

The trained ESN delay line memory was then employed as a module within
the complete CAPAS architecture shown in figure 3, which was submitted to
various tests involving motifs of different length k and amounts of noise added
to the input. In all conditions except for very short motifs, the motif was cued
with r = 2 repetitions. Depending on k and the amount of noise, interestingly
different types of performance were observed.

Motifs of length 6 or 7. In this condition, when the noise is not too strong
(amplitude ≤ 0.005), the voting mechanism locks on the appropriate value of
k before the second cue motif has ended, that is, the vote for the delay k− 1
goes to 1 and the others to 0. A periodic pattern similar to the cue motif
is stably reproduced. Figure 5 shows a typical run for k = 7, without and
with noise. It is apparent that moderate noise does not disrupt the periodic
motif reproduction. Figure 6 shows the development of the leaky-integrated
errors and the resulting votes. If the noise amplitude is increased to 0.01,
the system is driven out of its attractors after every few repetitions of the
attractor’s loop, whereafter it settles into another periodic attractor, usually
of the same period as the previous but distinguished from it by settling on
different values on some of the period’s time points (figure 7); more rarely or
when the noise is further increased, it may jump to different period lengths
or become non-periodic altogether.

Motifs of length 8 – 10. If the length of the motif grows into the region where
the delay line memory performance of the ESN is poor, the inaccuracies in
recalling the input from k − 1 steps earlier accumulate to an extent that
the motif is not stably retained over time, even when no noise is inserted
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Fig. 5. Cue signal (thin line) and autonomously generated signal (thick line) vs. net-
work cycles (x-axis). Vertical black lines mark the two cue motifs. The correct periodic
cue continuation is indicated by the continued thin line (unknown to the system); sys-
tem output is plotted as a bold line. The unit-coded system output was retransformed
to the scalar signal m(n) for plotting. Left panel shows zero noise condition, right panel
with a noise amplitude of 0.005.
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Fig. 6. Development of integrated errors (left panel) and votes (right panel) in the run
with added noise rendered in the right panel of figure 5. Each plot corresponds to one
delay; top plot corresponds to shortest delay k = 1.

into the dynamics. Figure 8 shows a typical development for a k = 9 cue.
Although the cue motif is initially reproduced a few times, the reproduction
accuracy is not good enough to retain the pattern. A complex transient
dynamics unfolds, which after a much longer time (1000 steps, not shown)
would eventually settle in a shorter attractor not related to the cue motif in
shape or period.

Motifs of length 4 or 5. Here two mechanisms become superimposed (see fig-
ure 9 for an example where k = 5, zero noise condition). The voting mech-
anism correctly determines the period length k by the time the second cue
motif ends, and the motif is initially correctly reproduced. However, be-
cause a k-periodic signal is also 2k-periodic, the vote for delay 2k also rises
soon after the system starts to produce the pattern autonomously, leading
to a shared vote between k and 2k. Because the 2k-delay output channel
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Fig. 7. Similar conditions as in figures 5 and 6, but with medium noise (here of size
0.06), leading to “hopping” between attractor variants.

has a poor reproduction performance, errors accumulate and the reproduced
pattern wanders away from the original. The long-term behaviour is unpre-
dictable; often the systems settles in a k-periodic attractor unrelated in its
shape to the cue, or (more rarely) settles into an attractor with a different
period. Notice that this behaviour could be remedied by implementing a
winner-take-all mechanism between the votes which would prevent the 2k
vote from rising. We would then obtain a stable reproduction of the cue
motif.

Motifs of length 2 or 3. If the motif is very short, the voting mechanism
needs more time than is afforded by a double presentation of the cue to
rise toward 1 for the correct period length k. In our simulations, three in-
stead of two successive presentations were needed. Similar to the case of
motif length 4 or 5, after the reproduction sets in, the votes for multiples of
k rise, too. For example, if the motif has period 3 (this case is shown in figure
10), the votes for 2k and 3k subsequently share their saying with the vote for
k. Unlike the case of motif length 4 or 5, however, here we have two voted
channels (k and 2k) with a sufficient accuracy of recall, which outweigh the
detrimental influence from the inaccurate channel 3k. In the end, a stable
reproduction of the original motif is ensured even in the presence of noise.
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Fig. 8. A run on a cue of length 9, under a zero noise condition.

7.2 Study 2: Hosting Exponentially Many Periodic Attractors

Again, all details of this study can be found in Appendix C. Here we present an
intuitive overview of the setup and the findings.

We created CAPAS architectures using ESN reservoirs whose size was in-
creased from N = 800 in increments of 800 to N = 4000 (which is about the
largest size that could be accomodated by the available 2 GB main memory
computer that we used). Each of these was first trained as a delay line memory
in a setup with p = 5 input units and d = 0.6N delays, that is, with delays
ranging from 30 in increments of 30 to 150. For each size N , ten ESNs were
randomly created and trained. Figure 11 shows the delay line recall accuracies
achieved.

After this training step, each ESN delay line module was planted into an
architecture like in figure 3 and submitted to the CAPAS task. Specifically, a
network of size N would be tested for periodic motifs of length k = N/40, that is,
k = 20, 40, . . . , 100 for the models of increasing size. The test setup was similar to
the first suite of experiments. The cues consisted of an initial random “melody”
sequence of length M0 = 20+2k, followed by three repetitions of a random motif
of length k. In order to check whether the system stably locked into the required
periodic pattern, it was ran after the end of the cue for 25 repetitions of the
period, while noise was added to the fed-back input to challenge stability. After
the 25th repetition, the noise was turned off and the system run for another 5
period cycles, of which the last was used for error measurements. The feedback
noise was uniform of amplitude 0.01 ·2−k/10, that is, the noise was scaled inverse
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Fig. 9. Performance on a cue motif with length k = 5, zero noise condition. Panels
show network output, integrated error, and votes, respectively.

exponentially with the the period length (which means inversely proportional
to the number of attractors). The control parameters for the leaky integration
were optimized by hand for the objective to yield a stable motif detection and
reproduction (see Appendix C). Each trained system was tested on ten randomly
generated periodic motifs, yielding 100 tests altogether for each network size.
Figure 12 summarizes the findings.

The gist of these experiments is that

– the proposed architecture with the hand-tuned control parameters indeed
was fit to produce systems hosting in the order of pk periodic attractors,
where p = 5 and k = 20, . . . , 100;

– however, the stability and the accuracy of the attractors degraded with pe-
riod length k, and the attractor length 100 marks about the longest that
appeared feasible with networks sized 40 k and the chosen noise levels.

The source of the decline in stability and accuracy of the periodic attractors
is the decrease in accuracy of the underlying delay line memory (figure 11, left)
and the simultaneous reduction of noise resistance in the delay line memory (see
figure 11 right; larger output weights imply increased susceptibility to noise). The
question of whether it could be possible, by an improved design, to host periodic
attractors in numbers exponential in network size, for unlimited network sizes,
amounts to the question of finding a connectionist model of a delay line memory
whose memory span grows linearly with the network size, without bounds. This
question has a rather mathematical-theoretical flavour; given the finiteness of
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Fig. 10. Performance on a cue motif with length k = 3. Noise size is 0.005. Panels
show again network output, integrated error, and votes, respectively.

biological neural systems it is in our opinion not crucial for purposes of cognitive
or neural modelling.

We would like to conclude by pointing out that interesting types of break-
downs of performance can be induced when the global control parameters of this
CAPAS architecture are changed. Seen reversely, such findings indicate that cer-
tain control parameters should be actively adapted if these breakdowns are to be
prevented. One example concerns the control of “garden path” periods. When we
did the 20-to-100 period survey experiment with faster leaky integration settings
(higher leaking rates implying less temporal smoothing; details in Appendix C),
we found that about ten percent of the test patterns were not correctly locked
into. A closer inspection revealed that these patterns featured repetitions of sub-
patterns at intevals shorter than the total period length, which raised votes for
delays corresponding to the distance of these “garden path” subpattern repeti-
tions. Figure 13 shows one such example.

8 Discussion

We have presented a connectionist architecture for a cue-addressable periodic at-
tractor system (CAPAS). It is capable of hosting periodic attractors (“motifs”)
which are made from arbitrary discrete “pitch” sequences. Within the experi-
mental range accessible by the available computing resources, we demonstrated
that 5k attractors can be embedded in the dynamics of a system whose core is
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Fig. 11. Left: test NRMSEs of ESNs sized N = 800, 1200, . . . , 4000 in the delay line
memory of p = 5-dimensional data for delays d = 20, 40, . . . , 100. Each plot point gives
an average over ten trained networks. Right: corresponding average absolute output
weights.

a recurrent neural network of 40 k units (tested for k ≤ 100; beyond this size,
there are indications of accumulating inaccuracies and instabilities). The attrac-
tors are addressable by cue presentations consisting of two or three repetitions
of the periodic target pattern. To our knowledge, this system is the first connec-
tionist architecture capable of being able to lock into any of a combinatorially
large number of periodic cues quickly and stably.

We do not claim a close match between our model and biological neural
circuits. There are two reasons why such a match cannot be expected. On the
one hand, the error-monitoring and voting mechanisms in our model are clearly
ad hoc. On the other hand, biological brains need the functionality to pick up
periodic motifs in various contexts and modes, and it should be expected that
differently structured neural circuitry is used in different instantiations.

The potential interest that our system might have for congnitive and neural
modelling resides on a more basic and abstract level than our concrete design. A
mathematical stability analysis (carried out in [18]) revealed that three aspects
of our model are crucial for its capabilities:

1. a delay line memory with a nonlinearity (here: the output unit’s sigmoid
squashing function) for dynamical stability,

2. the space coding of discrete sequence values by neurons, for yielding a com-
binatorial mechanism to host very large numbers of attractors, and

3. an error integration and voting mechanism.

This mixture of ingredients mediates between previous models which, when
based on attractor entrainment, were too slow to entrain to periodic cues within
only very few presentations, or when based on (linear) delay lines, were not
dynamically stable.

We conclude by emphasizing that, at least at higher cognitive levels of pro-
cessing such as music understanding, the dynamics of human periodic pattern
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Fig. 12. Left: average test NRMSEs of ESNs sized N = 800, 1200, . . . , 4000 of 100
trials per size N (10 networks tested with 10 random motifs each). The NRMSEs were
computed from the last of 30 autonomous repetitions of the motif. Right: maximum
absolute difference between CAPAS-produced 30th repetition and the correct target
motif. For each trial, the maximum over the k points of the period was taken; these
values were then averaged across the 100 trials per network size (solid line). The circles
show the maximal maxima. One trial out of 100 in the longest period condition (k =
100) brought a maximal deviation greater than 0.1 – note that with p = 5 pitches and
a pitch range from 0 to 1, an accuracy of better than 0.1 is the critical size needed to
uniquely identify a pattern from a degraded replica.

processing is certainly more intricate and richer than our simple model. Taking
again music processing as an example, human-level processing has at least the
following two characteristics which the presented model does not capture:

1. Real-life temporal patterns are often structured in time (multiple timescales,
rhythmic structures), and they are modulated in more than just one dimen-
sion (of pitch) - for instance, music input would be modulated in timbre,
loudness, etc. In sum, real-life dynamical patterns can be much more com-
plex than symbol sequences.

2. Human processing of temporal information certainly often involves accessing
long-term memory. In music processing, for instance, it is certainly easier to
pick up a periodic pattern that was known beforehand, than to lock into a
novel pattern.

We conclude with remarks on music modelling. The current model does not
take advantage of the hierarchical nature of musical temporal structure. Music
is periodic and repetitive, two qualities accounted for by the current model. But
music, at least most Wester music, is also governed by the hierarchical structure
seen in meter. Furthermore this structure is generally quite simple, usually a tree
having mostly binary divisions with a single beat-level division of some integer
ratio (e.g. 3 for a waltz). This hierarchy has a profound impact on how music is
performed [35] and perceived [36]. One future direction is to design an explicitly
hierarchical ESN-based model which is able to take advantage of such metrical
structure. In fact we have taken a first step toward such a model; see [37].
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Fig. 13. A section from the last few test cycles of a period-40 test pattern with a
“garden path” period of length. Thin line: target pattern, bold line: system output.
The target pattern has a length-7 subpattern which repeats at a distance of 18 steps.
The CAPAS system response at this time (30th repetition after end of cue) has not
fully stabilized; one could say that it still “tries” to find a compromise between the
conflicting periods of 40 and 18.

Finally, the way in which the model represents pitch could be expanded. By
using simple spatial pitch coding, the model treats all pitches as having equal
similarity. In reality (e.g.) a C is more similar to a G than it is to an F# in
the key of C. That is, in almost all cases it would sound better to substitute
a C with a G than it would to substitute a C with an F#. Having such low-
level similarity encoded in the representation is both more human realistic and
also more efficient. Given that these effects are relatively well understood [38],
it should be relatively straight-forward to represent pitch for the ESN such that
these similarities are easy for the network to discover.

Acknowledgement. The authors would like to thank two anonymous reviewers
whose acute observations helped to reshape and improve this contribution quite
substantially.

Appendix A: Details of the CAPAS Architecture

Error Integration and Voting

The measuring and integration of prediction error is done by a leaky integration
scheme. For each delay j (j = 1, . . . , d), in each update cycle n the average
MSEj(n) across the p components of the jth pitch coding vector is computed:

MSEj(n) = ‖yi(n − 1) − u(n)‖2/p, (6)

where yj(n − 1) is the previous network output for delay j (a vector of size
p) and u(n) is the current input to the ESN. These MSEj are leaky-integrated
according to

MSE-intj(n) = tanh((1 − γ1) MSE-intj(n − 1) + α1 MSEj(n)), (7)

where γ1 is a leaking rate and α1 is an accumulation weight. The tanh wrapper
makes the integrated prediction error saturate at 1.



The d integrated error signals thus obtained will evolve towards zero on all
delays that are a multiple of the period length k for a k-periodic input. Likewise,
for delays which are not multiples of k, the integrated errors will grow away from
0 and toward 1.

An obvious mechanism to “vote” for outputs which should be fed back into
the input channel would be to weigh outputs by prediction confidences Cj(n) =
1 − MSE-intj(n), average across the weighted outputs, and feed the resulting
mixture back to the input. In this way, only those ouputs whose delays are
multiples of k – i.e., replicas of the periodic target – would be chosen.

However, the integrated errors in the delay channels not commensurate with
k will not in general evolve towards 1, because within the periodic input motif
there may be time points with spurious good matches between the current motif
signal and incommensurable delays (e.g., if a 10-periodic cue is made up from
three identical repetitions of a length-3 pattern followed by a singleton point, the
delay-3 outputs will have zero error during 6 out of 10 times per 10-period, and
the integrated error for the 3-delay outputs will be lower than for other delays).
Thus, before becoming useful for guiding the combination of outputs into new
fed-back inputs, some further cleaning of the integrated errors is necessary. We
do this by two operations. First, the predict confidences Cj(n) = 1−MSE-intj(n)
are thresholded at their lower end such that confidences falling below a threshold
ε will be zeroed, that is, instead of Cj(n) = 1 − MSE-intj(n) we use

Cj(n) = s(1 − MSE-intj(n)), (8)

where s : R → [0, 1] maps any number smaller than ε to zero, any number
greater or equal to 1 to 1, and linearly interpolates in between. Finally, a further
leaky integration and subsequent normalization smoothes Cj(n) to obtain the
final votes Vj :

Ṽj(n) = (1 − γ2) Vj(n − 1) + α2 Cj(n)

Vj(n) = Ṽj(n)/
∑

j=1,...,d

Ṽj(n) (9)

where again γ2, α2 are forgetting / accumulation factors.

Feeding Back the Vote-Combined Output

The second phase of the cueing input consists of a small number of repetitions
of a motif of period length k. During the presentation of the second and all
subsequent repeats, the network outputs match with the k-step previous input
and the vote Vk−1(n) will grow toward 1, while the other votes move toward zero
(it is not Vk(n) that will grow toward 1 due to the unit delay in the feedback
circle, see figure 3). When the cue period ends after the second or third motif
repetition, the external input is switched off and the network receives instead
an input which is essentially made from a weighted combination of the network
outputs:



ũ(n) =
∑

j=1,...,d

Vj(n − 1) yj(n − 1). (10)

A normalization is needed to help stabilizing this feedback loop. Specifically, we
ensure that the space coding vectors b(n) (if they were to be recomputed from
the scaled versions u(n)) sum to 1. To effect this, we first retransform ũ(n) to
the binary format of b(n), then normalize to unit component sum, and then
scale/shift back to the format generated by the ESN:

˜̃u(n) = (ũ(n) − [0.1...0.1]T)/0.8

˜̃̃
u(n) = ˜̃u(n)/component sum of ˜̃u(n)

u(n) = 0.8 ˜̃̃
u(n) + 0.1 (11)

In order to check the stability of the periodic pattern reproduction, we added
uniform noise to the (fed-back) input u(n) in the simulations.

Appendix B: Details of the First Simulation Study

The learning task is that the trained network, on an input sequence u(n), outputs
d vectors [u(n − d)u(n − d + 1) . . .u(n − 1)]. For convencience we arrange the
target vectors u(n − d),u(n − d + 1), . . . ,u(n − 1) into a p × d array y(n). The
training data are thus generated as follows:

1. To make the input data, produce a random space-coded “melody” sequence
u(n) of length nmax.

2. For each n > d, assemble y(n) from the previous d instances of u(n). For the
first n ≤ d, use dummies (initial transients of the network will be discarded
anyway).

3. The training data consist of nmax input – teacher output pairs (u(n),y(n)).
4. Create a similar pair sequence for the purpose of testing the delay memory

performance.

We use an ESN with a reservoir of N = 100 units, with p = 10 input units
and d = 10 delays, resulting in 100 output units. The internal weights W are
drawn from a uniform distribution over [−1, 1], with approximately 90% of the
connection weights becoming nulled, resulting in an average connectivity of 10%.
The sparse weight matrix is then rescaled to yield a spectral radius of 0.8. The
input weights Win are drawn from a uniform distribution over [−1, 1].

The ESN was trained on the delay-line memory task in the standard fashion
described, for instance, in [17]. The length of the training sequence was 1000,
from which the first 200 points were discarded to wash out initial transients. The
result of the training are d output weight matrices Win

j . To prevent overfitting, a
regularizer was implemented in the form of uniform noise from [−0.0005, 0.0005]



added to the network states harvested while the ESN is driven by the training
input.

The various control parameters for the voting dynamics were set to γ1 =
.4, α1 = 4, γ2 = .2, α2 = 4, ε = 0.3.

Appendix C: Details of the Second Simulation Study

In the second study, for training a network of size N = 800, 1600, . . . , 4000 we
used training sequences of length nmax = 2.25 ·N and testing sequences of length
1.5 · N .

The reservoir weight matrices W were sparse with a connectivity that made
one neuron connect to ten on average. The nonzero weights were sampled from
a uniform distribution centered at 0, and the resulting matrix was rescaled such
that the resulting spectral radius was 0.995 (spectral radii close to unity are
beneficial for long short-term memories, see [17]). Each input unit was connected
to all reservoir units with weights sampled from a uniform distribution over [0, 1].

The ESN was trained using the standard procedure which is variously doc-
umented in the literature (e.g., [17]). Data from the first N time steps were
discarded to account for initial transients. The linear regression was computed
using the Wiener-Hopf equation, which was regularized with a Tikhonov (also
known as ridge regression) regularizer of size α = 0.0001.

Using Matlab for the computations, we encountered spurious problems when
the inverses of the Tikhonov-regularized reservoir state correlation matrices were
computed for the Wiener-Hopf solution of the linear regression. The correlation
matrices were generally not very well conditioned (Matlab’s inverse condition
indicator rcond was about 1.0e-14) but still suffienct for a reliable inversion.
However, especially for the larger matrices (of sizes 2400×2400 to 4000×4000),
Matlab sometimes issued a warning that the matrix was ill-conditioned, and
reported rcond’s of much smaller size (dozens of orders of magnitude smaller).
Given that these matrices were Tikhonov-regularized with α = 0.0001, we could
not explain this phenomenon, and must assume some instability in the imple-
mentation of matrix inverses. When this situation was encountered, the trial was
re-started with a freshly created ESN.

The control parameters for the voting dynamics were set to γ1 = 0.05, α1 =
2, γ2 = 0.1, α2 = 2, ε = 0.2 for all networks. In the “garden path” example, the
settings were γ1 = 0.2, α1 = 4, γ2 = 0.1, α2 = 4, ε = 0.2.
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