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Abstract— We investigate a data-driven approach to the anal-
ysis and transcription of polyphonic music, using a probabilistic
model which is able to find sparse linear decompositions of a
sequence of short-term Fourier spectra. The resulting system
represents each input spectrum as a weighted sum of a small
number of “atomic” spectra chosen from a larger dictionary;
this dictionary is, in turn, learned from the data in such a
way as to represent the given training set in an (information
theoretically) efficient way. When exposed to examples of poly-
phonic music, most of the dictionary elements take on the spectral
characteristics of individual notes in the music, so that the sparse
decomposition can be used to identify the notes in a polyphonic
mixture. Our approach differs from other methods of polyphonic
analysis based on spectral decomposition by combining all of
the following: (a) a formulation in terms of an explicitly given
probabilistic model, in which the process estimating which notes
are present corresponds naturally with the inference of latent
variables in the model, (b) a particularly simple generative model,
motivated by very general considerations about efficient coding,
that makes very few assumptions about the musical origins of the
signals being processed, and (c) the ability to learn a dictionary
of atomic spectra (most of which converge to harmonic spectral
profiles associated with specific notes) from polyphonic examples
alone—no separate training on monophonic examples is required.

Keywords: unsupervised learning, redundancy reduction,
sparse factorial coding, learning overcomplete dictionaries, prob-
abilistic modelling, polyphonic music.

I. INTRODUCTION

A. Background and motivation

The automatic analysis and transcription of polyphonic mu-
sic from audio signals is a difficult and interesting problem that
has been attracting research attention since 1975 [1] and has
yet to find a definitive solution. Researchers working in this
area have employed a variety of signal processing methods—
including spectral peak detection [2], [3], iterative spectral sub-
traction [4], [5], networks of adaptive oscillators[6], spectral
dictionaries [7], and time-domain waveform dictionaries [2]—
for bottom-up data analysis, combined with top-down knowl-
edge based processing, often using blackboard models to rec-
oncile partial evidence from multiple knowledge sources [8],
[9], [2]. The detection of multiple simultaneous pitched sounds
has also been studied in the speech processing community,
e.g. using banks of damped harmonic oscillators [10]. These
systems exemplify, to varying extents, what Cambouropoulos
[11] called the “knowledge engineering approach,” where the
designer explicitly imbues the system with a great deal of
his or her domain-specific knowledge, such as expertise with

signal processing, psychoacoustic models, music theory, along
with heuristic solutions to particular problems.

In this article, we pursue an alternative approach where the
balance is more towards “empirical induction,” that is, data-
driven or unsupervised learning. We take the view that the
problem is essentially one of structure discovery, whereby
we wish to find regularities or patterns in the audio signal.
Our hypothesis is that notes are one such regularly-occurring
structural element, and that a system capable of decomposing
its input into structurally significant parts would also be
capable of detecting note-like structures in music without
requiring the designer to encode his or her prior knowledge
about musical sounds.

This approach is closely related to the information-theoretic
concepts of efficient coding and redundancy reduction pro-
posed as organising principles for the sensory systems of
biological organisms [12], [13], essentially because structure
implies dependency and therefore redundancy: in order to re-
represent highly structured sensory data more efficiently, the
sensory system must become attuned to the types of structures
which tend to occur in a given environment. A corollary of this
is that elements of the system or the resulting representation
may become associated with specific salient features or objects
in the data, since these are the underlying causes of much
surface structure.

In recent years, the role of the efficient coding hypothesis
in perception, particularly vision, has been the subject of a
large and growing body of research (see [14] for a review).
Indeed, the very concept of redundancy has been refined and
clarified [15] (to the extent that “redundancy management”
may be a more accurate way to describe the approach). The
emerging consensus is that one of the major functions of
perceptual systems is to achieve a statistical characterisation
of sensory data, since this enables prediction, the detection
of unusual conditions (“suspicious coincidences” [16]), and
the efficient use of representational resources, both material
and energetic. Many features of biological perceptual systems
can be understood as arising in response to the need to build
accurate yet adaptable probability models [17]; in particular,
the goals of factorial coding—to reduce to a minimum the
statistical dependencies between elements in a distributed
representation, as in independent component analysis—and
sparse coding—to build a distributed representation in which
relatively few active elements are required to represent a
typical scene—have been found to account for many aspects
of early vision [18], [19], [20].



Our system is built around a probabilistic multiple cause
model that implements sparse factorial coding [21], [22],
[23]. The observed data, in the form of a short-term Fourier
spectrum, is represented as a weighted linear composition of a
number of atomic spectral profiles chosen from a larger set, or
dictionary. This dictionary is, in turn, adapted to the statistical
structure of the data in order to maximise the sparseness of
the decompositions and the independence of the weighting
coefficients.

For the task of polyphonic music analysis, we assume that
the sound at a given point in time is the composition of zero
or more instrumental sounds (typically pitched notes) and that
only a few of the possible notes are “on” (playing) at any one
time. This is reasonable for many styles of music. For example,
in a piano solo, typically fewer than 11 notes will be playing
at once. The independence assumption inherent in factorial
coding means that we are expecting the note activities to be
independent of each other. Clearly, this is not strictly true, (if it
were so, we would have random notes and not music) but we
can postulate that the notes are more independent than, say, the
frequency bins of the short-term Fourier transform. It therefore
seems plausible that a sparse factorial coding system adapted
to, e.g., piano solos, could automatically produce a reductive
analysis in terms of the underlying notes. There would be
no need to define the “note dictionary” beforehand, since the
coder would have to discover it automatically in order to find
a maximally sparse decomposition of the signal.

Thus, we may summarise our motivations for using sparse
coding to analyse polyphonic music, which are two-fold. On
the one hand, we have a problem looking for a solution: many
previous approaches were based on relatively “hand-crafted”
processing strategies, and only recently have systems based
on probabilistic models been proposed [24], [25], [26], [27]—
these enable the use of well-defined processes of statistical
inference and parameter fitting in response to empirically
observed data. On the other hand, we have a solution looking
for a problem: speculation about the role of information
theory in the development of perceptual systems has resulted
in a methodology, based on the goals of efficient coding
and redundancy reduction, which is putatively applicable to
a wide variety of signal domains without requiring a lot
of domain-specific knowledge to be built into implemented
systems—initial applications in audio [28], [29], [30], [31]
have produced promising results, and hence it is interesting to
investigate their performance on specifically musical problems.
Sparse coding seems particularly suited to the analysis of
polyphonic music because of the potential correspondence
between the sparse components and the instrumental sounds
in the music.

Conceptually similar approaches to polyphonic analysis
have been taken by Smaragdis [32], who uses non-negative
matrix factorisation [33] rather than sparse coding, Vincent
[27], who constructs a more elaborate nonlinear generative
model that specifically addresses the analysis of multi-timbral
polyphonic mixtures, and Plumbley [34], who develops an
algorithm for non-negative ICA and applies it to a short
polyphonic extract. We present initial results of our subsequent
investigations of sparse coding of power spectra using a more

accurate multiplicative noise model in [35].

B. Overview of the paper

In section II we review how sparse coding is accomplished
within a probabilistic framework. In section III we consider
the preliminary analysis and pre-processing of the audio into
a form suitable for sparse coding, before presenting the results
on synthetic and real polyphonic music in section IV, followed
by a discussion and conclusions. Some implementation details,
including a novel optimisation technique for sparse decompo-
sition and a modification to the dictionary learning algorithm,
are given in the appendix.

In the remainder, boldface lower and upper-case symbols
will be used to denote vectors and matrices respectively, while
italics will denote scalars. Probability density functions will
be written as, e.g., p(x, y), p(x|y), or p(x; θ), which denote,
respectively, a joint density, a conditional density, and a density
parameterised by θ. The arguments as written will usually
be sufficient to indicate which random variables are implied.
Expectations of random variables will be written using angle
brackets, e.g. 〈x〉.

II. SPARSE CODING AND NOISY ICA

Much of the research into sparse coding has focused on a
linear generative model, where the observed data is represented
as a weighted sum of elements chosen from a dictionary of
available features or atoms. Within such a framework, a code
is sparse if only “a few” non-zero coefficients are required to
represent a typical pattern. Field and Olshausen [18] presented
an algorithm capable both of performing sparse decomposition
in a given dictionary and of adaptively modifying the dictio-
nary to achieve greater sparsity.

A. The generative model

A probabilistic interpretation of Field and Olshausen’s
sparse coder was pointed out both by Olshausen [21] and by
Harpur [36]: underlying it is a latent variable model in which
samples of an n-dimensional random vector x are generated
from m independent hidden (latent) variables (s1, . . . , sm) ≡
s according to

x = As + e, (1)

where e is a zero-mean Gaussian random vector representing
additive noise. Thus, x is a weighted sum (plus noise) of the
columns of the n×m matrix A which represents the dictionary
of m vectors. The statistical independence of the components
of s implies that the probability density p(s) factorises:

p(s) =

m∏
j=1

p(sj). (2)

The Gaussian noise model implies that the conditional density
p(x|s;A) is

p(x|s;A) =

[
detΛe

(2π)n

]1/2

exp− 1
2e

T Λee, (3)

where e = x−As and Λe = 〈eeT 〉
−1

, the inverse covariance
of the noise. It is quite straightforward to carry out the analysis



with noise of any covariance [30], but if the noise covariance
is known or fixed at an assumed value, equivalent results can
be obtained by linearly transforming the input to whiten the
noise, such that 〈eeT 〉 = σ2

I. Thus, we can, without loss of
generality, work with a scalar inverse covariance Λe = λI,
where λ = 1/σ2. The density model for the observed data is
obtained by marginalising the latent variables:

p(x;A) =

∫
Rm

p(x|s;A)p(s) ds. (4)

By framing the problem as a statistical model, we can estimate
the matrix A and the latent variables s from the data in
a principled manner. The estimates of s can then be taken
as a representation or encoding of the data. The univariate
densities p(sj) are generally assumed to be super-Gaussian
(that is, more strongly peaked and heavy-tailed than a Gaus-
sian) to reflect our prior belief that the source components
sj are “sparse.” Indeed, the resulting code will not be sparse
unless the prior satisfies certain requirements, namely, that the
− log p(s) is concave/Schur-concave [23].

B. Inference

Given the latent variable model defined by (1), (2), and (3),
the two tasks to be addressed are to infer the optimal encoding
s of a given vector x using a given dictionary A, and to learn
a suitable dictionary A given a sequence of training vectors
(x1,x2 . . .). Algorithms for both are described in this and the
following section.

For fixed values of A and x, likely values of s can be
inferred from the posterior density,

p(s|x;A) =
p(x|s;A)p(s)

p(x;A)
. (5)

The maximum a posteriori (MAP) estimate is ŝ =
arg maxs p(s|x;A), or equivalently,

ŝ = argmin
s
E(s,x;A), (6)

where the energy function E is defined as E(s,x;A) =
− log p(x|s;A) − log p(s). Under the assumptions of the
model, this becomes

E(s,x;A) = 1
2λ‖x−As‖2 −

m∑
j=1

log p(sj). (7)

The first term can be interpreted as a quadratic misrepresenta-
tion cost, the second as a “sparsity cost” (or more accurately,
a “diversity cost” [23]) which penalises non-sparse component
activities and depends on the densities p(sj). A common
choice [22], [37] is the l1 norm −‖s‖1 =

∑
j |sj | which is

equivalent to using a Laplacian prior p(sj) = 1
2 exp−|sj |,

since in this case,− log p(s) = m log 2+‖s‖1, and the additive
constant m log 2 has no effect on the optimisation (6).

In general, an lα pseudo-norm with 0<α≤1 promotes spar-
sity [23]. This is equivalent to using a generalised exponential
(or generalised Gaussian) prior p(sj) = Z−1

α exp−|sj|α,
where Zα is a normalisation factor, since

−
m∑

j=1

log(Z−1
α exp−|sj |

α) = m logZα +

m∑
i=1

|sj |
α, (8)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Three priors for sparse coding. Top row (a–c): Lapla-
cian; middle row (d–f): generalised exponential; bottom row (g–i):
“sparsified Laplacian”. Left column: density functions, p(s) against
s; middle column: negative log-priors, − log p(s) against s; right
column: contours of a two-dimensional diversity cost derived from
each prior, − log p(s1, s2) = − log p(s1)−log p(s2). Black indicates
low diversity cost, i.e. preferred sparse configurations.

in which mZα is, again, an additive constant independent of
the sj . Note, however, that the posterior p(s|x;A) can not be
guaranteed to be unimodal if − log p(sj) is concave in any part
of its domain, which will be the case for α < 1. Under these
conditions, not only does the global maximum become harder
to find, it also lessens the validity of any approximation of the
distribution as a single “lump” of probability mass positioned
around the mode. In particular, the Gaussian approximation,
originally used to derive the learning algorithm (12) to be
given in the next section, breaks down. Examples of Laplacian,
generalised exponential, and a “sparsified Laplacian” priors
(see (15) in section IV-A) are illustrated in fig. 1.

In the introductory discussion we described sparse coding
in terms of active and inactive units. Under these terms,
a Laplacian or generalised exponential is arguably not a
sparse random variable at all; indeed no variable with a
finite continuous density can be, since its probability of being
exactly zero is infinitesimally small. A truly sparse random
variable would have a mixed discrete/continuous distribution,
with a finite probability of being exactly zero. Yet, due to
a “shrinkage” effect [38], MAP inference of continuously
distributed components (with sharply peaked priors) can result
in a truly sparse code with many exact zeros. Hence, there is
a distinction to be made between a sparse generative model
and model-based sparse coder.

For an optimisation algorithm well-suited to minimising (6)
when using a sharply-peaked prior, see appendix A, where a
novel active-set quasi-Newton algorithm is described.



C. Learning

Learning of the dictionary A can be accomplished by
maximum-likelihood estimation: Â = argmaxA L(A), where
the log-likelihood function L over an entire dataset is

L(A) = 〈log p(x;A)〉
x
, (9)

and 〈·〉
x

denotes an expectation over the training set. The
derivative of this function with respect to the dictionary matrix
can be shown to be [39], [30]

∂L(A)

∂A
=

〈〈
λes

T
〉
s|x;A

〉
x

, (10)

where the inner expectation is over the posterior density
p(s|x;A) conditioned on particular values of x. Perhaps
the simplest algorithm for optimising this quantity is that
proposed by Field and Olshausen [18], which involves iterative
application of the following update:

A← A + ηλ
〈
êŝ

T
〉
x
, (11)

where η is a learning rate parameter and ê = x −Aŝ. (The
functional dependence of ŝ and ê on x, due to the the inference
step (6) has been suppressed to simplify the notation.) Separate
renormalisation steps must be interleaved with these updates
in order to keep the lengths of the dictionary vectors from
diverging. In the experiments to be described below, we used
an update rule proposed by Lewicki and Sejnowski [22]:

A← A + ηA
〈
γ (̂s)̂sT − I

〉
x
, (12)

where the vector-valued function γ : R
m → R

m is the gradient
of the (negative) log-prior, γ(s) = −∇ log p(s). The Lewicki-
Sejnowski algorithm does not require separate normalisation
steps as the “decay” term (the I in (12)) keeps the dictionary
matrix from diverging. Note that the pre-factor of A means
that if the columns of A do not initially span the full n-
dimensional space available to them, they cannot expand into
their null space. In these circumstances, it may be necessary
to use several iterations of (11) before switching to (12).

D. Overcomplete dictionaries

When m > n, the vectors forming the columns of A

cannot be linearly independent and must form an overcomplete
dictionary (or degenerate frame). This implies that there are
many possible representations of any given vector x. The rep-
resentation of x using an overcomplete dictionary is therefore
underconstrained. Even if m < n, the dictionary may still be
overcomplete, in the sense that the vectors may lie within a
less-than-m-dimensional subspace, and hence be overcomplete
within that subspace, leading again to an underconstrained
representation.

By placing fewer constraints on the dictionary vectors,
overcomplete dictionaries have a greater flexibility in repre-
senting the underlying causal structure behind the observed
data: they are able to support multiple interpretations for a
given observation, in effect, multiple hypotheses to explain
the data. Probabilistic prior knowledge can then be used to
determine which is the most likely explanation—effects of
this sort are known to play a part in biological perceptual

systems [40]. In addition, overcomplete dictionaries have been
found to produce lower entropy, more compressible encodings
of natural images [39]. Another potential benefit of using a
system capable of dealing with overcomplete dictionaries is
that it should be more robust in the case that the data is noisy
and target dictionary is nearly singular (as opposed to actually
overcomplete). The performance of ICA on noisy data, for
example, degrades more markedly as the noise level increases
if the condition number of the target basis matrix is high [41].

III. PREPROCESSING THE AUDIO

Let us now consider the representation of the audio input.
For reasons which we outline below, we chose to work with
a phase invariant short-term spectral representation of musical
sounds as our source of input vectors x. It is well known
that pitched sounds are highly structured in the frequency
domain, which suggests that a Fourier analysis would be an
appropriate first step. In previous experiments applying ICA
to audio waveforms [42], [30], we found that a linear basis
well-adapted to representing Western classical music is indeed
composed of narrowband sinusoids similar to a Fourier basis,
at least for short frames of around 50 ms (512 samples at
11.025 kHz). Similar results were also reported by Lewicki
[31].

On the other hand, those results [30] also indicate that the
phase relationships between different partials of musical notes
are generally not consistent enough to allow a linear basis to
represent entire note complexes. It may be the case, in certain
restricted circumstances, perhaps involving a single instrument
and a controlled acoustic environment, that a particular note
will always be associated with a particular waveform [43], but
environment-dependent variations in the source-to-microphone
transfer function, and, for many instruments, the detailed
mechanics of sound production, will tend to destroy any phase
coherence between partials. Hence, an algorithm to recognise
pitch as abstracted from particular pitched sounds must, to
some extent, be phase blind, confirming the received wisdom
which dates back to von Helmholtz [44].

An alternative view of phase invariance is afforded by a
consideration of independent subspace analysis (ISA) and its
associated probabilistic model [20]. ISA relates the concept
of phase invariant subspaces with clusters of components,
with low inter-cluster dependencies, but higher intra-cluster
dependencies. These intra-cluster dependencies are modelled
by spherically symmetric non-Gaussian probability distribu-
tions within the subspace spanned by each cluster of compo-
nents. Experiments with natural images [20] show that these
phase invariant subspaces successfully model a type of shift
invariance in visual processing (which is equivalent to a form
of phase invariance) and can be found in an unsupervised way.
Similarly, in an ICA derived linear basis for music—composed
mainly of sinusoidal basis vectors—pairs of components with
unrelated frequencies are relatively independent, while pairs
of components which differ primarily in phase are strongly
dependent and have a circularly symmetric joint distribution
[45], [30]. The logical conclusion of this would be to develop
an adaptive phase invariant representation using ISA; however,



bearing in mind the similarity between the music-adapted
ICA basis [42] and a Fourier basis, the experiments presented
here are based on the short-term Fourier transform magnitude
(STFTM), corresponding to a fixed Fourier basis and fixed
two-dimensional phase invariant subspaces.

In contrast with other researchers who have also used the
STFTM as input to ICA-based systems [28], [46], [29], we
do not use principal component analysis (PCA) to reduce the
dimensionality of the input spectra, since this presupposes that
information in the spectrogram relevant to polyphonic pitch
detection is associated with high variance components. As
a counter-example, consider a hypothetical case where some
low-magnitude upper harmonics of a instrumental sound are
well defined and supply accurate pitch information, while the
low frequency part of the spectrum is masked by loud non-
pitched sounds—dimensionality reduction using PCA would
retain the high-variance low-frequency components and dis-
card the informative upper bands. Hence, we prefer to work
with the full spectrum, allowing the system to “decide” where
the information is.

A. Initial statistical characterisation of spectra

Our first step after the STFTM is to perform a statistical
characterisation of the spectra. Previous investigations into the
statistical structure of natural sounds have shown that, under
many representations, they tend to be extremely non-Gaussian.
For example, a PCA-based spectral analysis of television
broadcasts [47] showed that the PCA coefficients (broadly
comparable to Fourier coefficients) had sharply-peaked, heavy-
tailed distributions.

Below, we describe how a simple parametric model can
be used to obtain an initial characterisation of the STFTM, as
well as providing a model-based framework for preprocessing.
Letting yi denote the magnitude of the ith complex Fourier co-
efficient, we assume a generalised exponential density model:

p(yi) =
wi exp−(wiyi)

αi

α−1
i Γ(α−1

i )
, yi ≥ 0, (13)

where Γ is the gamma function, Γ(t) =
∫ ∞

0 xt−1e−x dx.
The parameters wi > 0 and αi > 0 characterise the scale and
super-Gaussianity respectively of each spectral band and are
fitted to the data using the maximum-likelihood criterion (see
[48] for further details and [49] for an online natural gradient
algorithm). Fig. 2 illustrates the results of fitting these param-
eters to an ensemble of 256-band short-term spectra obtained
from a set of 8 piano pieces lasting approximately 1 hour in
total. The fitted distributions are strongly super-Gaussian with
most of the exponents αi around 0.5 (a Gaussian distribution
would have αi = 2, and a Laplacian, αi = 1). In addition,
there is a noticeable oscillatory variation of αi with i and
hence with frequency. A similar experiment with a much
longer data set (several hours of live music radio) confirms
that these oscillations occur at 12 cycles/octave, reflecting the
tuning of the Western scale with 12 semitones per octave.
The generalised exponential model fits many but not all of the
frequency bins—see fig. 3 for two examples.

In the above analysis we treated each spectral band inde-
pendently. However, it is precisely the dependencies between

0 1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

(a)

frequency fi / kHz

w
ei

gh
t
w

i

0 1 2 3 4 5
0

0.5

1

1.5

2
(b)

frequency fi / kHz

ex
po

ne
nt

α
i

Fig. 2. Parameters of generalised exponential density model (13)
fitted to piano STFTM data.
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Fig. 3. Comparisons between histograms and fitted densities for two
components, the first is an example of a well-fitted histogram, the
second is less well-fitted. In general, the components above around
4 kHz have heavier tails but more rounded peaks than the fitted
generalised exponentials.

spectral bands that the sparse coder is intended to exploit;
indeed, the presence of recognisable patterns in the spec-
trogram implies that these dependencies exist. A pair-wise
correlation analysis begins to indicate where the dependencies
lie: the cross-correlation matrix for the piano spectral data is
illustrated in fig. 4(a). The straight lines at various slopes imply
correlations between harmonically related frequencies, and
once again, there is some 12 cycle/octave variation. Fig 4(b)
is the cross-correlation matrix obtained from a much longer
and more varied sample and shows both theses structures
more clearly. Note that, though this second-order analysis is
sufficient to confirm that there are dependencies between spec-
tral bands, it is not enough to characterise them completely,
which is why methods (such as PCA) which rely on second-
order statistics only are incapable of finding sparse factorial
representations.
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Fig. 4. Cross-correlation of spectral magnitudes for (a) 1 hour
piano dataset and (b) several hours of music radio. The straight lines
indicate correlations between harmonically related frequencies.

B. Noise model

For correct operation of the sparse coder, it is important
that the input conforms to the assumed Gaussian noise model
(3) as well as possible. This is not an accurate noise model
for the STFTM: the additive noise in the signals we examine
is very low, and what appears to be “noise-like” activity in
the spectrum is actually due to interactions between different
components in the signal and the STFT window—so-called
“spectral leakage” [50]. These effects result in what is best
considered a multiplicative noise model, where the random (or
at least unmodelled) variations are proportional to the activity
in a local region of the spectrum.

To implement the sparse coder, this multiplicative noise
must be approximated as an additive noise of fixed variance.
As a first approximation, we assume a diagonal noise covari-
ance with a standard deviation at each frequency proportional
to the average spectral magnitude at that frequency; that is,
inversely proportional to the fitted values of wi in (13). Hence,
to whiten the noise as described in section II-A, we normalise

the STFTM components yi by the scale factors wi, i.e., the
input to the sparse coder is x such that xi = wiyi. The scalar
noise variance σ2 = 1/λ is left as a free parameter to allow
the sparse coder’s performance to be tuned.

Spectral flattening of this sort, sometimes known as “pre-
emphasis”, is a common tool in signal processing. In the
context of sparse coding, it has a rather precise motivation:
to sphere the effective noise distribution.

C. Loudness compensation/gain control

One of the problems of dealing with recordings of live
music is the large dynamic range caused by the alternation
of loud and soft passages, or of loud and soft pieces. It was
empirically observed that batched-online learning was gener-
ally more stable at higher learning rates if these fluctuations
were attenuated by roughly normalising the loudness, at least
over time-scales greater than the batch size. To this end an
adaptive gain control was implemented within the model (13)
by factorising the wi (introducing an explicit time dependence)
as

wi(t) = B(t)βi, (14)

where the βi are assumed fixed, but B(t) is a time-varying
overall scale factor. An online maximum-likelihood estimate
of B(t) is maintained using stochastic gradient ascent with a
learning rate fast enough to track changes over a time-scale of
the order of 5 s. Note that, because of the generalised exponen-
tial density model, 1/B(t) effectively measures loudness in the
spectral domain using a generalisation of an lα pseudo-norm,
in which each dimension (frequency bin) has its own exponent
αi and weighting βi determined adaptively from the data. Also
note that, because B(t) is shared across all frequencies, it can
be estimated using much less data, and therefore tracked more
quickly, than is the case for the βi.

IV. SPARSE CODING OF POLYPHONIC MUSIC

A. Synthetic harpsichord music

We first present results obtained from an analysis of music
generated synthetically from a MIDI encoded version of
Bach’s Partita in A minor, BWV827, which was chosen because
it consists mainly of two or three relatively independent voices
with few block chords. The MIDI data was rendered using
the harpsichord patch of the wavetable synthesiser built into
a PC sound card. The harpsichord sound was chosen because
it is harmonically quite rich and the temporal evolution of
each note consists primarily of a decay without frequency
modulation or much change in the balance of the harmonic
components. The synthesis was carried all the way to an
analogue continuous time signal, which was then sampled at
11025 Hz and digitised at 16 bits per sample using the same
sound card. The audio frames used to generate the STFT were
512 samples long (46 ms) with a 50% overlap. The magnitudes
of the first 256 bins of the Fourier transform were retained to
form the 256-dimensional input vectors x.

The generalised exponential model-based spectral normal-
isation described in section III-A was not used; instead, a
simple amplitude-based dynamic gain control was used to
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Fig. 5. Decomposition of a three-note chord spectrum (a) into a
weighted sum of note spectra selected from the dictionary illustrated
in fig. 6(a). The decomposition was the obtained using the inference
method described in section II-B. The y-axis labels (b) indicate
which dictionary elements are active in the decomposition. The
reconstructed spectrum (c) is obtained by summing the weighted
dictionary spectra.

normalise the signal level (in the time domain) over a time-
scale of 5 s.

Motivated by a desire to model the expected sparsity of the
code, a “sparsified Laplacian” prior was used, which is a piece-
wise exponential approximation to a sparser-than-Laplacian
density (see fig. 1(g–i)), and is specified as

p(s) =

{
Z−1

µρ e−|s| : |s| ≥ µ,

Z−1
µρ Ke−ρ|s| : |s| < µ,

(15)

where Zµρ is a normalisation constant, and K = eµ(ρ−1) to
ensure continuity. The parameters µ ≥ 0 and ρ ≥ 1 control
the width and relative mass of the central peak.

The active-set optimiser described in appendix A was used
to do the inference step, notwithstanding the fact that the
sparsified Laplacian prior might result in multiple local optima.

After some initial experimentation, the model noise param-
eter σ was set to 0.2, and the parameters of the sparsified
Laplacian prior were set to µ = 0.05 and ρ = 24, the aim be-
ing to balance the sparsity of the decomposition (and the speed
of the inference step using the active-set optimiser) with the
accuracy of the spectral reconstruction As. A typical spectrum,
along with its decomposition and reconstruction, is shown in
fig. 5. A 256×96 dictionary matrix A was initialised to the
first 96 columns of the 256×256 identity matrix. An initial
phase of learning was carried out using the update rule (11) to

allow the 96 dictionary vectors to explore the 256 dimensional
input space. The remainder of the learning was carried out
using the update rule (12). Despite the initial dictionary being
undercomplete, many of the vectors decayed to zero, leaving
54 non-zero vectors. The sounds corresponding to each of the
dictionary vectors were synthesised by filtering white noise
with FIR filters matching each of the spectral profiles. All
but seven were judged to produce pitched sounds with pitches
from D2 to C6, (where C4 is middle C at 261 Hz) and were
manually re-ordered accordingly. Of the remaining seven, two
were found to respond reliably to the presence of the lowest
pitches B1 and C2, for which the harmonic spacing is at the
limit of the frequency resolution afforded by the STFT. The
resulting dictionary matrix is illustrated in fig. 6(a).

Note that the assessment of the pitchedness and pitch of
each dictionary element was necessarily a subjective evalua-
tion since there is no precisely defined test of whether or not
a sound is pitched—pitch is a psychological quality, and as
such the final arbiter of pitch is human perception.

The output from the sparse coder, that is, the sequence of
MAP estimates ŝ, is illustrated in fig. 6(c). Over the entire
11 minute dataset, the 54 active components are, on average,
exactly zero 95% of the time. Histograms of some of the
individual note activations are shown in fig. 7: most of the
histograms are somewhat bimodal, suggesting (accurately in
this case) an underlying binary process, namely, the presence
or absence of a note.

To evaluate the potential of the sparse coder as part of
a transcription system, a very simple threshold-based MIDI
event trigger was implemented. For each pitched dictionary
vector, a note-on event is triggered whenever its corresponding
activity ŝj rises above a fixed threshold for two consecutive
time-slices, and a note-off event is triggered when the activity
drops below that threshold for two consecutive time-slices. The
activities of the non-pitched dictionary elements were ignored.
The MIDI sequences1 were then resynthesised using a piano
patch (which is somewhat less painful to listen to than the
harpsichord patch used to synthesise the original). Subjec-
tively, the generated MIDI sequence was a generally accurate
though sometimes rhythmically imprecise reproduction of the
piece.

A quantitative evaluation was made by matching the note-
on events for each pitch to those in the original MIDI file,
to within a tolerance of about 50 ms. Of the 4684 onsets
in the evaluation set, 94.3% were correctly detected, while
2.2% of the 4515 triggered onsets were “false positives”
that did not match any note in the original. For comparison,
Marolt’s transcription system [6] achieves, for synthesised
music, average detection and false positive rates of 90% and
9% respectively, improving to 98% and 7% for a synthesised
Bach partita similar to the one we used. Klapuri [51] quotes
an “error rate” of between 4% for 2 note chords, rising to 12%
for 4 note chords.

In view of the relatively unsophisticated event triggering
scheme and the lack of temporal integration in the sparse coder

1available, along with the synthesised dictionary vectors, at http://www.
elec.qmul.ac.uk/department/staff/research/samer.htm
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Fig. 6. Harpsichord sparse coding results: (a) the 54 non-zero basis
vectors obtained from sparse coding synthetic harpsichord music
(each column of the matrix is one dictionary vector); (b) input to
and (c) output from sparse coder using the above dictionary (these
are just short extracts, not the complete data.) The images (a) and
(b) are on a logarithmic grey scale with a dynamic range of 24 dB.
The first 49 dictionary vectors represent pitches from B1 to C6; the
remaining 5 were judged to be of indeterminate pitch.
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Fig. 7. Histograms of the activities of a few of the sparse components
(labelled by pitch) obtained from the harpsichord dataset, showing
both high sparsity (the large spikes at zero) and some bimodality,
reflecting the underlying binary note activations. The relative widths
of the distributions are related to the lengths (in the Euclidean sense)
of their corresponding dictionary vectors. These in turn are partly
determined by the frequency of occurrence of each note, as suggested
by an analysis of the learning algorithm [30]. Hence, in this example,
the B� distribution is widest because B� is rarely used in the key of
A minor.

itself, some “repeated note” errors are to be expected. These
occur when spurious onsets are generated during a sustained
note, or conversely, repeated legato notes are coalesced into
one long note. If such errors are not counted, then the detection
rate goes up to 99.2% with a false positive rate of 1.0%. By
integrating better onset detection algorithms into the system,
[52], [53] we may reasonably expect to approach this level of
performance.

B. Improvements in dealing with high sparsity

The results of the experiment with harpsichord music (and
other experiments with a toy system not shown here, see [30])
indicate that, despite the use of a “sparsified Laplacian” prior,
the algorithm as it stands does not cope well with very sparse
underlying components: in such cases, the learned dictionary
vectors are incorrectly scaled, converging to a fraction of their
correct lengths (hence the systematic variation in the widths
of the histograms in fig. 7), or they decay away completely.
Any attempt to produce a “cleaner” encoding, with more exact
zeros for absent notes, either by adjusting the prior parameters
or increasing the model noise parameter σ, tends to exacerbate
this problem. The quality of the harpsichord transcription was
not seriously affected because the instrumental tone was so
simple, requiring only one dictionary vector per note, but
preliminary experiments with real instrument sounds showed
that too many dictionary elements decay away completely to
enable the others to represent the variations in the spectra of all
the notes. For example, when piano recordings (to be described
in section IV-C) were analysed with the model noise parameter
set at σ = 5, (i.e. the same as in section IV-C) but without
the “decay when active” correction (see below), all but 77 out
256 dictionary vectors decayed to zero, and several pitches in
the lower octaves were not represented at all. When the noise
parameter was doubled to σ = 10, only 23 non-zero dictionary



vectors remained.
An analysis of a simplified form of the system [30] suggests

why this might be the case: the approximations made in
deriving the algorithm are not accurate for truly sparse priors,
that is, ones that have a finite probability mass at zero,
resulting in systematic errors in dictionary learning. This can
be addressed by introducing a more complex generative model
with discrete latent variables [54], [27], but an alternative is to
make a small modification to the update step (12), to the effect
that the decay term in (12) is applied only to those columns
of the dictionary matrix whose corresponding components are
active (see appendix B for a derivation).

This “decay when active” correction means that none of
the dictionary vectors decay completely even if they are very
infrequently active, making the system as a whole more robust
when the signal-to-noise ratio is low. It also means that the
scaling of the sparse components sj is such that their marginal
distributions (not shown) are fitted to a Laplacian density
without being affected by the large “spike” at zero (see fig. 7);
that is, only the “active” part of the distribution is normalised
to unit mean absolute deviation.

C. Real piano music

The experiments with harpsichord music were intended
primarily as a “proof of concept,” and show that a system
based on adaptive sparse decomposition can indeed perform
a meaningful analysis of polyphonic mixtures. The synthetic
harpsichord music, however, is rather unrealistic in that there
is little or no variation between different instances of the same
note, and little variation in dynamics over the course of the
piece.

To investigate the performance of the sparse coder with
more realistic sounds, a 256-element dictionary was trained on
one hour’s worth of acoustic piano recordings (Bach’s two and
three part inventions performed by Andras Schiff, plus fugues
14–19 from The Well Tempered Clavier, Book I performed
by Jeno Jando). The model-based spectral normalisation de-
scribed in section III-A was used to preprocess the sequence
of STFTM spectra, while a Laplacian prior was used in the
sparse coder, along with an additional “decay when active”
correction (see section IV-B and appendix B). The noise
parameter was set to σ = 5, which should be compared with
the distributions of the pre-emphasised spectral components
illustrated in fig. 3. The 256×256 dictionary matrix A was
initialised to the identity and adapted according to (12) using
online updates computed from batches of 256 frames. The
learning rate η was set to 0.005 initially, then increased to
0.02 after 1000 updates, then gradually reduced to 0.001.

The dictionary after approximately 5000 updates is illus-
trated in fig. 8(a). A visual and auditory inspection indicated
that 179 of the dictionary vectors correspond to pitched
spectra or fragments of pitched spectra. Their fundamental
frequencies were estimated manually by matching against an
adjustable harmonic ladder. We noticed a slight but consistent
inharmonicity, with the upper partials stretched with respect to
the fundamental; this is a known property of piano tones [55].
Subsequently, the fundamental frequencies of the dictionary
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Fig. 9. Distribution of fundamental frequencies (on a logarithmic
scale) of spectra in the piano derived dictionary. The frequencies
were estimated by fitting parameterised inharmonic sequences [55]
to the peaks extracted from each spectrum.

vectors were re-estimated by a parametric fitting of inharmonic
spectra. The resulting distribution of fundamental frequencies,
on a logarithmic scale, is illustrated in fig. 9. They are, to a
great extent, clustered to a 12-degree-per-octave scale, forming
45 well-defined pitch equivalence classes covering over three
octaves from E2 to C6. Within each pitch class, there are
several dictionary vectors which, between them, define a low-
dimensional spectral subspace (see fig. 10). Thus, when a
note is sounded, one or more members of the associated class
will tend to become active in the sparse decomposition, as
illustrated, for example, in fig. 11. The presence or absence of
that note can therefore be assessed in terms of the total activity
in the subspace. The activities of each pitch class over a 30 s
extract are illustrated in fig. 13.

A complete transcription system based on the sparse coder
would require a more intelligent event detection stage than
the simple scheme used for the harpsichord music. We aim
to apply a recently developed onset detection algorithms [52],
[53] to the per-pitch class activity traces, but this has yet to
be implemented; until then, a direct quantitative comparison
between this system and other music transcription systems is
not possible.

D. Effects of preprocessing

To assess the effect of the spectral normalisation step,
or “pre-emphasis”, on the dictionary learning and sparse
decomposition (see section III-B), the experiment with piano
data was repeated using the raw STFT magnitudes as input,
exactly as in the harpsichord experiment. The noise parameter
was set to σ = 0.2, which, by direct observation, is smaller
than the random variations in the spectral magnitudes at low
frequencies, but much larger than those at high frequencies.

The dictionary matrix was initialised to the 256×256 iden-
tity. After 2000 updates, only the first 120 or so dictio-
nary vectors changed significantly. The remaining dictionary
vectors were essentially unaltered, with their corresponding
components in the sparse decomposition active only during
very loud and percussive onsets. In addition, the upper half
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Fig. 8. Piano results: (a) dictionary matrix, reordered by estimated pitch; (b) sparse components ŝ; and (c) reconstruction of inputs x from
sparse components. The extracts (b) and (c) are from the opening from Bach’s three part invention, No. 9 in F minor.

of the spectrum, from about 3 kHz up, was very poorly
reconstructed from the sparse decomposition, with clearly
resolved harmonics in the input spectrum not visible in the
reconstruction.

E. Using ICA instead of sparse coding

A final experiment was conducted to assess whether or
not sparse coding yields any significant improvement over
standard (noiseless) ICA. A standard online ICA algorithm
[56] was applied, using the same spectral normalisation and
Laplacian prior as were used as in the piano experiment. The
256×256 weight matrix was initialised to the identity, and after
approximately 10000 updates, the weight matrix was inverted

to yield 256 basis vectors which can be compared with the
dictionary vectors produced by the sparse coder. Though it
is difficult to illustrate a representative sample of the basis
vectors, fig. 12 compares 10 vectors chosen at random from
the sparse coding dictionary and the ICA basis, and gives
some sense of the difference in character between them. (The
same columns were taken from both matrices and in many
cases have roughly the same form.) Though many of the ICA
basis vectors did take on some harmonic structure, the effect
is generally less pronounced, especially for low pitches. The
overall effect is that it is not possible to identify individual
pitches with small, non-overlapping sets of components to the
same extent as was possible with the sparse coding dictionary.
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Fig. 12. Comparison between 10 elements chosen at random from a
sparse coding dictionary (a) and an ICA basis (b) both learned from
the same piano dataset. Both systems were initialised with the identity
matrix, so in many case, the corresponding elements represent similar
collections of frequency components, but the sparse coding dictionary
goes much further towards representing entire note spectra.

ICA does produce a set of coherent spectral features, but most
of them cannot be directly interpreted as “note detectors”,
since each note produces a much more distributed activity
pattern than in the sparse coder, and the activity patterns for
different notes overlap.

As a further confirmation of the extent to which the sparse
coder is able to concentrate its representational capacity, the
condition number of the ICA basis is 53, while that of the
sparse coding dictionary is 8.1 × 108. Indeed, the effective
rank of the dictionary matrix (judged from a sharp “elbow”
in its singular value spectrum) is 122, which means that the
256-element dictionary is essentially two-times overcomplete
within a 122-dimensional subspace.

V. DISCUSSION

The sparse coding system we are using was motivated by
very general considerations hypothesised to account for all
types of perceptual organisation, and is basically the same
as those used as in current models of early visual perception
[18], [22], with very few modifications addressed at analysing
specifically musical sounds. Rather than incorporating phys-
iologically based auditory models, psychoacoustic data, or
prior musical knowledge, the system is driven by statistical
regularities in the data, developing the relevant processing
strategies over the course of learning. For example, one might
say that it has discovered the well-known principle of grouping
by harmonicity [57] for itself. The main design decisions
which might have prejudiced the outcome are the choice of a
short-term spectral input representation with certain time and
frequency resolutions. However, even these choices are sup-
ported by experiments with ICA of musical waveforms, which
suggest that a phase invariant time-frequency representation of
this kind could be arrived at in a purely unsupervised way in
response to the statistical structure of musical sound, in the
same way that independent subspace analysis has been found
to account for the shift-invariant properties of the complex cell
responses in visual cortex [20].

Hence, these experiments, along with similar work with
other types of data [28], [29], [58], lend support to the



hypothesis that unsupervised learning in statistical models,
motivated by the efficient coding hypothesis as discussed in
section I-A, is a viable computational model for perception in
several sensory modalities.

As far as musical applications are concerned, our ap-
proach has two advantages over other non-model-based spec-
tral dictionary methods [7], [5]: Firstly, the decomposition is
formulated as a statistical inference problem, optimising an
explicitly given cost function defined in terms of a empirically
verifiable probability model, rather than a heuristically defined
procedure, perhaps one not even optimising any particular cost
function as in the case of greedy algorithms like matching
pursuit. Secondly, the note dictionary itself can be learned
from polyphonic training data, rather than requiring an initial
analysis of specially prepared monophonic data.

A. Partial discretisation and object based coding

Consider a vector quantiser or discriminative classifier:
each input vector is encoded by identity of one active unit
chosen from a finite or countable collection. This is a purely
discrete representation. On the other hand, the elements of
a sparse code can be either off, or on, taking some value
from a continuous range, and while multiple elements may
be active together, these will usually be few in number. Such
a representation can be interpreted as a variable length, but
usually short, list of discrete entities or objects, each of
which is associated with, or parameterised by, one continuous
attribute, and echoing the concept of object-based coding in
communication theory (see [59] for a music-related example).

Thus, we can think of sparse coding as a sort of “partial dis-
cretisation”, forming an intermediate stage between continuous
data and a fully discrete, or symbolic, representation, such as a
musical score or a categorical percept such as pitch. Certainly,
this was one of our motivations for using sparse coding,
since our hypothesis was that the notes would emerge as
perceptual objects. Under the synthetic harpsichord dictionary,
the inactivity of a component was indeed a 99% reliable
indicator of the absence of a note, and though the converse was
not true—the activity of a component was not, without further
thresholding, a reliable indicator of the presence of a note—
the use of a sparse coding model with explicit discrete latent
variables [54] is likely to yield an almost exact correspondence
between active components and sounding notes.

The situation with the piano dictionary is quite different.
The variability of the piano tones and the fact that the “decay
when active” correction allowed more dictionary vectors to
be retained meant that each note came to be associated with
a group of components, so that any event triggering would
have to be based on an assessment of the activity of the
whole group. In addition, both dictionaries occasionally result
in negative component activities (see the marginal component
histograms of fig. 7): these indicate that a dictionary element is
being used, not because the note it represents is present, but to
refine the reconstruction of an input spectrum which is largely
but not completely accounted for by other dictionary elements.
All of this calls into question the utility of an explicit on/off
coding for individual components, and suggests that a form

of “sparse subspace coding”, where the diversity cost depends
on the number of active subspaces rather than components,
would be an worthwhile avenue for further investigation.

B. Comparison with ICA

We have already commented that music transcription in-
volves a transformation from continuous or analogue data to a
discrete or symbolic representation. This necessarily involves
a loss of information, whether it be the rejection of what
is held to be “noise”, or the formation of categories, within
which any random variations are ignored. Sparse coding takes
a step towards this by including an explicit noise model (which
means that denoising is an intrinsic part of the inference
process) and by achieving the sort of partial discretisation
discussed above.

In contrast, ICA does not involve any loss of information
and does not achieve partial discretisation. Even ICA algo-
rithms driven by what are commonly adopted as “sparsity
measures” (e.g. kurtosis) do not, in general, produce encodings
with exact zeros, because with a complete basis and no noise
model, each component is a fully determined linear function
of the input vector. Unless the input is truly noiseless and the
true generative components can be exactly zero with finite
probability and the learned basis exactly matches the true
basis, the probability of any component being exactly zero
is zero.

Our experiments with ICA of polyphonic piano spectra
indicate that the activities of the resulting components are not
in a simple correspondence with those of the underlying notes,
and any transcription system based directly on ICA would
require a more complex note decision process. In particular,
the presence or absence of a particular note could not be
assessed independently of other notes, because the activity of
an ICA component could be “explained” by any of several
notes. This would require the kind of “explaining away” effect
which is an integral part of inference in multiple-cause latent
variable models [60] of which the sparse coder is an instance.

The same considerations apply to independent subspace
analysis (ISA, [20]), since it too is a noiseless model. On
the other hand, the emergence of multiple dictionary elements
with the same pitch suggests that the concept of independent
subspaces is a relevant one. In the same way that the sparse
coding system used here is a form of noisy ICA, the “sparse
subspace coding” discussed in section V-A could be imple-
mented using a generalisation of ISA to include noise. This
would enable the grouping of related components to be done
automatically.

ISA has previously been applied to audio and music analysis
[46], but the authors reported that dimensionality reduction of
the input spectra was required to enable the basis vectors to
converge to spectral features that were non-local in frequency.
This is consistent with the fact that the piano dictionary is
effectively rank-deficient, since noiseless models like ICA and
ISA would be obliged to devote representational capacity to
what is the null space of the sparse coding dictionary.



C. An alternative generative model

It was noted in section III-B that the generative model
x = As + e with Gaussian noise e is not accurate for
short-term Fourier magnitude (or power) spectra. Under these
circumstances the STFT power is at best a noisy estimate of
the power spectral density (PSD) of the composite signal, with
a standard deviation proportional to the power itself [61]. This
mismatch between the model and the PSD makes itself felt
when trying to fix an appropriate noise level for both quiet
and loud passages, and over all regions of the spectrum. The
problem is only partially alleviated by the normalisation and
gain control applied to the input; for example, referring to
figures 13 and 14, the soft opening F is hardly detected, while,
the high B in bar 4 (approximately 16.4 s into the piece)
causes many components associated with unrelated notes to
be activated.

One way to deal with this problem is to work with log-
power spectra instead of power or magnitude spectra, which
transforms multiplicative noise into additive noise, and is
arguably a more appropriate representation for audio [27].
We note, however, that the resulting additive noise is still
not Gaussian, but rather asymmetrically distributed with a
heavy tail towards minus infinity [35], because of the divergent
behaviour of log u as u→ −∞.

An alternative which we are beginning to investigate [35] is
to model the multiplicative noise directly. We treat each of the
m dictionary vectors as a discrete-frequency approximation to
the PSDs of a Gaussian processes in the time domain. The
PSD of the composite signal, z = As, is a weighted sum
of the individual PSDs, while x will now denote the squared
magnitude of the STFT, which we consider to be derived from
z by a multiplicative noise process. Recognising that the PSD
of a Gaussian process is essentially a set of variances, and
that the squared magnitude of the STFT consists of a set of
small-sample estimates of those variances, we derive a specific
form for the conditional density p(x|z) (a product of scaled
Gamma distributions). This defines a new a energy function
to replace (7) which can be optimised using a multiplicative
algorithm based on those described in [33], [58]. See [35] for
further details.

D. Parallels with other polyphonic analysis systems

We briefly mention two polyphonic transcription systems
[4], [5] that can usefully be compared with the sparse coding
approach. Both operate by sequentially extracting notes and
subtracting their estimated spectra, leaving a residual to be
analysed at the next step. This can be likened to matching
pursuit in the spectral domain and hence interpreted as a
form of sparse decomposition, but unlike optimisation-based
methods such as ours, not one that maximises any particular
objective function. Another point of comparison is that the
pitch-equivalence classes found in the piano dictionary are
directly analogous to the multiple per-note spectral profiles
used in [5]. It is interesting that the sparse coder was able
to reproduce that particular processing strategy spontaneously
through unsupervised learning, and suggests that the sparse

coder be supplemented with an independent subspace analysis
to find the pitch equivalence classes in an unsupervised way.

E. Alternative inference algorithms

The most computationally intensive aspect of the system
described in this paper is the iterative optimisation used to
perform sparse decomposition, since each evaluation of the
objective function (7) is of O(nm) complexity, and, in our
experiments, between 50 and 150 iterations were required
per optimisation to achieve convergence, depending on the
sparsity of the result. This, in turn, depends on a number
of factors including the model noise variance σ2, the prior,
and the extent to which the dictionary is matched to the
data. Different performance characteristics could be obtained
by using other algorithms for sparse decomposition, which
include matching pursuit [62], basis pursuit (BP) and basis
pursuit denoising (BPDN) [37], and the FOCUSS algorithm
[63]. Matching pursuit does not optimise any explicit objec-
tive, but BPDN and FOCUSS minimise functions of the form
(7) for particular priors or “diversity costs.” BP and BPDN use
linear and quadratic programming respectively and assume an
l1 diversity cost, while FOCUSS uses an iterated re-weighted
least squares algorithm to minimise an lα pseudo-norm for
α≤1. Dictionary learning algorithms based on FOCUSS have
also been proposed [64]. Non-negative sparse decomposition
[58] has been implemented using multiplicative optimisation
steps modelled on non-negative matrix factorisation [33].

VI. CONCLUSIONS

In this paper, we have applied a form of sparse coding
based on a probabilistic multiple cause model to synthetically
generated polyphonic harpsichord music and real polyphonic
piano music. A model-based normalisation procedure based on
generalised exponential density fitting was developed (see (13)
in section III-A) to prepare the sequence of short-term Fourier
spectra magnitudes (STFTMs) for presentation to the sparse
coder, with the specific purpose equalising the variance of the
spectral “noise” at each frequency. The components of the
STFTM were found to be very super-Gaussian, with most of
the generalised exponential αi parameters in the region of 0.5.
Inference in the sparse coder was implemented using a novel
optimisation algorithm, while the dictionary learning algorithm
was modified (the “decay when active correction”) to improve
its behaviour when the inferred component activation is very
sparse.

The results show that adaptive sparse coding can discover
musically relevant structures in polyphonic mixtures, yielding
accurate transcription in the case of the synthetic harpsichord
and a highly structured dictionary consisting of groups of
pitched spectra in the case of the piano.

However, the encodings produced in both experiments were
generally not sparse enough to yield clean transcriptions with-
out further processing to remove false-positives. This is partly
due to the inaccurate additive noise model, which requires
large peaks in the spectra, the relative amplitudes of which
vary significantly even over the sounding of a single note, to
be encoded as accurately as spectral regions of low activity,
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Fig. 14. Score of the opening of BWV795 (extracted from the complete score available from the Mutopia project, http://www.
mutopiaproject.org).

resulting in the need for several components to be active
beyond those corresponding with the pitches present in the
mixture. (The same comments apply doubly to an analysis
based on ICA, since it assumes no noise at all.) Thus, the
multiplicative noise model outlined in section V-C is a logical
development of the current system.

Finally, from the spontaneous emergence of spectral sub-
spaces for each note, spanned by groups of dictionary vectors,
we conclude that a form of “sparse subspace coding”, derived
from a noisy independent subspace model (using the multi-
plicative noise model mentioned above) could be a powerful
framework within which to construct effective music analysis
systems entirely through unsupervised learning.
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APPENDIX

A. An active-set quasi-Newton optimiser

Inference in the sparse coder (section II-B) involves solv-
ing the optimisation problem (6) to find the vector s that
maximises the posterior p(s|x;A), or equivalently, minimises



the energy function E(s,x;A). While standard gradient based
algorithms are effective when optimising functions that are ap-
proximately quadratic near the optimum, the sparsity-inducing
priors such as a Laplacian have a gradient discontinuity at
zero, producing corresponding “creases” in the energy function
wherever any component si = 0. If the minimum of the
energy function occurs at one of these “creases”, a gradient
based optimiser will converge slowly, if at all, depending on
the robustness of the implementation as regards step length
heuristics and fall-back procedures when the optimum is not
locally quadratic.

To address this, a modified quasi-Newton optimiser was
developed which explicitly deals with gradient discontinu-
ities at component zeros of the vector being optimised, by
maintaining a set of active dimensions. It could therefore be
called an active-set quasi-Newton optimiser, though the same
modification can be applied to any iterative gradient-based
optimiser that involves a step length computation; for example,
an active-set conjugate gradient version was also implemented.

Both the quasi-Newton optimiser and the conjugate gradient
optimiser were based on algorithms found in [65] and the
function FMINU in the MATLAB optimisation toolbox. Details
such as step length heuristics and termination conditions can
be found in those sources and will not be stated here.

The optimisation is an iterative procedure, involving a
current point s ∈ R

m and two sets I0 and I1 which contain the
indices of the inactive and active components of s respectively,
thus forming a partition of the set of indices: I0 ∩ I1 =
∅, I0 ∪ I1 = {1, . . . , m}. Inactive coordinates are clamped to
zero (i ∈ I0 =⇒ si = 0) and do not take part in the current
optimisation step, though they may subsequently be activated.
To determine whether or not the ith coordinate should be
active, a boolean indicator function Q(s, i) is defined, which,
assuming that si = 0, depends on the signs of the gradient
of the cost function on either side of the point si = 0. These
gradients are defined as

∂+
i E(s)

def
= lim

si↓0+

∂E(s)

∂si
, ∂−

i E(s)
def
= lim

si↑0−

∂E(s)

∂si
, (16)

where the limits are taken tending down to a value just above
zero and up to a value just below zero respectively. The energy
E(s,x;A) has been abbreviated to E(s) to reduce clutter. The
indicator function is

Q(s, i) =

{
0 : sgn∂+

i E(s)≥0 ∧ sgn∂−
i E(s)≤0

1 : otherwise,
(17)

in which sgn 0
def
= 0. If Q(s, i) = 0, then the point s represents

a local minimum in the direction of the ith dimension, and
so that dimension should be deactivated. Before the main
optimisation loop, we initialise by inactivating all coordinates,
setting

I0 = {1, . . . , m}, I1 = ∅, s = 0.

Then, for each iteration of the main loop, the following steps
are taken (see fig. 15):

1) Compute proposed new point s′ and step ∆ according to
the base quasi-Newton or conjugate gradient algorithm,
so that s

′ = s + ∆.

2) Check if the proposed step would result in any of the
components of s changing sign, by defining the set of
all such zero-crossings:

Z = {i ∈ I1| sgn si �= sgn s′i}

3) Check if any of the zero-crossings satisfy the inactiva-
tion criterion. First, define λ(i) as the step size that leads
to the zero crossing in the ith coordinate:

λ(i) = −si/∆i,

so that [s + λ(i)∆]i = 0. Then define Z0 as the set of
zero crossings that satisfy the inactivation criterion:

Z0 = {i ∈ Z|Q(s + λ(i)∆, i) = 0}.

4) If there are any such zero crossings, truncate the step at
the first zero crossing, otherwise, take the proposed step
unmodified:

λ∗ =

{
mini∈Z0

λ(i) : Z0 �= ∅

1 : Z0 = ∅

s← s + λ∗
∆.

5) Update the active and inactive sets to reflect the new
current point s. To do this, two sets are defined:

I− = {i ∈ I1 : Q(s, i) = 0 ∧ si = 0}

I+ = {i ∈ I0 : Q(s, i) = 1}.

I− is the set of currently active coordinates that should
be deactivated. I+ is the set of currently inactive co-
ordinates eligible for reactivation. At this point, some
heuristic decision must be made about which coordinates
to activate, by choosing a set I∗+ ⊆ I+. One option is to
choose the coordinate which will result in the steepest
descent when activated—this is the same criterion used
in matching pursuit. Another is to choose a certain
proportion of those eligible. Once the choice is made,
the various elements are transferred between the active
and inactive sets:

I0 ← (I0\I
∗
+) ∪ I−

I1 ← (I1\I−) ∪ I∗+,

where the operator \ denotes set difference.
6) Perform any book-keeping required by the base algo-

rithm, e.g. update the inverse-Hessian approximation in
a quasi-Newton algorithm. The sparsity of the current
state can be used to make computational savings at this
point, e.g. the inverse-Hessian will be a sparse matrix.

The main loop is subject to the same termination conditions
as the unmodified optimiser, except that these apply to the
currently active coordinates only. In addition, the main loop
terminates if there are no active coordinates. By inactivating
directions in which the local gradient is discontinuous, this
algorithm keeps the Hessian approximation from becoming ill-
conditioned, and if the activation is sparse, then only a small
sub-matrix of the Hessian approximation is updated at each
step.
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Fig. 15. A two-dimensional illustration of the operation of the
modified active set optimiser. Given the proposed step from s to s

′,
and the local behaviour of the gradient along the segments AB and
CD, the modified optimiser would truncate the step at the second
zero crossing, and inactivate the first coordinate, s1.

A quantitative evaluation of the performance of the opti-
miser can be found in [30]; the main points are summarised
here: The performance advantage of the modified optimiser
becomes apparent only when significant numbers of units can
be set to exactly zero. This happens if (a) the model noise
variance σ2 = 1/λ is large, (b) the actual noise level in the
data is low, (c) the prior is sharply peaked, and (d) the learned
basis matrix A correctly matches the underlying sparse struc-
ture (if any) of the data. A standard quasi-Newton optimiser
is faster for smooth priors, low model noise levels (i.e. large
λ) and non-sparse activations. The quasi-Newton version was
also compared with an equivalent active-set conjugate gradient
algorithm, using the same termination conditions and the same
line search procedure. In cases where a sparse decomposition
was achieved, the quasi-Newton algorithm out-performed the
conjugate gradient algorithm—the expense of maintaining the
inverse Hessian approximation is mitigated by the sparsity of
the updates.

B. “Decay when active” correction

The results of section IV-A (see fig. 7) show that, although
the Lewicki-Sejnowski algorithm (12) is capable of manag-
ing the overall scaling (i.e., the Euclidean lengths) of the
dictionary vectors without an explicit normalisation step, the
resulting scalings, and hence the scalings of the components
sj , is dependent on the sparsity of the true generative system.
This can be explained by an analysis of the learning dynamics
[30], which also shows that, if the sparsity of a component
(measured as the probability of it being zero) is above a
certain threshold, its corresponding dictionary vector will
decay to zero. In order to counteract this effect, we derive
here a correction to the algorithm which improves on the
approximation required to derive (12) in the case that the
sources sj have a finite probability of being exactly zero; that
is, the priors p(sj) are “mixed discrete/continuous.”

The update rule (12) includes a “decay” term, which causes
each basis vector to decay at a rate proportional to its length.
The modification is simply this: we only decay those columns
of A whose corresponding components are actually active in
the MAP estimate ŝ, i.e. sj �= 0. This can be justified as

follows. Assume the prior for the j th component is

p(sj) = ζjp∗(sj) + (1− ζj)δ(sj), (18)

where ζj is the probability that sj is not zero, p∗ is the density
function for an active component, and δ is the Dirac delta
distribution. This can be modelled by introducing a set of
binary latent variables uj :

p(sj) =
∑

uj∈{0,1}

p(sj |uj)p(uj), (19)

where the the prior and conditional probabilities are defined
as

p(sj |uj =0) = δ(sj),
p(sj |uj =1) = p∗(sj),

p(uj =0) = 1− ζj ,
p(uj =1) = ζj .

(20)

If we introduce the binary tuple u = (u1, . . . , um), and define
the sets I1(u) = {j|uj = 1} and I0(u) = {j|uj = 0} as the
sets of active and inactive components respectively, then the
joint density p(x, s;A) can be written as

p(x, s;A) =
∑

u∈{0,1}m

p(x|s;A)

×
∏

j∈I0(u)

(1− ζj)δ(sj)
∏

j′∈I1(u)

ζj′p∗(sj′ ). (21)

Next, we assume that this sum is dominated by a single term
in û which is defined to have a pattern of activity derived
from ŝ, the MAP estimate of s obtained, not by using the
mixture prior, but using the more easily optimised prior p∗(·).
The components of û are

ûj =

{
0 : ŝj = 0,

1 : ŝj �= 0.
(22)

The overall dependence on s of the single-term approximation
to the posterior is

p(s|x;A) ∝ p(x|s;A)
∏

j∈I1(u)

p∗(sj)
∏

j′∈I0(u)

δ(sj′). (23)

The derivation now follows that of [22], making a saddle-
point approximation to the posterior at ŝ, but in this case,
the density is confined to the dimensions j ∈ I1(û), with
sj = 0 for all j ∈ I0(û). Thus, its covariance matrix cov[s]
is zero outside the square submatrix defined by the active
components I1(û). The results will be simpler to write if we
permute the indices so that the active components come before
the inactive ones, so that, e.g., A ≡

(
A A

)
, where A and

A are matrices containing the active and inactive dictionary
vectors respectively. The inner expectation in (10), required to
compute the derivative of the log-likelihood L(A), can then
be written as

〈esT 〉
s|x;A = êŝ

T −A cov[s]

= ê

(
ŝ
T

0

)
−

(
A A

) (
H

−1
0

0 0

)

=
([

êŝ
T
−AH

−1
]

0

) (24)

where ŝ is the vector of active components, H is the Hessian
of the posterior evaluated for the active coordinates only, and



0 is a zero matrix of the appropriate size. If this is used as a
stochastic gradient update step, then only the active columns
of A will be modified; there is no decay term for the inactive
columns.

Turning to the alternative version of the update rule (12), a
simple equivalent can be obtained by pre-multiplying (24) by
AA

T
instead of the AA

T used in [22]. Making the further
approximation H ≈ λA

T
A [22], and noting that λA

T
ê =

γ (̂s) at an extremum of the energy E(s,x;A), we obtain

λAA
T
〈esT 〉 = λA

([
A

T
êŝ

T
−A

T
AH

−1
]

0

)
= A

([
γ (̂s)̂s

T
− I

]
0

)
.

(25)

The final update rule for the active columns of A is therefore

A← A + ηA
[
γ (̂s)̂s

T
− I

]
, (26)

with no change to the inactive columns.
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