
Autotagger: A Model For Predicting Social Tags from Acoustic
Features on Large Music Databases

Thierry Bertin-Mahieux
University of Montreal

Montreal, CAN
bertinmt@iro.umontreal.ca

Douglas Eck
University of Montreal

Montreal, CAN
douglas.eck@umontreal.ca

François Maillet
University of Montreal

Montreal, CAN
mailletf@iro.umontreal.ca

Paul Lamere
Sun Labs, Sun Microsystems

Burlington, Mass, USA
paul.lamere@sun.com∗

August 15, 2008

Abstract

Social tags are user-generated keywords associated with some resource on the Web. In the case of music, social
tags have become an important component of “Web 2.0” recommender systems, allowing users to generate playlists
based on use-dependent terms such as chill or jogging that have been applied to particular songs. In this paper, we
propose a method for predicting these social tags directly from MP3 files. Using a set of 360 classifiers trained
using the online ensemble learning algorithm FilterBoost, we map audio features onto social tags collected from the
Web. The resulting automatic tags (or autotags) furnish information about music that is otherwise untagged or poorly
tagged, allowing for insertion of previously unheard music into a social recommender. This avoids the “cold-start
problem” common in such systems. Autotags can also be used to smooth the tag space from which similarities and
recommendations are made by providing a set of comparable baseline tags for all tracks in a recommender system.
Because the words we learn are the same as those used by people who label their music collections, it is easy to
integrate our predictions into existing similarity and prediction methods based on web data.

1 Introduction
Social tags are a key part of “Web 2.0” technologies and have become an important source of information for recom-
mendation. In the domain of music, Web sites such as Last.fm1 use social tags to help their users find artists and music
(Lamere [20]). In this paper, we propose a method for predicting social tags using audio feature extraction and su-
pervised learning. These automatically-generated tags (or “autotags”) can provide information about music for which
good, descriptive social tags are lacking. Using traditional information retrieval techniques a music recommender can
use these autotags (combined with any available listener-applied tags) to predict artist or song similarity. The tags
can also serve to smooth the tag space from which similarities and recommendations are made by providing a set of
comparable baseline tags for all artists or songs in a recommender.

This paper presents “Autotagger”, a machine learning model for automatically applying text labels to audio. The
model is trained using social tags, although it is constructed to work with any training data that fits in a classification
framework. This work is an extension of Eck et al. [10, 11] which proposed an AdaBoost-based model for predicting
autotags from audio features. The main contributions of this paper are as follows. First, we extend the model from

∗Accepted for publication in the Journal of New Music Research (JNMR). Draft.
1www.last.fm

1

[10] to sample data from an arbitrarily large pool of audio files. This is achieved by replacing the AdaBoost batch
learning algorithm with the FilterBoost online learning algorithm. Second, we explore two ways to take advantage
of correlations among the tags collected from Last.fm in order to improve the quality of our automatically-generated
tags. Finally we compare our approach to another approach on a new data set. All experimental results in this paper
are new and make use of 360 autotags trained on a data set of approximately 100,000 MP3s.

This paper is organized as follows: in Section 2, we describe social tags in more depth, including a description
of how social tags can be used to avoid problems found in traditional collaborative filtering systems, as well as a
description of the tag set we built for these experiments. In Section 3, we describe previous approaches to automatic
tagging of music and related tasks. In Section 4 we present our algorithm for autotagging songs based on labelled data
collected from the Internet. In Sections 5 through 7, we present a series of experiments exploring the ability for the
model to predict social tags and artist similarity. Finally, in Section 8, we describe our conclusions and future work.

2 Using social tags for recommendation
As the amount of online music grows, automatic music recommendation becomes an increasingly important tool
for music listeners to find music that they will like. Automatic music recommenders commonly use collaborative
filtering (CF) techniques to recommend music based on the listening behaviours of other music listeners. These CF
recommenders (CFRs) harness the “wisdom of the crowds” to recommend music. Even though CFRs generate good
recommendations there are still some problems with this approach. A significant issue for CFRs is the cold-start
problem. A recommender needs a significant amount of data before it can generate good recommendations. For new
music, or music by an unknown artist with few listeners, a CF recommender cannot generate good recommendations.
Another issue is the lack of transparency in recommendations (Herlocker et al. [16]). A CF recommender cannot tell
a listener why an artist was recommended beyond the superficial description: “people who listen to X also listen to Y.”

Music listening occurs in many contexts. A music listener may enjoy a certain style of music when working, a
different style of music when exercising and a third style when relaxing. A typical CF recommender does not take
the listening context into account when recommending music. Ideally, a music listener should be able to request a
music recommendation for new music that takes into account the style of the music and the listening context. Since a
CF recommender bases its recommendations on listener behaviour, it cannot satisfy a music recommendation request
such as “recommend new music with female vocals, edgy guitar with an indie vibe that is suitable for jogging.”

An alternative style of recommendation that addresses many of the shortcomings of a CF recommender is to
recommend music based upon the similarity of “social tags” that have been applied to the music. Social tags are free
text labels that music listeners apply to songs, albums or artists. Typically, users are motivated to tag as a way to
organize their own personal music collection. A user may tag a number of songs as mellow some songs as energetic
some songs as guitar and some songs as punk. Typically, a music listener will use tags to help organize their listening.
A listener may play their mellow songs while relaxing, and their energetic artists while they exercise.

The real strength of a tagging system is seen when the tags of many users are aggregated. When the tags created
by thousands of different listeners are combined, a rich and complex view of the song or artist emerges. Table 1 shows
the top 21 tags and frequencies of tags applied to the band “The Shins”. Users have applied tags associated with the
genre (Indie, Pop, etc.), with the mood (mellow, chill), opinion (favorite, love), style (singer-songwriter) and context
(Garden State). From these tags and their frequencies we learn much more about “The Shins” than we would from a
traditional single genre assignment such as “Indie Rock”.

Using standard information retrieval techniques, we can compute the similarity of artists or songs based on the co-
occurrence of tags. A recommender based upon the social tags addresses some of the issues seen in traditional CFRs.
Recommendations are transparent — they can be explained in terms of tags. Recommendations can be sensitive to
the listening context. A recommender based on social tags is able to cross the semantic gap, and allow a listener
to request a recommendation based upon a textual description of the music. The recommender can satisfy a request
to “recommend music with female vocals, edgy guitar with an indie vibe that is suitable for jogging”. However, a
social-tag-based recommender still suffers from the cold-start problem that plagues traditional CFRs. A new artist or
song will have insufficient social tags to make good recommendations.

In this paper, we investigate the automatic generation of tags with properties similar to those assigned by social
taggers. Specifically, we introduce a machine learning algorithm that takes as input acoustic features and predicts

2

Tag Freq Tag Freq Tag Freq
Indie 2375 The Shins 190 Punk 49

Indie rock 1138 Favorites 138 Chill 45
Indie pop 841 Emo 113 Singer-songwriter 41

Alternative 653 Mellow 85 Garden State 39
Rock 512 Folk 85 Favorite 37

Seen Live 298 Alternative rock 83 Electronic 36
Pop 231 Acoustic 54 Love 35

Table 1: Top 21 tags applied to The Shins for a sample of tags taken from Last.fm.

social tags mined from the web (in our case, Last.fm). The model can then be used to tag new or otherwise untagged
music, thus providing a partial solution to the cold-start problem.

For this research, we extracted tags and tag frequencies from the social music website Last.fm using the Audio-
scrobbler web services [2] during the spring of 2007. The data consists of over 7 million artist-level tags applied
to 280,000 artists. 122,000 of the tags are unique. Table 2 shows the distribution of the types of tags for the 500
most frequently applied tags. The majority of tags describe audio content. Genre, mood and instrumentation account
for 77% of the tags. This bodes well for using the tags to predict audio similarity as well as using audio to predict
social tags. However, there are numerous issues that can make working with tags difficult. Taggers are inconsistent
in applying tags, using synonyms such as favorite, favourite and favorites. Taggers use personal tags that have little
use when aggregated (i own it, seen live). Tags can be ambiguous; love can mean a romantic song or it can mean that
the tagger loves the song. Taggers can be malicious, purposely mistagging items (presumably there is some thrill in
hearing lounge singer Barry Manilow included in a death metal playlist). Taggers can purposely mistag items in an
attempt to increase or decrease the popularity of an item. Although these issues make working with tags difficult, they
are not impossible to overcome. Some strategies to deal with these are described in Guy and Tonkin’s article [15].

A more difficult issue is the uneven coverage and sparseness of tags for unknown songs or artists. Since tags are
applied by listeners, it is not surprising that popular artists are tagged much more frequently than non-popular artists.
In the data we collected from Last.fm, “The Beatles” are tagged 30 times more often than “The Monkees”. This
sparseness is particularly problematic for new artists. A new artist has few listeners, and therefore, few tags. A music
recommender that uses social tags to make recommendations will have difficulties recommending new music because
of the tag sparseness. This cold-start problem is a significant issue that we need to address if we are to use social tags
to help recommend new music.

Overcoming the cold-start problem is the primary motivation for this area of research. For new music or sparsely
tagged music, we predict social tags directly from the audio and apply these automatically generated tags (called
autotags) in lieu of traditionally applied social tags. By automatically tagging new music in this fashion, we can
reduce or eliminate much of the cold-start problem. More generally, we are able to use these autotags as part of a
music recommender to recommend music from the “long tail” of the distribution [18] over popular artists and thus
introduce listeners to new or relatively unknown music.

Given that our approach needs social tag data to learn from, it is not a complete solution for the cold-start problem.
For a new social recommender having no user data at all, it would be necessary to obtain some initial training data
from an external source. Given that many useful sources such as Audioscrobbler are freely available only for non-
commercial use, this may be impossible or may require a licensing agreement.

3 Previous Work and Background
In this section we discuss previous work on music classification and music similarity. In Section 3.1 we carry out
an overview of the existing work in genre recognition. Then, in Section 3.2, we discuss issues relating to measuring
similarity, focusing on challenges in obtaining ground truth. Finally we provide details about the similarity distance
measures used in many of our experiments.

3

Tag Type Frequency Examples
Genre 68% heavy metal, punk
Locale 12% French, Seattle, NYC
Mood 5% chill, party
Opinion 4% love, favorite
Instrumentation 4% piano, female vocal
Style 3% political, humor
Misc 3% Coldplay, composers
Personal 1% seen live, I own it

Table 2: Distribution of tag types for the Last.fm tag sample.

3.1 Music Classification and Similarity
A wide range of algorithms have been applied to music classification tasks. Lambrou et al. [19], and Logan and
Salomon [23] used minimum distance and K-nearest neighbours. Tzanetakis and Cook [33] used Gaussian mixtures.
West and Cox [35] classify individual audio frames by Gaussian mixtures, Linear Discriminant Analysis (LDA), and
regression trees. Ahrendt and Meng [1] classify 1.2s segments using multiclass logistic regression. In Bergstra et al.
[7], logistic regression was used to predict restricted “canonical” genre from the less-constrained noisy genre labels
obtained from the FreeDb web service.

Several classifiers have been built around Support Vector Machines (SVMs). Li et al. [22] reported improved
performance on the same data set as [33] using both SVM and LDA. Mandel and Ellis [25] used an SVM with a
kernel based on the symmetric KL divergence between songs. Their model performed particularly well at MIREX
20052, winning the Artist Recognition contest and performing well in the Genre Recognition contest. While SVMs
are known to perform very well on small data sets, the quadratic training time makes it difficult to apply them to large
music databases. This motivates research on applying equally well-performing but more time-efficient algorithms to
music classification.

The ensemble learning algorithm AdaBoost was used in Bergstra et al. [6] to predict musical genre from audio
features. One contribution of this work was the determination of the optimal audio segmentation size for a number
of commonly-used audio features and classifiers. This model won the MIREX 2005 genre contest [5] and performed
well in the MIREX 2005 artist recognition contest. A similar boosting approach was used in Turnbull et al. [31] to
perform musical boundary detection. As mentioned in Section 1, AdaBoost was the algorithm used in Eck et al. [10].
FilterBoost, an online version of AdaBoost which uses rejection sampling to sample an arbitrarily large data set, is
used in the current work. See Section 4.2 for details.

Though tasks like genre classification are of academic interest, we argue in our analysis of user tagging behaviour
(Section 2) that such winner-take all annotation is of limited real-world value. A similar argument is made in McKay
and Fujinaga [27]. For a full treatment on issues related to social tags and recommendation see Lamere’s article [20].

3.2 Collecting Ground-Truth Data for Measuring Music Similarity
Measuring music similarity is of fundamental importance for music recommendation. Our approach as introduced in
[10] is to use distance between vectors of autotags as a similarity measure. Though our machine learning strategies
differ, this approach is similar to that of Barrington et al. [3] which used distance between semantic concept models
(similar to our autotags) as a proxy for acoustic similarity. Their approach performed well at MIREX in 2007, finishing
third in the similarity task out of 12 with no significant difference among the top four participants. See Section 6 for a
comparison of our approach and that of Barrington.

As has long been acknowledged (Ellis et al. [12]), one of the biggest challenges in predicting any attribute about
music is obtaining “ground truth” for comparison. For tasks like genre prediction or social tag prediction, obtaining
ground truth is challenging but manageable. (For genre prediction an ontology such as provided by AllMusic can be

2Music Information Retrieval Evaluation eXchange; Yearly contest pages found at www.music-ir.org.

4

used; for social tag prediction, data mining can be used). The task is more complicated when it comes to predicting
the similarity between two songs or artists.

What all researchers want, it is safe to say, is a massive collection of error-free human-generated similarity rankings
among all of the songs and artists in the world, in other words a large and clean set of ground-truth rankings that could
be used both to train and to evaluate models. Though no such huge, pristine similarity data set exists, it is currently
possible to obtain either small datasets which are relatively noise-free or large datasets which may contain significant
noise.

In general small and clean approaches take advantage of a well-defined data collection process wherein explicit
similarity rankings are collected from listeners. One option is to use a controlled setting such as a psychology labora-
tory. For example, Turnbull et al. [29] paid subjects to provide judgements about the genre, emotion and instrumen-
tation for a set of 500 songs. Another increasingly-popular option is to use an online game similar to the now-famous
ESP game for images (von Ahn and Dabbish [34]) where points are awarded for describing an image using the same
words as another user. Variations of the ESP game for music can be seen in [21, 26, 32].

If one of these games explodes in popularity it has great potential for generating exactly the kinds of large and
clean datasets we find useful. In the meantime, large dataset collection techniques are done via data mining of public
web resources and thus are not driven by elicited similarity judgements. Our approach uses such a large and noisy
data collection technique: the word distributions used to train our autotag classifiers come from the Last.fm website,
which does nothing to ensure that users consider music similarity when generating tags. Thus it is possible that the
word vectors we generate will be noisy in proportion to the noise encountered in our training data. Our belief is that
in the context of music similarity a large, noisy dataset will give us a better idea of listener preferences than will a
small, clean one. This motivated the construction of our model, which uses classification techniques that scale well
to large high-dimensional datasets but which do not in general perform as well on small datasets as do some other
more-computationally expensive generative models. We will return this issue of small and clean versus large and
noisy in section 6.

3.3 Measuring Similarity
In our experiments we use three measures to evaluate our ability to predict music similarity. The first, TopN, compares
two ranked lists: a target “ground truth” list A and our predicted list B. This measure is introduced in Berenzweig et
al. [4], and is intended to place emphasis on how well our list predicts the top few items of the target list. Let kj be
the position in list B of the jth element from list A. αr = 0.51/3, and αc = 0.52/3, as in [4]. The result is a value
between 0 (dissimilar) and 1 (identical top N),

si =

∑N
j=1 αj

rα
kj
c∑N

l=1(αr × αc)l
(1)

For the results produced below, we look at the top N = 10 elements in the lists.
Our second measure is Kendall’s Tau, a classic measure in collaborative filtering which measures the number

of discordant pairs in 2 lists. Let RA(i) be the rank of the element i in list A, if i is not explicitly present, RA(i) =
length(A)+1. Let C be the number of concordant pairs of elements (i, j), e.g. RA(i) > RA(j) and RB(i) > RB(j).
In a similar way, D is the number of discordant pairs. We use Kendall’s Tau’s definition from Herlocker et al. [17].
We also define TA and TB the number of ties in list A and B. In our case, it’s the number of pairs of artists that are in
A but not in B, because they end up having the same position RB = length(B) + 1, and reciprocally. Kendall’s Tau
value is defined as:

τ =
C −D

sqrt((C + D + TA)(C + D + TB))
(2)

Unless otherwise noted, we analyzed the top 50 predicted values for the target and predicted lists.
Finally, we compute what we call the TopBucket, which is simply the percentage of common elements in the top

N of 2 ranked lists. Here we compare the top 20 predicted values unless otherwise noted.

5

4 Autotagger: an Automatic Tagging Algorithm using FilterBoost

A r t i s t A 80s

rockcool

S o n g 1 80s

rockcool

SONG TAGGING LEARNING ’80s’ TAG

S o n g 1

a u d i o f e a t u r e s

 t a r g e t : ’ 8 0 s ’
n o n e / s o m e / a l o t

’ 8 0 s ’ b o o s t e r

t ra in ing

PREDICTION

SET OF
BOOSTERS

n e w s o n g

p r e d i c t e d t a g s

Figure 1: Overview of our model. A booster is learnt for every tag, and can then be use to “autotag” new songs.

We now describe a machine learning model which uses the meta-learning algorithm FilterBoost to predict tags
from acoustic features. This model is an extension of a previous model [10], the primary difference being the use
of FilterBoost in place of AdaBoost. FilterBoost is best suited for very large amounts of data. See Figure 1 for an
overview.

4.1 Acoustic Feature Extraction
The features we use include 20 Mel-Frequency Cepstral Coefficients, 176 autocorrelation coefficients of an onset trace
sampled at 100Hz and computed for lags spanning from 250msec to 2000msec at 10ms intervals, and 85 spectrogram
coefficients sampled by constant-Q (or log-scaled) frequency (see previous work [6] or Gold and Morgan [14] for
more details). for descriptions of these standard acoustic features.)

The audio features (Figure 2) described above are calculated over short windows of audio (∼100ms with 25ms
overlap). This yields too many features per song for our purposes. To address this, we create “aggregate” features by
computing individual means and standard deviations (i.e., independent Gaussians) of these features over 5s windows
of feature data. When fixing hyperparameters for these experiments, we also tried a combination of 5s and 10s features,
but saw no real improvement in results. For reasons of computational efficiency we used random sampling to retain a
maximum of 12 aggregate features per song, corresponding to 1 minute of audio data.

4.2 AdaBoost and FilterBoost
AdaBoost [13] is an ensemble (or meta-learning) method that constructs a classifier in an iterative fashion. It was orig-
inally designed for binary classification, and it was later extended to multi-class classification using several different
strategies.

In each iteration t, the algorithm calls a simple learning algorithm (the weak learner) that returns a classifier h(t)

and computes its coefficient α(t). The input of the weak classifier is a d-dimensional observation vector x containing
the features described in Section 4.1, and the output of h(t) is a binary vector x ∈ {−1, 1}k over the k classes. If
h

(t)
` = 1 the weak learner “votes for” class ` whereas h

(t)
` = −1 means that it “votes against” class `. After T

iterations, the algorithm outputs a vector-valued discriminant function

g(x) =
T∑

t=1

α(t)h(t)(x) (3)

Assuming that the feature vector values are ordered beforehand, the cost of the weak learning is O(nkd) (n number
of examples), so the whole algorithm runs in O

(
nd(kT + log n)

)
time. Thus, though boosting may need relatively

6

Figure 2: Acoustic features for “Money” by Pink Floyd.

more weak learners to achieve the same performance on a large data set than a small one, the computation time for
a single weak learner scales linearly with the number of training examples. Thus AdaBoost has the potential to scale
well to very large data sets.

FilterBoost [9] is an extension to AdaBoost which provides a mechanism for doing rejection sampling, thus al-
lowing the model to work efficiently with large data sets by choosing training examples based on their similarity. The
addition of rejection sampling makes it possible to use FilterBoost with data sets which are too large or too redundant
to be used efficiently in a batch learning context. This is the case for industrial music databases containing a million
or more tracks and thus tens or hundreds of millions of audio segments.

Data is presumed to be drawn from an infinitely large source called an “oracle”. The filter receives a sample (x, l)
from the oracle at iteration t + 1 and accepts it with a probability:

qt(x, l) =
1

1 + elgt(x)
(4)

l being the true class of x, l ∈ {−1,+1}, and g(x) the output of the booster between −1 and 1. Sampling continues
until a small data set (usually 3000 examples in our experiments) is constructed, at which time we select the best
weak learner h(t+1)(x) on this set, and then evaluate h(t+1)(x) weight by sampling again from the oracle (see [9] for
details).

7

It is also possible to select more than one weak learner each round, using the classical AdaBoost weighting method
on the small data set created. Conceptually, all the weak learners selected in a single pass can be considered as one
single learner by grouping them. In our experiments, we choose 50 weak learners per round.

Regardless of whether AdaBoost or FilterBoost is employed, when no “a priori” knowledge is available for the
problem domain, small decision trees or, in the extreme case, decision stumps (decision trees with two leaves) are
often used as weak learners. In all experiments reported here, decision stumps were used. In earlier experiments we
also tried decision trees without any significant improvement. Because decision stumps depend on only one feature,
when the number of iterations T is much less than the number of features d, then the booster acts as an implicit
feature extractor that selects the T most relevant features to the classification problem. Even if T > d, one can use the
coefficients α(t) to order the features by their relevance. Because a feature is selected based on its ability to minimize
empirical error, we can use the model to eliminate useless feature sets by looking at the order in which those features
are selected. We used this property of the model to discard many candidate features such as chromagrams (which
map spectral energy onto the 12 notes of the Western musical scale) because the weak learners associated with those
features were selected very late by the booster.

4.3 Generating Autotags using Booster Outputs
Each booster is trained using individual audio segments as input (Figure 1). However we wish to make predictions
on the level of tracks and artists. In order to do so we need to integrate segment-level predictions into track and artist
level predictions. One way to do this is to take the mean value of the hard discriminant function sign(g(x)) for all
segments. Instead we take the mean or median of the raw discriminant function (i.e., the sum of the weak learner
predictions) g(x) for all segments. So that the magnitudes of the weak learner predictions are more comparable we
normalize the sum of the weak learner weights α to be 1.0. This yields a song-level prediction scaled between 0 and
1 where .5 is interpreted as incertitude.

This normalization is useful in that it allows us to use and compare all words in our vocabulary. Lacking normal-
ization, difficult-to-learn words tend not to have any impact at all because the booster confidences are so low. The
undesirable side-effect of our approach is that the impact of very poorly learned tags is no longer attenuated by low
learner confidence. In a production system it would be important to filter out such tags so they do not contribute undue
noise. Though we used no such filtering for these experiments, it can be easily implemented by discarding tags which
fall below a threshold out-of-sample classification rate.

4.4 Second-stage learning and correlation reweighting
As discussed above, each social tag is learned independently. This simplifies our training process in that it allows us to
continually update the boosters for a large set of tags, thus spreading out the computation load over time. Furthermore
it allows us easily add and subtract individual tags from our set of relevant tags as the social tagging data changes over
time. If the tag-level models were dependant on one another this would be difficult or impossible. It is clear, however,
that an assumption of statistical independence among tags is false. For example, a track labelled “alternative rock” is
also likely to be labelled “indie rock” and “rock”. By ignoring these interdependencies, we make the task of learning
individual tags more difficult. We test two techniques for addressing this issue.

Our first approach uses a second set of boosted classifiers. These “second-stage” learners are trained using the
autotag predictions from the first stage. In other words, each second-stage booster predicts a single social tag using a
weighted mixture of acoustically-driven autotags. Since the input includes the results from the first stage of learning,
convergence is fast.

In our second approach we calculate the empirical correlation among the social tagging data obtained from Last.fm.
We then adjust our predictions for a tag (whether from the single-stage or two-stage approach) by mixing predictions
from other tags proportional to correlation. The correlation matrix is computed once for the entire Last.fm data set
and applied uniformly to all autotags for all songs.

8

4.5 Generating Labelled Datasets for Classification from Audioscrobbler
We extracted tags and tag frequencies for nearly 100,000 artists from the social music website Last.fm using the
Audioscrobbler web service [2]. From these tags, we selected the 360 most popular tags. Those tags are listed in the
appendix (Section 11). Because it was impossible to obtain a sufficient number of song-level tags, only artist tags
were used. This is admittedly a questionable practice, especially for artists whose work spans many different styles.
For example, the Beatles are currently the number four artist for the tag “psychedelic” yet only a few Beatles songs fit
that description. Currently there are many more tags applied to artists than to tracks. As more track-level tags become
available we will take advantage of them.

Intuitively, automatic labelling would be a regression task where a learner would try to predict tag frequencies
for artists or songs. However, because tags are sparse (many artist are not tagged at all; others like Radiohead are
heavily tagged) this proves to be too difficult using our current Last.fm data set. Instead, we chose to treat the task as a
classification one. Specifically, for each tag we try to predict if a particular artist would or would not be labelled with
a particular tag. The measure we use for deciding how well a tag applies to an artist is:

weight =
times this tag was applied to this artist
times any tags was applied to this artist

(5)

In our previous work [11], class labels were generated by dividing tags into three equal-sized sets (e.g. no rock,
some rock or a lot of rock). With this strategy, hundreds or even thousands of artists appeared as positive examples. In
our current work, we chose to select positive examples from only the top 10 artist for any given tag. The remaining
artists which received enough tags to make Audioscrobbler’s top 1000 list for that tag are treated as ignore examples
which are not used for learning but which are used to test model performance. The set of negative examples are drawn
by randomly sampling from all artists in our music collection which did not make the top 1000 list for a tag. With
this strategy in many instances such as “rock” a booster is trained on only a tiny proportion of the valid positive artists
suggested by Last.fm, resulting in a “rock” autotag that will certainly fail to find some salient characteristics of the
genre, having never seen a large number of positive examples. This is in keeping with our goal to generate a large set
of autotags which each succeeds at modeling a relatively narrow, well-defined subspace.

Regardless of the specific strategy we use for generating datasets, the set of positive examples for a tag will always
be much smaller than the set of negative examples. This extreme imbalance suggests that we should preserve as many
positive examples as possible, thus motivating our decision to use all top 10 artist songs for training. In addition, when
training we sample equally between positive and negative training examples, thus artificially balancing the sets.

All of the music used in these experiments is labelled using the free MusicBrainz3 service. The MusicBrainz track,
album and artist ids used in our experiments are available on request.

5 Predicting Social Tags
In our first experiment, we measure booster predictions on the positive list, the ignore list and randomly-selected
examples from the negative list. Recall that the positive list for a tag T is made of the songs for the 10 artists whose
weight (equation 5) for that tag is the highest. The ignore list is made of all the songs for artists with high weight
for that tag, but not enough to be in the top 10. Negative examples are drawn from the rest of the database. For a
tag like rock, we have 10 positive artists, about 900 ignored artists and 3000 negative ones. Results are presented in
tables 3 and 4. Table 3 displays success rate as a percentage of correctly classified songs. In parentheses we also
show classification rates for second-stage boosting as discussed in section 4.4. Song-level predictions were obtained
by taking the median for all segment-level predictions for that song. The results for the positive list can be seen as
measuring training error, but the two other measures give an idea of how well we generalize: we did not train on any
tracks from the ignore list, and we randomly sampled songs from 120K negative ones during training, so there is little
risk of overfitting on 200 random songs. Table 4 provides examples of normalized booster outputs. In both tables, we
also provide the results for selected genres, instrument and mood-related terms. Again, parentheses show results for
second-stage learning. From a computational point of view, we train 2000 weak learners per word, as we did in earlier
work [11]. However, FilterBoost computes them in a couple of hours instead of 1 or 2 days previously.

3www.musicbrainz.org

9

5.1 Second-stage learning
Second-stage learning results were obtained by training FilterBoost for 500 iterations. As there were only 360 autotag
values present in the input vector, the booster could capture the influence of every autotag if necessary. The classifi-
cation results in parentheses (Table 3) show improved performance for positive and negative examples but degraded
performance for for the ignore list. The mean normalized booster outputs in Table 4 suggest that the second-stage
boosting is more strongly separating the positive and negative classes. For more results on our second-stage learning,
see Section 6 and Section 7.

Boosters Positive (10 artists) Ignore (100 songs) Negative (200 songs)
main genres (rock, pop,

89.1% (90.1%) 80.6% (78.9%) 80.0% (79.1%)Hip-Hop, metal, jazz,
dance, Classical, country,
blues, reggae)
instruments (piano, guitar, 87.0% (88.7%) 61.0% (60.3%) 82.4% (83.6%)saxophone, trumpet)
mood (happy, sad, 87.8% (89.1%) 67.4% (66.8%) 79.0% (81.1%)romantic, Mellow)
all 88.2% (90.5%) 60.0% (57.2%) 81.4% (84.1%)

Table 3: Song classification results, percentage of the songs that are considered positive (for positive and ignore
examples) or negative for negative examples. Values in parentheses are for second-stage boosters.

Boosters Positive (10 artists) Ignore (100 songs) Negative (200 songs)
main genres (rock, pop,

0.540 (0.572) 0.528 (0.544) 0.463 (0.438)Hip-Hop, metal, jazz,
dance, Classical, country,
blues, reggae)
instruments (piano, guitar, 0.538 (0.570) 0.507 (0.520) 0.470 (0.438)saxophone, trumpet)
mood (happy, sad, 0.532 (0.558) 0.511 (0.517) 0.463 (0.433)romantic, Mellow)
all 0.536 (0.569) 0.508 (0.509) 0.466 (0.432)

Table 4: Mean normalized booster output per song for selected tag types. Values in parentheses are for second-stage
boosters.

5.2 Correlation reweighting
To investigate the effects of reweighting autotag predictions as a function of empirical correlation, we look at the
ordering of the artists taken from the ignore list from our training set. Recall that ignore-list artists for a tag T are the
ones that were labelled significantly with tag T , but not enough to appear among the top 10 artists (i.e the positive list
for tag T). We assume that having a good ordering of these artists, e.g. “from the most rock to the least rock”, is a
good measure of performance.

We generate a ground-truth list by sorting the Last.fm tags by their weight (Equation 5). We then compare this
ground truth to three lists: a random list, a list ordered by our autotags and a list ordered by correlation-reweighted
autotags. Lists are sorted by the median normalized booster output per song over all songs for an artist. Results are
shown in Table 5.

10

Autotags TopN 10 Kendall 50 TopBucket 20
random artist order −0.663 0.003 0.007%
without correlation −0.577 0.024 5.64%
with correlation −0.569 0.027 6.33%

Table 5: Ordering of artists (in the ignore list) per tag. Ordering is based on median normalized booster output.

The correlation reweighting yields improved performance on all three measures we tested. However the improve-
ment is relatively minor (e.g. less than 2% for TopBucket 20). Many factors can explain why the improvement is not
greater. First, our method for generating a ground-truth list yields only a general idea of good ordering. Second, Au-
dioscrobbler [2] only gives us access to a limited number of tag counts. Having more data would increase the precision
of our correlation factors. Third, the tagging is very sparse: most artists are tagged reliably with only a few of the 360
tags we investigated. This can lead to spurious correlation measures for otherwise unrelated tags. Finally, we trained
on only 10 positive artists. For a general tag like rock, it is obvious that 10 artists cannot represent the whole genre.
If all positive artists for rock are rockers from the 60s, there is not much chance that Radiohead (heavily tagged rock)
will be correctly placed among others artists in the ignore list, being too different from the positive artists.

6 Comparison with GMM approach
We now compare our model to one developed by the Computer Audition Lab (CAL) group that uses a hierarchical
Gaussian mixture model (GMM) to predict tags [29, 30]. We make use of the same dataset (“CAL500”) used in their
experiments. One goal of this comparison is to investigate the relative merits of the small and clean versus large and
noisy approaches discussed in Section 3.2. The experiments follow closely [30], and GMM results also come from
this paper.

6.1 The CAL500 data set
The Computer Audition Lab 500-Song (CAL500) data set (Turnbull et al. [29, 30]) was created by the CAL group
by having 66 paid students listen to and annotate a set of songs. The collection is made of 500 recent Western songs
by 500 different artists in a wide range of genres. The tags applied to the corpus can be grouped into six categories:
instrumentation, vocal characteristics, genre, emotions, acoustic qualities and usage terms. The data was collected
by presenting the students with an HTML form comprised of a fixed set of 135 tags. This is quite different from
the Last.fm tags used in our previous experiments because the respondents were constrained to a predetermined set
of words, resulting in cleaner tags. Some of the tags received a rating on a scale of 1 to 5 (ex.: emotion-related
tags), others on a 1 to 3 scale (ex.: presence of a instrument could be marked “yes”, “no” or “uncertain”) and some
other received binary ratings (ex.: genre-related tags). There were a total of 1708 song evaluations collected with a
minimum of three per song. All bipolar tags were then broken down into two different tags (thus generating more than
the original 135 tags). For example, “The song is catchy” was broken down to “catchy” and “not catchy”, with ratings
of 1 and 2 counting towards the “not catchy” tag, ratings of 4 and 5 counting towards the “catchy” and the ratings of 3
being simply ignored.

The ground truth was created by assigning a tag to a song if a minimum of two people assigned that tag to the
song and if there was an agreement between the different survey respondents. The respondents were considered in
agreement if [

#(People who assigned tag to song)−#(People who didn’t)
#(People who evaluated song)

]
> 0.8. (6)

As a final step, all the tags that were assigned to less than five songs were pruned, which resulted in a collection of 174
tags.

11

6.2 Evaluation
We trained and evaluated our model in the same way as did the CAL group, using 10 fold cross-validation on the
500 songs (i.e., 450-song training set, 50-song test set). We trained one booster per tag using different audio feature
sets. First, we trained on the MFCC deltas provided with the CAL500 data set, which were the features used by the
CAL group [30]. We then trained on our aggregated audio features (afeats) and on our autotags, creating second-stage
autotags (bfeats).

Category Avg. # positive examples Avg. # positive after expansion Avg. # negative examples
All words 69.16 (74.50) 85.60 (63.42) 382.84 (74.50)
Emotion 128.46 (59.28) 129.21 (58.09) 323.54 (59.28)

Genre 25.06 (25.91) 52.87 (13.96) 435.13 (11.78)
Instrumentation 70.35 (79.42) 84.80 (70.71) 381.65 (79.42)

Solo 12.70 (9.79) 48.59 (1.48) 439.30 (9.79)
Usage 27.38 (27.31) 52.91 (16.59) 424.62 (27.31)
Vocal 34.44 (28.63) 55.13 (17.19) 417.56 (28.63)

Table 6: Average per-fold number of positive, negative and positive examples after expansion in the CAL500 data
set. The numbers is parentheses are the standard deviation. The expansion of the “Solo” tags averages to a number
inferior to 50 because we did not have enough songs by the artists in the original positives examples in our own music
collection. For example, if there is only one positive example and we do not have any additional song by that artist,
we will not be able to do any expansion on that fold.

Since the CAL500 data set is relatively small, some tags have very few positive examples (i.e., 5 positives for 445
negatives) in certain folds. To explore the influence of the number of examples, we tried expanding the training set by
adding random songs from the artists that were already part of the positive examples, so that every fold had at least
50 positive examples. The new songs were taken from our internal research collection. The training on the expanded
training set was done using the afeats (afeats exp.). The average number of positive, negative and positive examples
after expansion are listed in Table 6. The test set was left unchanged.

6.3 Results
We discuss the results for annotation and for retrieval separately in the following two sections.

6.3.1 Results for Annotation

This section treats the task of annotating a given track with an appropriate set of tags. The annotation evaluation
and comparison of the model was done using the two evaluation measures used in Turnbull et al. [30], mean per-tag
precision and recall, as well as a third one, the F-score. All three are standard information retrieval metrics. We start by
annotating each song in our test set with an arbitrary number of tags that we refer to as the annotation length. Since the
CAL group used ten tags, we used that number as well for comparison purposes. Per-tag precision can be defined as
the probability that the model annotates relevant songs for a given tag. Per-tag recall can be defined as the probability
that the model annotates a song with a tag that should have been annotated with that tag. More formally, for each tag t,
|tGT | is the number of songs that have been annotated with the tag in the human-generated “ground truth” annotation.
|tA| is the number of songs that our model automatically annotates with the tag t. |tTP | is the number of “correct”
(true positive) tags that have been used both in the ground truth and in the automatic tag prediction. Per-tag recall
is |tTP |/|tGT | and per-tag precision is |tTP |/|tA|. The F-score takes into account both recall and precision and is
defined as 2 · (precision · recall)/(precision+recall). No variance is provided for our F-score measure because it was
computed from the averaged precision and recall for all words; per-tag precision and recall values were not available
for the GMM. All three of these metrics range between 0 and 1 but are upper bounded by a value of less than one in
our results because we forced the model to output less tags than the number that are actually present in the ground
truth. The upper bound is listed as “UpperBnd” in the results tables.

12

The results for the precision and recall scores are given in Table 7. In general the models were comparable, with
Autotagger performing slightly better on precision for all feature sets while the GMM model performed slightly better
for recall. Precision and recall results for different categories are found in the appendix (Section 11). Though a good
balance of precision and recall is always desirable, it has been argued that precision is more important for recommender
systems. See, for example, Herlocker et al. [16]. Also, training with the second-stage autotags (bfeats) as input to the
boosters produced better precision and recall results than the afeats. This suggests that the extra level of abstraction
given by the bfeats can help the learning process.

Category A/|V | Model Precision Recall F-Score

All words 10/174

Random 0.144 (0.004) 0.064 (0.002) 0.089
UpperBnd 0.712 (0.007) 0.375 (0.006) 0.491

GMM 0.265 (0.007) 0.158 (0.006) 0.198
MFCC delta 0.281 (0.066) 0.131 (0.019) 0.179

afeats 0.266 (0.078) 0.094 (0.018) 0.139
afeats exp. 0.312 (0.060) 0.153 (0.015) 0.205

bfeats 0.291 (0.105) 0.089 (0.034) 0.136

Table 7: Music annotation results. A = Annotation length, |V | = Vocabulary size. Numbers in parentheses are the
variance over all tags in the category. GMM is the results of the Gaussian mixture model of the CAL group. MFCC
delta, afeats, afeats extended and bfeat are the results of our boosting model with each of these features. Random,
UpperBnd and GMM results taken from [30]. Continued in Table 14.

The annotation length of 10 tags used to compute the precision and recall results could be restrictive depending
on the context in which the tagging is used. If the goal is to present a user with tags describing a song or to generate
tags that will be used in a natural language template as the CAL group did, 10 tags seems a very reasonable choice.
However, if the goal is to do music recommendation or compute similarity between songs, a much higher annotation
length may give rise to better similarity measures via word vector distance. As shown in Figure 3, our recall score goes

Figure 3: Precision and recall results for different annotation lengths when training on (a) the bfeats and (b) the
expanded afeats.

up very quickly while our precision remains relatively stable when increasing the annotation length. This supports
the idea that we can scale to larger annotation lengths and still provide acceptable results for music similarity and
recommendation.

13

To provide an overall view of how Autotagger performed on the 35 tags we plot precision in Figure 4 for the
different feature sets. This figure, and particularly the failure of the model to predict categories such as “World (Best)”
and “Bebop” for certain feature sets, is discussed later in Section 6.4.

afeat exp.
bfeat
afeat
Delta MFCC

Figure 4: “Autotagger’s” precision scores using different feature seats on 35 CAL500 tags ordered by performance
when using the expanded afeats. Plot inspired by M. Mandel’s one [24].

6.3.2 Results for Retrieval

In this section we evaluate our ability to retrieve relevant tracks for a given tag query. The evaluation measures used
are the same as in Turnbull et al. [30]. To measure our retrieval performance, we used the same two metrics as
the CAL group. They are the mean average precision and the area under the receiver operating characteristic curve
(AROC). The metrics were computed on a rank-ordered test set of songs for every one-tag query tq in our vocabulary
V . Average precision puts emphasis on tagging the most relevant songs for a given tag early on. We can compute
the average precision by going down the rank-ordered list and averaging the precisions for every song that has been
correctly tagged in regard to the ground truth (true positive). The ROC curve is a plot of the fraction of true positives
as a function of the fraction of false positives that we get when moving down our ranked list. The AROC is the area
under the ROC curve and is found by integrating it. The mean of both these metrics can be found by averaging the
results over all the tags in our vocabulary.

Table 8 shows the retrieval results for these measures. Here it can be seen that the GMM model slightly outperforms
the Autotagging model but that results for “All words” are comparable. We also see that again the two-stage learner
(bfeats) outperforms the single-stage learner.

14

Category |V | Model MeanAP MeanAROC

All words 174

Random 0.231 (0.004) 0.503 (0.004)
GMM 0.390 (0.004) 0.710 (0.004)

MFCC delta 0.305 (0.057) 0.678 (0.015)
afeats 0.323 (0.092) 0.622 (0.013)

afeats exp. 0.385 (0.06) 0.674 (0.010)
bfeats 0.340 (0.124) 0.662 (0.020)

Table 8: Retrieval results. |V | = Vocabulary size. Numbers in parentheses are the variance over all tags in the category.
GMM is the results of the Gaussian mixture model of the CAL group. MFCC delta, afeats, afeats extended and bfeat
are the results of our boosting model with each of these features. Random and GMM taken from [30]. Continued in
Table 15.

6.4 Discussion
We now compare the tags generated by Autotagger (using two-stage learning on expanded afeats) to several other lists
on the Red Hot Chili Peppers song “Give It Away”. Annotations from the GMM model are taken from [30]. The
results are presented in Table 9. Here we observe that the Autotagger list includes words which would be difficult or
impossible to learn such as “good music” and “seen live.” This suggests that filtering out tags with low classification
rates would improve performance for annotation.

GMM CAL500 words autotags Last.fm Tags
dance pop not mellow good music Rock
aggressive not loving pop rock 90s

not calming exercising Funk Rock Alternative Punk
angry rapping crossover Funk

exercising monotone rock Alternative
rapping tambourine USA Alternative Rock

heavy beat at work Favorite Artists Funk Rock
pop gravelly american Hard Rock

not tender hard rock seen live Punk
male vocal angry classic rock Funk Metal

Table 9: Top 10 words generated for the Red Hot Chili Peppers song Give it Away first by the hierarchical Gaussian
mixture (GMM) from CAL group, then by our model trained with the extended afeats with CAL500 tags, by our
model (using second-stage boosters) with Last.fm tags and finally the top tags on Last.fm. Ordering for GMM is
approximated.

An important observation is that our model achieves its best performance with the expanded afeats. This provides
(modest) evidence in support of large and noisy datasets over small and clean ones. Despite the fact that these audio
examples were not labelled by the trained listeners, by adding them to the training set, we improve our performance
on the unmodified test set and end up doing better than the GMM model on almost every evaluation metric. We even
improve our precision results for tags like “Acoustic Guitar Solo” by considering all the songs added to the training
set as having an acoustic guitar solo, which is an assumption that can potentially be wrong most of the time.

One challenge in working with the CAL500 data is that only 3.4 listeners on average rated each song. For example,
the song “Little L” by Jamiroquoi was tagged by three different persons who disagreed strongly on some tags like
“Drum machine”, which was annotated as “None” by one student and as “Prominent” by another. This may introduce
problems when using these annotations as ground truth. This issue is addressed by requiring an agreement of 80%
among respondents in order to apply a tag to a song. However with only an average of 3.4 survey respondents per
song, most of the time all respondents need to tag a song as positive for the tag to be applied in the ground truth. Since

15

the survey participants are not professional music reviewers, it is reasonable to assume that there will be significant
disagreement. This issue is easily addressed by obtaining many more annotations per song.

One repercussion of this problem is illustrated in Figure 4, which shows our model’s precision results on 35 tags
using the different feature sets. Since the tags are ordered by their precision score when using the expanded afeats,
some of them stand out by having a drastic performance difference when using the expanded afeats or another feature
set. In most cases, these outliers stem from having very few positive examples in the training set for these tags. For
example, the tags World (Best) and Bebop respectively have an average of 1.6 and 0.6 per-fold positive examples in
the training set. Following the training set expansion and using the afeats in both cases, their precision went from 0.03
to 1.0 for World (Best) and from 0.01 to 0.67 for Bebop.

Overall we can conclude by looking at Table 7 and Table 8 that the performance of the Autotagger model and
the GMM model are comparable, with the GMM performing slightly better at recall while the Autotagger model
performs slightly better on precision. However we hasten to add that the best Autotagger results are had when the
expanded feature set is used and that without more data, the GMM approach performs better. In terms of comparing
the algorithms themselves, this is not a fair comparison because it is likely that the GMM approach would also perform
better when trained on the expanded feature set. In this sense neither algorithm can be said to be strictly better. A
comparison of these two approaches using a realistically-large dataset for music recommendation (> 500K songs and
thus millions of audio frames) is called for.

7 Application to Similarity
As mentioned in section 3.3, one key area of interest lies in using our autotags as a proxy for measuring perceived music
similarity. By replacing social tag-based similarity with autotag-based similarity we can then address the cold start
problem seen in large-scale music recommenders4. In the following experiments, we measure our model’s capacity to
generate accurate artist similarities.

7.1 Ground Truth
As has long been acknowledged (Ellis et al. [12]), one of the biggest challenges in addressing this task is to find
reasonable “ground truth” against which to compare our results. We seek a similarity matrix among artists which is
not overly biased by current popularity, and which is not built directly from the social tags we are using for learning
targets. Furthermore we want to derive our measure using data that is freely available on the web, thus ruling out
commercial services such as the AllMusic Guide 5. Our solution is to construct our ground truth similarity matrix
using correlations from the listening habits of Last.fm users. If a significant number of users listen to artists A and B
(regardless of the tags they may assign to that artist) we consider those two artists similar. Note that, although these
data come from the same web source as our artist-level training data, they are different: we train our system using tags
applied to artists, regardless of which user applied the tag.

One challenge, of course, is that some users listen to more music than others and that some artists are more popular
than others. We use term frequency-inverse document frequency (TF×IDF) weighting scheme to overcome this issue.
The complete description of how we build this ground truth can be found in Eck et al. [11].

We also use a second ground truth which has no connection to Last.fm. The All Music Guide (AMG) is a website
containing a lot of information about music made by human experts, in particular lists of similar artists. Based on an
idea from Ellis et al. [12] we calculate similarity using Erdös distances. If an artist A1 is similar to another artist A2,
they have a distance of 1. If artist A3 is similar to A2, A1 and A3 have a distance of 2, and so on. Put another way, it
is the number of steps to go from one artist to another in a connected graph. We mined 4672 artists on AMG for these
experiments.

4Of course, real recommenders deal with a more complex situation, caring about novelty of recommendations, serendipity and user confidence
among others (see Herlocker et al. [17] for more details). However, similarity is essential. We do it on the artist level because the data available to
build a ground truth would be too sparse on the album or song level.

5www.allmusic.com

16

7.2 Experiments
We construct similarity matrices from our autotag results and from the Last.fm social tags used for training and testing.
The similarity measure we used was cosine similarity scos(A1, A2) = A1 ∗ A2/(||A1|| ||A2||) where A1 and A2 are
tag magnitudes for an artist. In keeping with our interest in developing a commercial system, we used all available
data for generating the similarity matrices, including data used for training. (The chance of overfitting aside, it would
be unwise to remove The Beatles from your recommender simply because you trained on some of their songs). The
similarity matrix is then used to generate a ranked list of similar artists for each artist in the matrix. These lists are
used to compute the measures describe in Section 3.3. Results are found in Table 10.

Groundtruth Model TopN 10 Kendall 50 TopBucket 20
Last.fm social tags 0.437 −0.057 42.98%

2nd-stage autotags 0.149 −0.361 19.9%
autotags 0.140 −0.381 18.5%
random 0.006 −0.626 2.0%

AMG social tags 0.234 −0.287 26.8%
2nd-stage autotags 0.109 −0.431 15.3%
autotags 0.104 −0.445 14.2%
random 0.006 −0.626 2.0%

Table 10: Performance against Last.fm (top) and AMG (bottom) ground truth.

7.3 Second-Stage Learning
The second-stage autotags (Table 10) are obtained by training a second set of boosted classifiers on the results of the
first classifiers (that is, we train using autotags in place of audio features as input). This second step allows us to
learn dependencies among tags. The results from the second-stage boosters for similarity are better than those of the
first-stage boosters. This leads to the conclusion that there is much to gain from modeling dependencies among tags.
However, this is largely an open question that needs more work: what model is the best for second-stage learning, and
how can we best take advantage of correlation among tags?

Wilco
Ground truth Last.fm Sufjan Stevens, Elliott Smith, The Flaming Lips,

The Shins, Modest Mouse
Ground truth AMG The Bottle Rockets, Blue Rodeo, The Flying Burrito Brothers,

Neko Case, Whiskeytown
Last.fm Calixico, Grandaddy, Modest Mouse,

Mercury Rev, Death Cab for Cutie
Autotags Tuatara, Animal Collective, Badly Drawn Boy,

Gomez, Elliott Smith
Autotags 2nd stage Badly Drawn Boy, Animal Collective, Elliott Smith,

Gomez, Tuatara

Table 11: Similar artists to Wilco from a) Last.fm ground truth b) AMG ground truth c) similarity from Last.fm tags
d) similarity from autotags e) similarity from autotags second-stage.

17

The Beatles
Ground truth Last.fm Radiohead, The Rolling Stones, Led Zeppelin,

Pink Floyd, David Bowie
Ground truth AMG George Martin, The Zombies, Duane Eddy,

The Yardbirds, The Rolling Stones
Last.fm George Harrison, The Who, The Rolling Stones,

Fleetwood Mac, The Doors
Autotags The Rolling Stones, Creedence Clearwater Revival, Elvis Costello,

Elvis Costello & The Attractions, Traffic
Autotags 2nd stage The Rolling Stones, Creedence Clearwater Revival, Donovan,

The Lovin’ Spoonful, Elvis Costello

Table 12: Similar artists to The Beatles from a) Last.fm ground truth b) AMG ground truth c) similarity from Last.fm
tags d) similarity from autotags e) similarity from autotags second-stage.

7.4 Discussion
It seems clear from these results that the autotags are of value. Though they do not outperform the social tags on
which they were trained, it was shown in previous work (Eck et al. [11]) that they do yield improved performance
when combined with social tags. At the same time, we showed a way to improve them by a second-stage of learning,
and they are driven entirely by audio and so can be applied to new, untagged music.

Finally, we present some similar artists to Wilco and The Beatles in Tables 11 and 12, based on our two ground
truths, Last.fm tags, and our two kind of autotags. We can draw two conclusions from these tables: Last.fm ground
truth suffers from popularity bias, and our two set of autotag results are very comparable.

8 Conclusions
We have extended our previous autotagging method to scale more efficiently using FilterBoost. This introduces the
concept of infinite training data, where an oracle can go and get the examples it needs. This is particularly appealing
for web-based music recommenders that have access to millions of songs. The learning can simply be done using
social tagging data, and the data we used [2] is freely available for research.

We tried to shed light on differences between small and clean versus large and noisy data sets. Though we provide
no conclusive evidence to support the superiority of large, unreliably-labelled datasets such as our Last.fm data, we did
demonstrate improved performance on the CAL500 task by adding audio which was never listened to by the CAL500
subjects and thus was not well-controlled. This is in keeping with the folk wisdom “There’s no data like more data”
and points towards methods which take advantage of all data available such as, e.g., semi-supervised learning and
multi-task learning.

We have compared our method with the hierarchical mixture of Gaussians from the CAL group. This is to our
knowledge the first comparison of algorithms especially designed for automatic tagging of music. In summary, Auto-
tagger performed slightly better on precision for all feature sets while the GMM model performed slightly better for
recall. We can in no way conclude from these results that one model is superior to the other. Test on larger datasets
would be necessary to draw such conclusions. These results do support the conclusion that Autotagger has great
potential as the core of a recommender that can generate transparent and steerable recommendation.

9 Future Work
One weakness of our current setup is that we blindly include all popular tags from Last.fm regardless of our ability to
predict them. This adds significant noise to our similarity measurements. A solution proposed by Torres et al. [28]

18

may prove more effective than our proposal to simply remove tags which we cannot classify above some threshold. A
comparison of these and other methods is an important direction for future research.

Another direction for future research is that of second-stage learning. Treating tags as being independent is a useful
assumption when you train on large scale data and you want to be able to expand your vocabulary easily. However,
we show it is still possible to take advantage of the dependencies among tags, which improves our similarity results.
We showed modest increases in classification error and also higher booster confidence values with our second-stage
learning approach. However, more work is necessary in this area.

Finally, it should be possible to use the similarity space created by our model to create playlists that move smoothly
from one artist to another. In addition, we can draw on our autotag predictions to explain the song-to-song transitions.
As a first step, we used ISOMAP (see Bishop’s book [8] for details) to generate a 2D projection of the artist similarity
graph generated from the 360 Last.fm autotags (Table 13). We then calculated the shortest path from one artist to
another. The autotag values from Table 3 are shown in Figure 5 for the artist nodes in the shortest path. This is only
an illustrative example and leaves many issues uninvestigated such as whether ISOMAP is the right dimensionality
reduction algorithm to use. See www.iro.umontreal.ca/∼eckdoug/sitm to listen to this example and others.

Figure 5: Shortest path between Ludwig van Beethoven and UK electronic music group The Prodigy after dimen-
sionality reduction with ISOMAP. The similarity graph was built using all 360 Last.fm tags (Table 13), but the tags
displayed are from Table 3.

10 Acknowledgement
Many thanks to the members of the CAL group, in particular Luke Barrington, Gert Lanckriet and Douglas Turnbull,
for publishing the CAL500 data set and answering our numerous questions. Thanks to the many individuals that
provided input, support and comments including James Bergstra, Andrew Hankinson, Stephen Green, the members
of LISA lab, BRAMS lab and CIRMMT. Thanks to Joseph Turian for pointing us to the phrase “There’s no data like
more data.” (originally from speech recognition, we believe).

References
[1] Peter Ahrendt and Anders Meng. Music genre classification using the multivariate ar feature integration model. Extended

Abstract, 2005. MIREX genre classification contest (www.music-ir.org/evaluation/mirex-results).

[2] Audioscrobbler. Web Services described at http://www.audioscrobbler.net/data/webservices/.

19

[3] L. Barrington, D. Turnbull, D. Torres, and G. Lanckriet. Semantic similarity for music retrieval. Mu-
sic Information Retrieval Evaluation Exchange (MIREX), Vienna, 2007, available at http://www.music-
ir.org/mirex/2007/index.php/Audio Music Similarity and Retrieval Results.

[4] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-scale evaluation of acoustic and subjective music similarity
measures. In Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR 2003), 2003.

[5] J. Bergstra, N. Casagrande, and D. Eck. Genre classification: Timbre- and rhythm-based multiresolution audio classification.
MIREX genre classification contest, 2005.

[6] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl. Aggregate features and AdaBoost for music classification.
Machine Learning, 65(2-3):473–484, 2006.

[7] J. Bergstra, A. Lacoste, and D. Eck. Predicting genre labels for artists using freedb. In Proceedings of the 7th International
Conference on Music Information Retrieval (ISMIR 2006), pages 85–88, 2006.

[8] C. Bishop. Pattern Recognition and Machine Learning. Springer Verlag, 2006.

[9] J. K. Bradley and R. Schapire. Filterboost: Regression and classification on large datasets. In J.C. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.

[10] D. Eck, T. Bertin-Mahieux, and P. Lamere. Autotagging music using supervised machine learning. In Proceedings of the 8th
International Conference on Music Information Retrieval (ISMIR 2007), 2007.

[11] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Automatic generation of social tags for music recommendation. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press,
Cambridge, MA, 2008.

[12] D. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence. The quest for ground truth in musical artist similarity. In Proceedings
of the 3th International Conference on Music Information Retrieval (ISMIR 2002), 2002.

[13] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–139, 1997.

[14] B. Gold and N. Morgan. Speech and Audio Signal Processing: Processing and Perception of Speech and Music. Wiley,
Berkeley, California., 2000.

[15] M. Guy and E. Tonkin. Tidying up tags. D-Lib Magazine, 2006. online article: www.dlib.org/dlib/january06/guy/01guy.html.

[16] J. L. Herlocker, J. A. Konstan, and J. T. Riedl. Explaining collaborative filtering recommendations. In Computer Supported
Cooperative Work, pages 241–250, 2000.

[17] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. ACM
Trans. Inf. Syst., 22(1):5–53, 2004.

[18] Chr. Hjorth-Andersen. Chris anderson, the long tail: How endless choice is creating unlimited demand. the new economics
of culture and commerce. Journal of Cultural Economics, 31(3):235–237, September 2007.

[19] T. Lambrou, P. Kudumakis, R. Speller, M. Sandler, , and A. Linney. Classification of audio signals using statistical features
on time and wavelet tranform domains. In Proc. Int. Conf. Acoustic, Speech, and Signal Processing (ICASSP-98), volume 6,
pages 3621–3624, 1998.

[20] P. Lamere. Semantic tagging and music information retrieval. Journal of New Music Research, 2008. (to appear).

[21] E. Law, A. v. Ahn, R. Dannenberg, and M. Crawford. Tagatune: a game for music and sound annotation. In Proceedings of
the 8th International Conference on Music Information Retrieval (ISMIR 2007), 2007.

[22] Tao Li, Mitsunori Ogihara, and Qi Li. A comparative study on content-based music genre classification. In SIGIR ’03:
Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval,
pages 282–289, New York, NY, USA, 2003. ACM Press.

[23] Beth Logan and Ariel Salomon. A music similarity function based on signal analysis. In 2001 IEEE International Conference
on Multimedia and Expo (ICME’01), page 190, 2001.

[24] M. Mandel. blog at http://blog.mr-pc.org/2008/03/04/autotagging/.

[25] M. Mandel and D. Ellis. Song-level features and support vector machines for music classification. In T. Crawford and
M. Sandler, editors, Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), 2005.

[26] M. Mandel and D. Ellis. A web-based game for collecting music metadata. In Proceedings of the 8th International Conference
on Music Information Retrieval (ISMIR 2007), 2007.

20

[27] C. McKay and I. Fujinaga. Musical genre classification: is it worth pursuing and how can it be. In Proceedings of the 7th
International Conference on Music Information Retrieval (ISMIR 2006), 2006.

[28] D. Torres, D. Turnbull, L. Barrington, and G. Lanckriet. Identifying words that are musically meaningful. In Proceedings of
the 8th International Conference on Music Information Retrieval (ISMIR 2007), 2007.

[29] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Towards musical query-by-semantic-description using the cal500
data set. In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 439–446, New York, NY, USA, 2007. ACM.

[30] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic annotation and retrieval of music and sound effects. IEEE
Transactions on Audio, Speech & Language Processing, 16(2), 2008.

[31] D. Turnbull, G. Lanckriet, E. Pampalk, and M. Goto. A supervised approach for detecting boundaries in music using difference
features and boosting. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007),
2007.

[32] D. Turnbull, R. Liu, L. Barrington, and G. Lanckriet. A game-based approach for collecting semantic annotations of music.
In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), 2007.

[33] George Tzanetakis and Perry Cook. Musical genre classification of audio signals. IEEE Transactions on Speech and Audio
Processing, 10(5):293–302, Jul 2002.

[34] L. von Ahn and L. Dabbish. 2004, labeling images with a computer game. In CHI ’04: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 319–326, New York, NY, USA, 2004. ACM Press.

[35] K. West and S. Cox. Features and classifiers for the automatic classification of musical audio signals. In Proceedings of the
5th International Conference on Music Information Retrieval (ISMIR 2004), 2004.

21

11 Appendix
The 360 Last.fm tags used in our experiments.

00s drum n bass humour progressive rock
60s dub icelandic progressive trance
70s dutch idm prog rock
80s duyster idols proto-punk
90s east coast indie psychedelic
acid jazz easy listening indie folk psychedelic rock
acoustic ebm indie pop psychobilly
acoustic rock electro indie rock psytrance
africa electroclash indietronic punk
alt-country electro industrial indietronica punk-pop
alternative electronic industrial punk rock
alternative country electronica industrial metal quirky
alternative hip-hop electropop industrial rock r and b
alternative metal elephant 6 instrumental rap
alternative rock emo instrumental rock rapcore
alt rock emocore irish rasta
amazing emusic italian reggae
ambient england jam relax
american english jam band relaxing
americana epic metal japan rhythm and blues
anarcho-punk ethereal japanese riot grrrl
anime eurodance japanese music rnb
anti-christian experimental japanese rock rock
art rock experimental rock jazz rockabilly
asian fantasy jazz fusion rock and roll
atmospheric fav jazz piano rock n roll
aussie favorite jazz vocal romantic
australian favorite artists j-pop roots
avant-garde favorite bands j-rock roots reggae
avant-garde metal favorites kill rock stars russian
awesome favourite krautrock sad
band favourite artists latin saddle creek
baroque favourite bands left-wing saxophone
beats favourites lesser known yet streamable artists scandinavian
beautiful female lo-fi scottish
belgian female artists lounge screamo
belgium female fronted metal love seattle
big beat female vocalist love metal seen live
bittersweet female vocalists male sexy
black metal female vocals male vocalists sh*t
black music female voices math rock shoegaze
bluegrass finland medieval singer-songwriter
blues finnish meditation ska
blues rock finnish metal melancholic ska punk
bossa nova folk melancholy slowcore
brand new folk metal mellow sludge
brasil folk-punk melodic black metal soft rock
brazil folk rock melodic death metal soul
brazilian francais melodic hardcore soundtrack
breakbeat france melodic metal soundtracks

Continued on next page.

22

Continued from previous page.
breakcore freak folk metal southern rock
british free jazz metalcore space rock
britpop french mike patton spanish
britrock french rock minimal speed metal
brutal death metal fun minimal techno stoner
california funk motown stoner rock
canada funk rock mpb straight edge
canadian funky music street punk
celtic funny my music surf
chanson fusion neoclassical sweden
chanson francaise futurepop neofolk swedish
check out gangsta rap neo-soul swedish metal
chill garage new age swing
chillout garage rock new romantic symphonic black metal
christian gay new wave symphonic metal
christian rock genius new weird america synth
classic gentle new york synthpop
classical german ninja tune tango
classic rock germany noise technical death metal
club girl group noise rock techno
cold wave glam norway the beatles
comedy glam rock norwegian the good stuff
composer glasgow nu-jazz the worst thing ever to happen to music
composers glitch nu metal thrash
contemporary classical goa nwobhm thrash metal
cool good officially sh*t traditional
country good music oi trance
crap goth oldies trip-hop
crossover gothic old school trumpet
dance gothic metal ost turntablism
dancehall gothic rock pagan metal twee
danish goth rock piano uk
dark great lyricists piano rock underground hip hop
dark ambient grind polish underground rap
dark electro grindcore political uplifting trance
dark metal grunge polskie urban
darkwave guilty pleasures pop us
death guitar pop punk usa
death metal guitar virtuoso pop rock video game music
deathrock hair metal post-grunge viking metal
deutsch happy post-hardcore visual kei
disco hardcore post-punk vocal
dnb hardcore punk post-rock vocal jazz
doom hard rock power metal vocal trance
doom metal heavy power pop warp
downtempo heavy metal prog world
dream pop hip-hop progressive world music
drone horror punk progressive death metal wristslitters
drum and bass house progressive metal

Table 13: The 360 Last.fm tags used in our experiments

23

Category A/|V | Model Precision Recall F-Score

Emotion 4/36

Random 0.276 (0.012) 0.113 (0.004) 0.160
UpperBnd 0.957 (0.005) 0.396 (0.010) 0.560

GMM 0.424 (0.008) 0.195 (0.004) 0.267
MFCC delta 0.444 (0.025) 0.192 (0.016) 0.268

afeats 0.433 (0.03) 0.171 (0.011) 0.245
afeats exp. 0.449 (0.026) 0.176 (0.011) 0.253

bfeats 0.418 (0.053) 0.156 (0.037) 0.227

Genre 2/31

Random 0.055 (0.005) 0.079 (0.008) 0.065
UpperBnd 0.562 (0.026) 0.777 (0.018) 0.652

GMM 0.171 (0.009) 0.242 (0.019) 0.200
MFCC delta 0.154 (0.024) 0.168 (0.021) 0.161

afeats 0.173 (0.048) 0.134 (0.033) 0.151
afeats exp. 0.236 (0.047) 0.234 (0.016) 0.235

bfeats 0.147 (0.027) 0.160 (0.045) 0.153

Instrumentation 4/24

Random 0.141 (0.009) 0.195 (0.014) 0.164
UpperBnd 0.601 (0.015) 0.868 (0.018) 0.710

GMM 0.267 (0.008) 0.320 (0.022) 0.291
MFCC delta 0.267 (0.047) 0.363 (0.021) 0.308

afeats 0.294 (0.073) 0.275 (0.074) 0.284
afeats exp. 0.276 (0.044) 0.350 (0.033) 0.309

bfeats 0.329 (0.065) 0.289 (0.084) 0.308

Solo 1/9

Random 0.031 (0.007) 0.155 (0.035) 0.052
UpperBnd 0.197 (0.019) 0.760 (0.052) 0.313

GMM 0.060 (0.012) 0.261 (0.050) 0.098
MFCC delta 0.054 (0.002) 0.374 (0.035) 0.094

afeats 0.045 (0.002) 0.278 (0.078) 0.078
afeats exp. 0.056 (0.001) 0.396 (0.017) 0.098

bfeats 0.042 (0.002) 0.312 (0.094) 0.074

Usage 2/15

Random 0.073 (0.008) 0.154 (0.016) 0.099
UpperBnd 0.363 (0.014) 0.814 (0.031) 0.502

GMM 0.122 (0.012) 0.264 (0.027) 0.167
MFCC delta 0.122 (0.011) 0.239 (0.028) 0.162

afeats 0.103 (0.010) 0.188 (0.054) 0.133
afeats exp. 0.118 (0.007) 0.237 (0.015) 0.157

bfeats 0.106 (0.010) 0.209 (0.066) 0.140

Vocal 2/16

Random 0.062 (0.007) 0.153 (0.018) 0.088
UpperBnd 0.321 (0.017) 0.788 (0.019) 0.456

GMM 0.134 (0.005) 0.335 (0.021) 0.191
MFCC delta 0.116 (0.011) 0.252 (0.029) 0.159

afeats 0.130 (0.030) 0.198 (0.050) 0.157
afeats exp. 0.108 (0.009) 0.228 (0.019) 0.147

bfeats 0.133 (0.017) 0.212 (0.046) 0.164

Table 14: Music annotation results for specific categories. A = Annotation length, |V | = Vocabulary size. Numbers in
parentheses are the variance over all tags in the category. GMM is the results of the Gaussian mixture model of the
CAL group. MFCC delta, afeats, afeats extended and bfeat are the results of our boosting model with each of these
features. Random, UpperBnd and GMM results taken from [30]. This is a continuation of Table 7.

24

Category |V | Model MeanAP MeanAROC

Emotion 36

Random 0.327 (0.006) 0.504 (0.003)
GMM 0.506 (0.008) 0.710 (0.004)

MFCC delta 0.503 (0.031) 0.702 (0.005)
afeats 0.469 (0.026) 0.652 (0.005)

afeats exp. 0.478 (0.023) 0.655 (0.006)
bfeats 0.565 (0.048) 0.686 (0.006)

Genre 31

Random 0.132 (0.005) 0.500 (0.005)
GMM 0.329 (0.012) 0.719 (0.005)

MFCC delta 0.094 (0.013) 0.705 (0.013)
afeats 0.088 (0.011) 0.626 (0.010)

afeats exp. 0.117 (0.036) 0.720 (0.011)
bfeats 0.118 (0.032) 0.693 (0.015)

Instrumentation 24

Random 0.221 (0.007) 0.502 (0.004)
GMM 0.399 (0.018) 0.719 (0.006)

MFCC delta 0.137 (0.022) 0.707 (0.005)
afeats 0.182 (0.033) 0.658 (0.015)

afeats exp. 0.173 (0.03) 0.705 (0.006)
bfeats 0.140 (0.032) 0.720 (0.015)

Solo 9

Random 0.106 (0.014) 0.502 (0.004)
GMM 0.180 (0.028) 0.712 (0.006)

MFCC delta 0.052 (0.002) 0.565 (0.025)
afeats 0.050 (0.002) 0.582 (0.009)

afeats exp. 0.051 (0.002) 0.650 (0.010)
bfeats 0.042 (0.003) 0.519 (0.026)

Usage 15

Random 0.169 (0.012) 0.501 (0.005)
GMM 0.240 (0.016) 0.707 (0.004)

MFCC delta 0.12 (0.009) 0.621 (0.022)
afeats 0.133 (0.022) 0.538 (0.016)

afeats exp. 0.127 (0.007) 0.637 (0.008)
bfeats 0.101 (0.014) 0.563 (0.034)

Vocal 16

Random 0.137 (0.006) 0.502 (0.004)
GMM 0.260 (0.018) 0.705 (0.005)

MFCC delta 0.111 (0.012) 0.652 (0.018)
afeats 0.090 (0.007) 0.586 (0.014)

afeats exp. 0.105 (0.012) 0.628 (0.009)
bfeats 0.128 (0.018) 0.630 (0.020)

Table 15: Retrieval results. |V | = Vocabulary size. Numbers in parentheses are the variance over all tags in the
category. GMM is the results of the Gaussian mixture model of the CAL group. MFCC delta, afeats, afeats extended
and bfeat are the results of our boosting model with each of these features. Random and GMM taken from [30]. This
is a continuation of Table 8.

25

