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Resonance and the Perception of Musical Meter

EDWARD W. LARGE & JOHN F. KOLEN

Many connectionist approaches to musical expectancy and music composition let the
question of “What next?’ overshadow the equally important question of ‘When next?’. One
cannot escape the latter question, one of temporal structure, when considering the perception
of musical meter. We view the perception of metrical structure as a dynamic process where
the temporal organization of external musical events synchronizes, or entrains, a listener’s
internal processing mechanisms. This article introduces a novel connectionist unit, based
upon a mathematical model of entrainment, capable of phase- and frequency-locking to
periodic components of incoming rhythmic patterns. Networks of these units can self-orga-
nize temporally structured responses to rhythmic patterns. The resulting network behavior
embodies the perception of metrical structure. The article concludes with a discussion of the
implications of our approach for theories of metrical structure and musical expectancy.

KEYWORDS: Beat, meter, metrical structure, entrainment, phase-locking, beat-
tracking, meter perception.

1. Introduction

Embodied musical meaning is, in short, a product of expectation. . . . If this hypothesis
is correct, then an analysis of the process of expectation is clearly a prerequisite for the
understanding of how musical meaning, whether affective or aesthetic, arises in any
particular instance (Meyer, 1956).

Meyer proposed that ‘expectation’ is the key to understanding human intellectual
and emotional response to music. Through artful patterning of the acoustic envi-
ronment, composers and performers evoke expectations in their listeners. They
skilfully manipulate these expectations, satisfying some and frustrating others, to
arouse both affective and intellectual responses. Meyer argued that this is the
property of musical experience that enables artistic communication. Since his
proposal, a number of theorists have adopted Meyer’s basic point of view, each
exploring various types of expectancy in music perception. Simon and Sumner
(1968) provide an analysis of music perception as a sequence extrapolation task,
one in which the listener attempts to predict what patterns will follow based on
analysis of the current pattern context. Narmour’s implication-realization theory
(1990) focuses on the innate expectancies that arise in response to the basic
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properties of individual melodic intervals and chains of melodic intervals. While
these and other theoretical approaches differ in many important respects, one facet
they share is a central concern with the musical question: ‘What Next?’.!

Since time is the primary medium of musical communication, however, we cannot
adequately characterize musical expectancy simply by considering what events a
listener expects to occur. We must also take into account when a listener expects events
to occur (Jones, 1981). In this regard, we find it useful to distinguish between sequence
processing and temporal processing. In sequence processing, a system must predict
the sequential ordering of future events (‘What next?’). Thus, a sequence-processing
system must collect, organize and use knowledge of sequential structure. On the other
hand, a temporal processing system must predict when future events are likely to occur
(‘When next?’) by exploiting knowledge of temporal structure.

Several connectionist models of music perception and production have focused
on issues of sequential structure using discrete-time recurrent neural networks
trained with back-propagation (Bharucha & Todd, 1989; Todd, 1991; Mozer,
1991). Such architectures deal well with sequential information. In music, however,
temporal organization includes periodic structure on multiple time-scales and
systematic expressive deviations from timing regularity. Simple discrete-time recur-
rent neural networks have difficulty capturing both forms of organization, thus
hampering their application to complex, temporally structured sequences such as
music and speech (Cottrell ez al., 1993; de Vries & Principe, 1992; Mozer, 1991;
Mozer, 1993; Todd, 1991).

We believe that a more direct approach is called for. In order to address the
problem of temporal structure in music, we focus on the perception of metrical
structure: the perceived temporal structure of musical patterns that manifests itself
phenomenologically as a sense of alternating strong and weak beats. Metrical
structure provides listeners with a temporal framework upon which to build expec-
tations for events. These expectations dramatically affect human perception, atten-
tion and memory for the complex event sequences found in music (Jones & Boltz,
1989; Palmer & Krumhansl, 1990; Povel & Essens, 1985). It has been proposed
(Jones, 1976, 1987a; Jones & Boltz, 1989) that the perception of rhythm is a
dynamic process in which the temporal organization of external musical events
synchronizes, or entrains, a listener’s internal rhythmic processes. Due to the
absence of plausible mechanistic accounts, however, many implications of this
theoretical position remain unclear. This article introduces a mathematical model
of entrainment appropriate for modeling the perception of metrical structure. We
present the model as a single abstract processing unit, amenable to connectionist
implementation. This oscillatory unit phase- and frequency-locks to a single peri-
odic component of a rhythmic pattern, embodying the notion of musical pulse, or
beat. Models of meter perception will require interconnected networks of these
units, whose self-organizing response to an incoming rhythmic pattern embodies a
dynamic ‘perception’ of metrical structure. We will analyze the behavior of both
individual units and collections of units with the goal of understanding how to
construct such a network.

2. Connectionist Approaches to Musical Expectancy

One approach to the problem of modeling musical expectancy equates event
expectation with time-series prediction (Dirst & Weigend, 1993). Connectionist
approaches often employ recurrent networks (Elman, 1990; Jordan, 1986; Port,
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1990) trained to predict the next event of a sequence, given a memory of past events.
Bharucha and Todd (1989), for example, proposed a connectionist model of
musical expectation to predict chords in a sequence using a recurrent neural
network that stored previous sequence elements. These elements provided the
necessary context to predict the next chord. This approach is appealing for a number
of reasons. Firstly, recurrent networks are simple; they process sequences one event
at a time and assume no complex control mechanism. Secondly, recurrent networks
fix no a priori limit on the size of the context that is used for prediction. Finally,
recurrent neural networks can also be used for musical composition. By connecting
the network’s output units to its input units, the network can generate novel
sequences that reveal what it has learned about musical structure (Todd, 1991;
Mozer, 1991).

Despite these incentives to implement general musical expectation engines using
recurrent networks, certain problems arise in the processing of complex, temporally
structured sequences such as music. Firstly, the ability of discrete-time recurrent
neural networks to learn and/or make use of temporal context information appears
to be limited (de Vries & Principe, 1992; Mozer, 1993). Specifically, recurrent
networks have difficulty capturing relationships that span long temporal intervals,
as well as relationships that involve very high-order statistics (Mozer, 1993).
Unfortunately, these are the sorts of relationships that a model must capture in
order to model musical expectancy or music composition adequately (Todd, 1991;
Mozer, 1991). Secondly, recurrent networks generalize poorly to novel presentation
rates, relying upon absolute rate information to recognize temporal patterns
(Cottrell et al., 1993). A network trained to recognize a melody played at 80 beats
per minute, for example, may not recognize the same melody played at 90 beats
per minute. McGraw et al. (1991) attempted to train various recurrent networks as
simple ‘beat detectors’, but found that a network trained on one melody at three
different tempos may not correctly respond to the same melody played at a fourth,
intermediate tempo. The problems of temporal context and absolute rate depen-
dence are symptoms of insensitivity to temporal structure. Musical rhythms display
complex forms of temporal organization that listeners abstract and use to process
complex musical event sequences. However, discrete-time recurrent neural net-
works fail to take advantage of this temporal information.

In this article, we focus on issues of temporal structure in music, although our
results may pertain to the processing of other complex, temporally structured
sequences as well. The remainder of this paper is organized as follows. In the next
section, we outline the problem of temporal structure in music. We review music-
theoretic notions of rhythm and meter, and some recent literature on human rhythm
perception. We then discuss current connectionist models related to meter percep-
tion and highlight some problems with these models. We introduce the mathemat-
ical concepts that play an important role in our theory, and then propose a
mathematical model of entrainment appropriate for modeling aspects of human
rhythm perception. We present the model as a single abstract connectionist pro-
cessing unit. We assume that it will be necessary to compose a network of these
abstract oscillatory units to model the perception of meter. We provide analyses of
the model, revealing implications for theories of meter perception. Finally, we return
to the problems of recurrent neural networks, connectionist time-series prediction
and musical expectancy in general.
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3. Rhythm and Meter

In this section, we explore issues related to the temporal structure of music and the
processing of rhythmic sequences. We review music-theoretic notions of rhythm,
beat and meter, concentrating on recent cognitive proposals. We then review recent
literature on human rhythm perception, highlighting the role of temporal structure
in music perception. Finally, we discuss existing approaches to modeling beat
tracking, entrainment and meter perception.

3.1. Music-theoretic Perspective

The term ‘rhythm’ refers to the general sense of movement in time that characterizes
our experience of music (Apel, 1972). Rhythm often refers to the organization of
events in time, such that they combine perceptually into groups or induce a sense
of meter (Cooper & Meyer, 1960; Lerdahl & Jackendoff, 1983). In this sense,
rhythm is not an objective property of music, it is an experience that has both
objective and subjective components. The experience of rhythm arises from the
interaction of the various materials of music—pitch, intensity, timbre and so
forth—within the individual listener.

We will use the term ‘rhythm’ in a second, more restricted sense—to refer to an
objective component of musical rhythm. When we speak of ‘a rhythm’ or ‘a
rhythmic pattern’, we will mean the pattern of inter-onset durations associated with
a music sequence (Dowling & Harwood, 1986; Jones, 1987b). In music, a thythm
has an associated pattern of phenomenal accents, which is the physical patterning
of events in the musical stream such that some seem to be stressed relative to others
(Lerdahl & Jackendoff, 1983). Phenomenal accent can be conferred upon an event
by the manipulation of many possible physical variables, including duration, pitch
and intensity.

By ‘beat’, we mean one of a series of perceived pulses marking subjectively equal
units in the temporal continuum. Although the sense of beat is generally established
and supported by objectively occurring musical events, beat is a subjective experi-
ence. Once a sense of beat has been established, it continues in the mind of the
listener, even after the supporting stimulus has ceased. The experience of beat is
necessary for the experience of meter (Cooper & Meyer, 1960). The term ‘tempo’
refers to the rate (beats per unit time) at which beats occur. In this paper, we will
generally refer to the reciprocal measure, the ‘beat period’, or the span of time
between consecutive beats.

‘Meter’, as it is traditionally defined, refers to the measurement of the number of
beats between more or less regularly recurring accents (Apel, 1972; Cooper & Meyer,
1960). There are two important implications here. Firstly, in order for meter to exist,
the listener must feel some beats to be accented relative to others. Accented beats are
called ‘strong’, while unaccented beats are called ‘weak’. Although phenomenal
accents may correspond to strong and weak beats, metrical accent is subjective. Early
research on the perception of rhythm indicated that even isochronous, unaccented
pulse trains may elicit the experience of alternating strong and weak beats, a phenom-
enon called ‘subjective rhythrn’2 (Bolton, 1894; Woodrow, 1909). Secondly, the
experience of meter implies the existence of at least two recurrent periodicities,
describable as two separate levels of beats with related beat periods. Integer ratios
usually characterize the beat period relationship (2:1 or 3:1, for example), so that
meter is said to describe a nested grouping of beats (Lerdahl & Jackendoff, 1983).
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Metrical organization usually exists on multiple time-scales (Cooper & Meyer,
1960; Lerdahl & Jackendoff, 1983). Lerdahl and Jackendoff (1983) have proposed
a construct that describes the temporal organization of a piece at all relevant metrical
levels, called a metrical structure. The metrical structure of a piece can be tran-
scribed as a grid (Figure 1). According to this notation, each horizontal row of dots
represents a level of beats, and the relative spacing between dots of adjacent levels
captures the relationship between the beat periods of adjacent levels of beats. A
metrical structure describes one of the most important subjective components of
rhythmic experience: the feeling of regularly recurring strong and weak beats called
metrical accent (LLerdahl & Jackendoff, 1983). Points of metrical accent are cap-
tured, using a metrical grid, as temporal locations where the beats of many levels
coincide. Points where many beats coincide are (subjectively) felt as stronger; points
where few beats coincide are felt as weaker.

Lerdahl and Jackendoff’s (1983) proposal describes certain aspects of music
perception and cognition. A rhythm, with its pattern of phenomenal accent,
functions as a perceptual ‘input’ to metrical accent. Although phenomenal accent
information may be missing or ambiguous, moments of musical stress in the raw
signal are thought to serve as cues from which the listener may extrapolate a regular
pattern of metrical accents (Lerdahl & Jackendoff, 1983). Lerdahl and Jackendoff
(1983) have proposed a generative theory for the perception of metrical structure
that is expressed as two sets of rules. A set of well-formedness rules describes legal
metrical structure hierarchies. These rules restrict metrical structures to strictly
nested hierarchies with beat-period ratios of either 2:1 or 3:1. Next, a set of
preference rules describes which legal metrical structure an experienced listener
would actually perceive for a given rhythmic pattern. These rules are concerned
mainly with the placement of strong beats, as determined by the alignment of beats
at adjacent levels in the metrical structure hierarchy.

Theories of metrical structure, such as the generative theory we have just
described, have some limitations. Firstly, the characterization of metrical structure
as a hierarchical nesting of beats limits the scope of the theory. Only some music
can be described in this way. Lerdahl and Jackendoff (1983) explicitly restrict their
theory to western tonal music of the common practice period. Much non-western
music, as well as contemporary western art music, jazz and popular music, make
use of dissonant rhythmic structures (Yeston, 1976), known as ‘polyrhythms’. A
polyrhythmic relationship between two levels of beats is a relationship of beat-pe-
riods such that N beats at one level occupy the same amount of time as M beats at

L weak beat

strong beat

Figure 1. A metrical structure hierarchy (Lerdahl & Jackendoff, 1983). Each

horizontal row of dots represents a level of beats, and the relative spacing between

dots describes the relationship between the beat periods of adjacent levels. Points
where beats of many levels align describe points of metrical accent.
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the next level. ‘Rational’ ratios N:M, such that the integers N and M are relatively
prime (3:2, 4:3, 5:4, and so forth), characterize polyrhythmic ratios. Hierarchical
nestings do not adequately capture polyrhythmic structures, thus it is more general
to think of metrical structures as being composed of layers, or ‘strata’ of beats at
different time scales (Yeston, 1976).

A second limitation of current theories of meter is that they fall short of
adequately explaining perception. Theories of metrical structure, as discussed
above, apply to musical time as notated. It is well established, however, that
musicians never perform rhythms in a perfectly regular, or mechanical, fashion.
Instead, performers produce sound patterns that reveal both intentional and unin-
tentional timing variability (Sloboda, 1983; Clarke, 1985; Shaffer ez al., 1985; Todd,
1985; Palmer, 1989; Drake & Palmer, 1993). Current theories of metrical structure
do not explain how listeners are able to perceive meter in rhythms that performers
actually play (unless the performer is a computer). As we shall see, this is no small
problem.

In summary, theories of metrical structure attempt to describe the perceived
temporal organization of rhythmic patterns. A metrical structure is composed of
layers, or strata, of beats that align with the onset of musical events. Theories of
metrical structure address issues related to the beat period ratio and the relative
alignment between adjacent levels of beats. Theories that require the layering of
beats to describe a strictly nested hierarchy, however, are limited in scope. In order
to include the polyrhythmic structures common in many forms of music, more
complex relationships between adjacent levels must be allowed. Finally, because
traditional theories do not deal with the issue of timing variability in music
performance, they stop short of explaining the perception of metrical structure. As
we shall see below, recent psychological results implicate a class of mechanisms
capable of linking traditional theories with the perception of metrical structure.

3.2. Psychological Perspective

Research into the human processing of complex, temporally structured sequences
has provided some of the most intriguing results in the study of human perception
and cognition. The temporal structure of sequences has been shown to affect
dramatically human abilities to perceive, remember and reproduce serial patterns.
Recent results support theoretical proposals that implicate an entrainment response
as one of the basic processes of human rhythm perception. Here we review some
of the relevant psychological results. In the next section, we will explore in more
detail mechanistic accounts that have been proposed to account for the perception
of metrical structure.

Abstract knowledge of metrical structure has been shown to affect memory for
temporal information in auditory sequences. In one study, memory for pitch
sequences was found to be dependent on a perceived temporal frame. Pitch
structures that coincided with temporal structures enhanced recall, while pitch
structures that conflicted with temporal structures negatively affected recall
(Deutsch, 1980). In a related finding, memory confusions of temporal patterns in
a discrimination task were found to be consistent with a music-theoretic metrical
structure hierarchy (Palmer & Krumhansl, 1990). Other studies have demonstrated
similar memory constraints, by showing that the reproducibility of rhythms is
affected by the patterns of phenomenal accentuation in the to-be-reproduced
rhythm. The evidence suggests that sequences of events that imply a metrical



Resonance and Musical Meter 183

organization are easier to memorize and reproduce than sequences lacking such
organization (Essens & Povel, 1985; Povel & Essens, 1985).

These and related findings are often cited as evidence that listeners represent
and/or remember rhythms in terms of metrical structure hierarchies. Essens and
Povel (1985) have hypothesized that in perceiving a temporal pattern, listeners
induce an internal clock that is subsequently used as a measuring device to code
the structure of a temporal pattern. Rhythmic sequences are encoded in memory
with respect to this clock, so that patterns that correspond well with an induced
clock (metrical patterns) can be represented using simpler memory codes, and are
therefore easier to remember and reproduce. Jones (1976, 1987a) and Jones and
Boltz (1989) offer a more comprehensive interpretation. They argue that the
organization of perception, attention and memory is inherently rhythmical. Music
(and other rhythmic stimuli) entrain listeners’ perceptual ‘rhythms’, and these
rhythms embody ‘expectancies’ for when in time future events are likely to occur.
Expectancies in turn guide ‘anticipatory pulses of attention’ that facilitate perception
of events that occur at expected points in time.

One source of evidence for the temporal expectancy hypothesis stems from
studies that directly test listener attention rather than listener memory. These
studies show that temporal pattern structure constrains the ability of subjects to
attend to melodic sequences. For example, regularity of phenomenal accent place-
ment has been shown to affect listeners’ abilities to judge the temporal order of
tones in a sequence (Jones ez al., 1981). Listeners are also better able to identify
pitch changes in sequences when these changes occur at points of strong metrical
accent (Jones er al., 1982). Additional evidence suggests that listeners’ implicit
knowledge of meter (beyond immediate sensory context) contributes to the percep-
tion of temporal sequences. Listeners’ goodness-of-fit judgements for events pre-
sented in metrical contexts were shown to be consistent with multi-leveled metrical
structure hierarchies (Palmer & Krumhansl, 1990).

Another source of evidence for the temporal expectancy hypothesis comes from
psychophysical studies of time perception. It appears that the temporal structure of
auditory patterns actually affects humans’ abilities to perceive time. For inter-onset
durations corresponding roughly to musical time-scales, it can be shown that the
ability to detect differences in temporal intervals approximately obeys Weber’s law
(Getty, 1975; Halpern & Darwin, 1982). That is, when subjects are asked to
compare two intervals, the accuracy of their time-discrimination judgement is
related to the base length of the interval they are asked to judge. Adherence to
Weber’s law breaks down under certain circumstances, however. Temporal differ-
ence judgements improve as the number of reference intervals increases (Schulze,
1989; Drake & Botte, 1993). It has also been shown that sensitivity to time changes
in sequences is best for metrically regular sequences (Yee ez al., in press), and that
sensitivity to tempo changes degrades with the regularity of the stimulus (Drake &
Botte, 1993). Some researchers have suggested that these results indicate perceptual
synchronization of the listener to a perceived beat (e.g. Schulze, 1989; Yee ez al.,
1994).

In our view, the psychological literature offers strong support for the temporal
expectancy hypothesis. In addition, the literature on motor coordination reveals a
number of activities, including rhythmic hand movements and cascade juggling, to
be consistent with mathematical laws governing coupled oscillations (e.g. Kelso &
deGuzman, 1988; Schmidt ez al., 1991; Treffner & Turvey, 1993); (for a review of
recent models, see Beek et al, 1992). Shaffer (1981) has proposed that the
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performance of two-handed polyrhythms in music may be described as the entrain-
ment of clocks. However, the experimental literature often stops short of proposing
specific mechanisms of entrainment. In Section 2.3, we explore specific proposals
that have been made relating to the perception of metrical structure.

3.3. Connectionist Perspective

Metrical structure plays an important role in the organization of human perception.
However, mechanisms for the perception of metrical structure are still poorly
understood. Symbolic approaches relying on the parsing of temporal patterns have
been proposed (e.g. Longuet-Higgins & Lee, 1982; Scarborough et al., 1992), but
like the generative theories of metrical structure upon which they are based, they
fail to explain the perception of meter in musical performance. Entrainment, or
synchronization to a perceived beat, may provide some answers. Connectionists,
however, are only beginning to appreciate the power of this approach. We will
discuss a number of models related to the perception of metrical structure, including
previous connectionist approaches to entrainment, illustrating the problems entailed
by the design of entrainment mechanisms for the perception of complex musical
rhythms.

Scarborough ez al. (1992) have described a model of meter perception called
BeatNet, based on a parallel constraint satisfaction paradigm. Conceptually, the
BeatNet network is a one-dimensional array of idealized low-frequency oscillators
with different beat-periods that operate to align their output ‘ticks’ with event
onsets, producing a metrical grid of the style proposed by Lerdahl and Jackendoff
(1983). A metrical structure emerges from local interactions between oscillators,
rather than from the global effect of rule-based analysis. An advantage of this
approach is that it handles the problem of metrical preferences through real-time
processing constraints, rather than by global evaluation of alternative constructs.
This approach cannot deal with timing variability, however, because of the simpli-
fying assumption of ‘idealized’ oscillatory units.

According to Desain and Honing (1991), the problem of timing variability is
the key problem for mechanistic accounts of meter perception. From this point of
view, the relevant task is one of inferring, from the inter-onset intervals that the
performer ‘creates’, what inter-onset intervals the performer ‘intended’—a process
called ‘quantization’. Desain and Honing have developed a connectionist quantizer
to ‘clean up’ messy timing data so that the meter may be inferred. The quantizer
works to adjust durations so that every pair of durations is adjusted toward an
integer ratio, if it is already close to one. A disadvantage of this approach is that it
relies on a fixed input window, whose size may need to be adjusted depending on
the input (Desain & Honing, 1991). Recently, Desain (1992) extended this ap-
proach to present a theory of complex temporal expectancy.

An alternative approach to the problem of timing variability relies on a form of
entrainment called beat-tracking (Allen & Dannenberg, 1989; Dannenberg, 1984;
Dannenberg & Mont-Reynaud, 1987). This approach does not assume that the
beat-period is static, rather the length of a beat is adjusted throughout the perfor-
mance as the performer speeds up or slows down. Results reported to date indicate
that this task is surprisingly difficult (Allen & Dannenberg, 1989). Longuet-Higgins
and Lee (1982) have modeled the perception of meter as the parsing of inter-onset
durations. Longuet-Higgins (1987) proposes a hybrid method that combines beat-
tracking with metrical structure parsing. The program uses a static tolerance
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window, within which it will treat any onset as being ‘on the beat’. Onsets which
fall outside the window are interpreted as subdividing the beat (into groups of either
two or three). This approach may solve some of the problems inherent in tracking
a single level of beats, because separate mechanisms track separate levels of beats,
reducing the potential for confusion.

Page (1993) acknowledges the problem that temporal structure poses for
connectionist approaches to modeling music perception. He also suggests that
entrainment may provide solutions to some of these problems, and proposes that a
neural entrainment mechanism should operate analogously to a phase-locked loop,
an electronic circuit commonly used in communications applications. We agree that
entrainment mechanisms are important in addressing problems of temporal struc-
ture; however, the standard phase-locked loop is not acceptable. Page’s (1993)
simulations detail the difficulties associated with this approach. The standard
phase-locked loop design assumes that the input signal is periodic. This assumption
places limitations on the circuit’s ability to deal with the complex rhythmic struc-
tures of music. Because the phase-locked loop reacts to every input event, it cannot
extract a ‘component periodicity’ from a complex rhythmic pattern. Page attempts
to deal with this problem by assuming that relevant periodicities are unambiguously
marked in the signal via phenomenal accent information. In music, however,
phenomenal accent information is often missing, ambiguous or even misleading
(e.g. syncopation).

Other connectionists have proposed entrainment mechanisms for meter percep-
tion as well (Large & Kolen, 1993; McAuley, 1993, 1994). An important research
problem is to determine an appropriate type of oscillator for modeling musical beat.
To illustrate the relevant issues, we begin with a simple model that has been used
as a model of single-cell oscillation in the nervous system, the integrate-and-fire
oscillator (Glass & Mackey, 1988; Winfree, 1980). The simplest formulation of the
integrate-and-fire model is shown in Figure 2. Activation increases (linearly) to a
threshold, the unit ‘fires’, resets its activation to zero and the process begins again.
As can be seen in Figure 2(a), the unit spontaneously oscillates with a period
determined by the slope of the activation function and the height of the threshold.
Figure 2(b) shows the unit phase-locking to a discrete periodic stimulus. Each
discrete stimulus event temporarily lowers the unit’s threshold so that the oscillator
may fire and reset earlier than would otherwise be the case. Figure 2(b) also
illustrates one problem with phase-tracking oscillators as models of musical beat.
When the stimulus ceases, or when an onset is missing, the oscillator immediately
reverts to its original period, as though no stimulus had ever been present. In other
words, the oscillator has no memory of the previous rhythmic context. Torras
(1985) proposed a scheme for frequency-tracking in a somewhat more complex
integrate-and-fire model. In this formulation, an integrate-and-fire oscillator can
phase-lock to a stimulus by adapting its threshold. This situation is shown for our
simpler model in Figure 2(c). McAuley (1993) proposed that a Kohonen map of
Torras oscillators could memorize, categorize and reproduce musical rhythms.

Integrate-and-fire units have their own set of problems in the domain of meter
perception. For example, the discontinuity in the activation function constrains the
oscillator to adjust its period only by speeding up (McAuley, 1994). We have
proposed a continuous model (presented below, in a revised form) to avoid this
problem, as well as the problems exhibited by phase-locked loop models (Large &
Kolen, 1993). McAuley (1994) recently compared the performance of four different
oscillatory units including two integrate-and-fire models, our earlier model (Large
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Figure 2. A periodic signal and the response of an integrate-and-fire oscillator. (a)
The oscillator in the absence of stimulation. When activation reaches the threshold,
the oscillator ‘fires’. The period of the resulting oscillation is determined by the
slope of the activation function and the height of the firing threshold. (b)
Phase-tracking. Discrete periodic stimulus affects the oscillator by lowering its firing
threshold. The oscillator comes into phase and frequency lock with the periodic
stimulus. The effect is temporary, however. When the stimulus is removed, the
oscillator reverts to its intrinsic period. (c) Frequency-tracking. By adjusting its
firing threshold in response to stimulus, the unit may achieve permanent or semi-
permanent frequency lock. When the stimulus is removed, the oscillator continues
to fire at the stimulus period.

& Kolen, 1993) and a simplification of this model. McAuley (1994) prefers the
simpler model, although in our view this simplification creates problems similar to
those found in phase-locked loop models; both require strong assumptions about
phenomenal accentuation to display appropriate behavior.

In summary, modeling the perception of metrical structure is difficult, in large
measure because of problems arising from timing variability in musical performance.
Entrainment remains an interesting possibility, despite the inadequacies of straight-
forward approaches to entrainment such as phase-locked loop models. Entrainment
models must have the ability to ‘pick’ component periodicities out of a complex
rhythmic pattern in spite of missing, ambiguous or misleading phenomenal accent
information. An entrainment model that provides such a capability would have
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important implications for theories of musical meter. We propose such a model
below.

4. Mathematical Considerations

Musical rhythms afford the perception of a particular type of temporal organization
called metrical structure. Both psychological evidence and connectionist analyses
suggest that entrainment might serve as a useful tool in modeling this perception.
The mathematics of entrainment describes many natural systems, and one of the
goals of this paper is to add the perception of musical rhythm to this list. In this
section, we briefly summarize some important mathematical concepts relevant to
theories of entrainment and introduce the principles underlying our proposal. As
we shall demonstrate, entrainment provides properties that map quite nicely on to
the task of rhythm perception.

The swinging of a pendulum, the ticking of a metronome and the firing of a
neural pace-maker cell are examples of oscillations. Oscillations are periodic
events—events that cycle, or repeat, after some specific interval of time, called the
period of the oscillation. Let us assume that the beginning of each cycle is identified
by a discrete marker, and define the phase at this marker to be 0. Let us further
assume that each cycle of the oscillation has intrinsic period 7,. We then define the
phase at any time 0 < z< T, to be ¢ = #/7,. As we define it here, phase lies between
0 and 1. Two oscillations are synchronized when they regularly come into phase,
or begin their cycles together. A process by which two or more oscillators achieve
synchronization is called entrainment. Entrainment occurs because a coupling
between two or more oscillations causes them to synchronize. Coupling allows one
oscillator to perturb another by altering its phase, its intrinsic period, or both.

One important type of entrainment is phase-locking. Phase-locking phenomena
have been of interest in the connectionist community for some time, especially since
the discovery of oscillations and synchronization behavior in the cat visual cortex
(Eckhorn ez al., 1989; Gray et al., 1989). It has been proposed that the oscillations
of neurons in the cat visual cortex phase-lock to establish relations between features
in different parts of the visual field (Gray et al., 1989). It has further been suggested
that the brain could be using synchronized oscillations as a general method of
solving the binding problem (von der Malsberg & Schneider, 1986). Phase-locking
may add an extra degree of freedom to neural network models, so that a number
of different entities may be represented simultaneously using the same set of units,
each by a different phase in an oscillatory cycle.

Our use of oscillatory units differs from that proposed in the literature on
connectionist feature binding. Firstly, rather than using coupled oscillations to
describe a neural strategy for performing an implementation-level operation such
as feature binding, we will use synchronization to describe how the brain may
execute the relatively high-level cognitive function of meter perception. Conse-
quently, the oscillatory units we propose will represent higher levels of neural
abstraction than individual neurons. Secondly, we will be interested in dynamics
that are more complex than 1:1 phase-locking. Therefore, we will need to take a
moment to introduce the analytical tools used in subsequent sections.

Researchers since Poincaré have described entrainment phenomena using the
mathematics of non-linearly coupled oscillators. The method we describe here
assumes that the constituent processes are oscillatory, and the oscillations may be
linear or non-linear. However, the coupling between the oscillators may exhibit
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various types of non-linearities. The Poincaré map, or circle map, summarizes the
long-term dynamics of a system of two oscillators. Consider the following mapping:

¢i+,=¢,+§+ b sin (2md)

This equation is a model circle map, called the sine circle map, that describes the
dynamics of a system of two oscillators, a driving and a driven oscillator. The
parameter g is the period of the driving oscillator, p is the period of the driven
oscillator and & sin (2n¢;) is a non-linear coupling term that describes the pertur-
bations delivered to the period of the driven oscillator by coupling to the driver. ¢;
is the phase of the driving oscillator at which the driven oscillator fires on iteration
i. When b =0 (no coupling), the behavior of the system is summarized by the ratio
plg, the so-called ‘bare winding number’. So, for example, if p=1 and ¢ = 2, the
driven oscillator fires twice for each time the driver fires. As coupling strength, b,
increases, another ratio, N:M, the so-called ‘dressed winding number’, describes
the long-term dynamics of the system. In the dressed winding number, N is the
period of the driven oscillator under the influence of coupling and M is the period
of the driver. If the coupling strength is high enough, even as p/q is perturbed away
from 1/2, the system will still lock in a 1:2 relationship, because each time the driven
oscillator fires, its phase is perturbed slightly by the coupling to the driving oscillator.

This locking behavior is highly structured. The dynamics of coupled systems
like the sine circle map can be summarized in a regime diagram. Figure 3(a) shows
a regime diagram for the sine circle map. The x-axis is the bare winding number,
plg, and the y-axis is coupling strength, b. The regime diagram identifies stable
phase-locked states, also called attractors, mode locks or resonances (Treffner &
Turvey, 1993), for particular coupling strengths and driven/driver period ratios. The
parameter regions that correspond to stable phase-locked states are known as
Arnol’d tongues (Glass & Mackey, 1988; Schroeder, 1991). From this diagram, we
can see, for example, that for a bare winding number of 0.52, if coupling strength
is high enough, the system will still phase-lock in a 1:2 relationship. We have labeled
each tongue with a ratio corresponding to its locking mode. The width of each
‘tongue’ reflects the stability of the corresponding mode lock for a given coupling
strength, i.e. its sensitivity to noise in the p/g ratio. For example, Figure 3 shows
that, for a fixed coupling strength, 1:1 entrainment is more stable than 1:2
entrainment, which is more stable than 2:3 entrainment, and so forth. Depending
upon the coupling strength, it can be shown that entrainment is possible at any
frequency ratio, N:M, where N and M are relatively prime integers (Glass &
Mackey, 1988). The regime diagram is not arbitrarily organized. Rather, its struc-
ture can be summarized by a mathematical construct known as the Farey tree
(Figure 3(b)). The Farey tree enumerates all rational ratios according to the stability
of the corresponding mode lock in the coupled system. Its branching structure
corresponds the structure of the Arnol’d tongues of the sine circle map, as well as
to known bifurcation routes in other mathematical and natural systems (Schroeder,
1991).

In phase-tracking systems, the frequency of the driven oscillator is altered
because its phase is perturbed in every cycle. When the effect of the driving oscillator
is removed, even for one cycle, the driven oscillator reverts to its intrinsic period.
When the driver returns, a number of cycles may be required to re-establish phase
lock. This behavior is unacceptable for the present purposes. In musical rhythms,
events do not necessarily occur on every beat. Thus, musical beat cannot be
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Figure 3. Entrainment. (a) A regime diagram. The dynamics of a system of
coupled oscillators may be summarized in a regime diagram. The parameter regions
that correspond to mode-locked states are known as Arnol’d tongues (shaded). The
width of each resonance tongue reflects the stability of the corresponding mode
lock. For example, 1:1 entrainment is more stable than 1:2 entrainment, is more
stable than 3:2 entrainment, and so forth. (b) The Farey tree. The Farey tree is a
mathematical object that summarizes the structure of the regime diagram. It
provides an enumeration of all rational ratios according to the stability of the
corresponding mode-lock in the coupled system. Its branching structure
corresponds to known bifurcation routes in both mathematical and natural systems.

adequately modeled simply as phase-tracking entrainment. In order to model beat,
the oscillator must somehow identify and ‘remember’ the beat period. One way to
do this is to allow frequency-tracking. Frequency-tracking entrainment occurs when
coupling allows the driving signal to perturb the intrinsic period of the driven
oscillator. A frequency-tracking oscillator can model musical beat because when the
driving signal is removed, the oscillator continues at the driver’s frequency,
‘expecting’ the driver’s eventual return.
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In the model of musical beat that we propose, the driving signal (a rhythmic
pattern) perturbs both the phase and the intrinsic period of the driven oscillator,
causing a (relatively) permanent change to the oscillator’s behavior. In addition, the
oscillator will adjust its phase and period only at certain points in the rhythmic
pattern, effectively isolating a single periodic component of the incoming rhythm.
With these assumptions, it will be possible to model the perception of metrical
structure as a self-organizing process. What looks like a single macroscopic temporal
pattern, a metrical structure, may emerge as the collective consequence of mutual
entrainment among many constituent processes. We propose a network of oscilla-
tors of various native periods that entrain simultaneously to the periodic compo-
nents of a rhythmic signal at different time-scales, and to the outputs of one another.
We will use regime diagrams to analyze the mode-locking behavior of individual
units, and we will examine the response of a system of units to an improvised
musical performance, revealing the implications of this proposal for the perception
of metrical structure.

5. An Entrainment Model

In this section, we present a model of entrainment that is suitable for explaining
aspects of the perception of metrical structure. First, we develop the basic oscillatory
unit, a unit capable of locking on to and tracking a single periodic component of a
driving rhythm, to embody the musical concept of beat. Next, we analyze the
dynamics of the unit using regime diagrams in order to understand its response to
periodic stimulation. Finally, we examine aspects of the ability of a system of
oscillators to self-organize a response to rhythmic patterns, embodying a dynamic
‘perception’ of metrical structure. We discuss how our approach deals with prob-
lems that we have identified for theories of metrical structure. Finally, we address
issues of neural implementation.

5.1. The Basic Oscillatory Unit

The basic unit has periodic output, and adjusts both its phase and period so that
during stimulation the unit’s output pulses become phase- and frequency-locked to
a stimulus. The stimulus consists of a series of discrete pulses, s(z), corresponding
to the onset of individual events (e.g. notes). Event onsets may be derived from an
acoustic representation of signal intensity (Marr, 1982; Todd, 1994) or, alterna-
tively, onsets may be extracted from a list of MIDI events. In this article, we assume
that s(z) = 1 at the onset of an event, and 0 at other times.
The activation function of the unit is periodic:

a(t)=cos% t—12)—1 (€Y)
where 7 is time, p is the period of the oscillation and 7 — 7 (mod p) is the phase. The
output of the unit is given by

o(?d) = 1 + tanh (ya(2) (2)

where 7 is the output gain. Figures 4(a) and (b) show the output of the unit, in
the absence of input, as a function of time. Output strength is maximum (o(?) =
1) at the beginning of each cycle (i.e. phase is 0), quickly falls to zero for the body
of the cycle, then begins to rise again to a maximum as the cycle comes to a close.
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Figure 4. Schematics for the phase- and frequency-locking oscillator for different
values of y. The dark curves represent the output of the oscillator. The light curves
summarize the effect of coupling on the phase and period of the driven oscillator.
As gamma increases, the temporal receptive field shrinks. (a) y=2; (b) y=8; (c) y=0.

Output is only non-zero for a relatively small portion of the cycle, which we refer
to as an output pulse. An output pulse defines a temporal receptive field for the
unit, a region of temporal expectancy. After a unit has entrained to an input
pattern, its output pulse marks a window of time during which it ‘expects’ to see
a stimulus pulse. As the unit entrains to stimulus pulses, it responds (i.e. adjusts
its phase and period) only to pulses that occur within this temporal expectancy
region; it ignores stimulus pulses that occur outside of this region. The parameter
Y, the output gain, determines the width of this field. When 7y is small, as shown
in Figure 4(a), the region is wide and temporal expectancy is relatively unfocused.
When vy is large, as shown in Figure 4(b), the region is narrow and temporal
expectation is highly focused.

The unit entrains to the stimulus using a modified gradient descent procedure.
That is, the unit adjusts its phase and period in such a way as to minimize an error
function that measures the difference between when the unit maximally expects
event onsets to occur, and when onsets actually do occur. Changes to phase and
period are proportional to the partial derivative of the error function with respect
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to 7 and p, respectively. We define the following error function:
E@®) = s() (1 -0(2) (3

E(?) has a non-zero value only when a stimulus is present (s(z) = 1), and single
minimum value when the output strength is maximum (o(z) = 1). Therefore,
minimization of the error function for both phase and period in response to a
periodic input signal implies that the unit will act to align its points of maximum
expectancy with the discrete-event onsets in the signal.

To implement phase-tracking behavior, we minimize the error function by
gradient descent on . This yields the following delta rule for phase:

Aty = -1, s(2)p sech® ya(z) sin 2;“ (t— 1) (&)

where 1 is the coupling strength (similar to b in the sine circle map), incorporating
constants from the actual derivative of the error function. The factor p has been
added to the ‘true’ delta rule as a convenience. This has a scaling effect, so that this
delta rule yields the same proportional phase adjustment regardless of the actual
period of the oscillator. The light curves of Figures 4(a) and (b) show the shape of
this curve, summarizing the effect of the delta rule in relation to the oscillator
output. A stimulus pulse that occurs within the unit’s expectancy region, but before
the maximum of the output function, causes a negative phase shift, because Az <
0. A stimulus pulse after the maximum of the output function causes a positive
phase shift, because Az > 0. Thus, this delta rule provides a non-linear coupling
term implementing phase-locking entrainment. When Y= 0, as shown in Figure
4(c), sech® ya(z) = 1, and the delta rule becomes the sine function. This is a
significant special case because in this case the unit’s phase-locking dynamics will
become equivalent to those of the sine circle map. We will discuss this in more
detail in the next section.

The preceding equations implement phase-tracking through a modified gradient
descent strategy. We achieve frequency-tracking behavior using a similar strategy.
For frequency-tracking, however, it is useful to limit the period of the oscillator to
a fixed range between pmin and pma. One way to do this is to introduce a frequency
control parameter, Q, according to the following relationship:

P = Pmin + 0.5 (Pmax — Pmin) (1 + tanh Q) 5)

When Q = 0, then p takes on a value halfway between pmin and pmas, and we refer to
this as the resting period of the oscillator (p = pmin + pPmax)/2. Because Q determines
b, we minimize the error function by gradient descent on Q to implement frequency-
tracking behavior. The change of Q is proportional to the partial derivative of the
error function with respect to Q, which yields the following delta rule:

AQ = —1s(2) sech’ Ya(?) sin % (t=1) gg% h

where 12 is the coupling strength for frequency-tracking. Like the phase-tracking
rule, this rule does not implement ‘true’ gradient descent; we have taken some
liberties to ensure quick, stable convergence over a range of frequencies. Note also
that this delta rule is similar to the delta rule for phase-tracking, except for the term
0p/dQ2. Because of the similarity between the two delta rules, the shape of the light
curves of Figures 4(a) and (b) also summarize the effect of the frequency-tracking
delta rule. A stimulus pulse that occurs within the unit’s receptive field, but before
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Figure 5. An oscillator responding to periodic stimulation at 660 ms. Initially, the
oscillator’s period is 700 ms. After a few stimulus cycles, the oscillator adjusts its
period to 660 ms. (a) periodic stimulus; (b) oscillator response; (c) oscillator period.

the maximum of the output function, causes the unit to shorten its period, because
AQ < 0, whereas a stimulus pulse after the maximum of the output function causes
the unit to lengthen its period, because AQ > 0.

Figure 5 shows the output behavior of a unit with pmin = 600 ms, pmax = 800 ms,
¥Y=28, N1 =0.2 and 1, =4.0 exposed to a stimulus with a period of 660 ms. The
oscillator initially fires at its resting period, p = 700 ms. In response to input, it
adjusts its phase and period so that it becomes synchronized to the stimulus within
a few cycles. When the stimulus is removed, the oscillation continues with a period
of 660 ms. As described above, the oscillation at this new period may be said to
embody an ‘expectation’ for events at these particular future times.

In summary, this single oscillatory unit synchronizes its output pulses to a
periodic train of discrete-event onsets. Each output pulse instantiates a temporal
receptive field for the oscillatory unit—a window of time during which the unit
‘expects’ to see a stimulus pulse. The unit responds to stimulus pulses that occur
within this field by adjusting its phase and period, and ignores stimulus pulses that
occur outside this field. The width of the receptive field can be adjusted by changing
the unit’s output gain. We have shown that the unit can entrain 1:1 to a simple
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periodic train of event onsets within its frequency range. A metrical structure,
however, consists of levels of beats with different periods. To model the perception
of metrical structure, we envision a network of units with different frequency ranges.
Therefore, we must understand how the unit responds to periodic stimulation
outside its frequency range. We address this issue by examining a regime diagram
for the model. Next, we must understand how the unit will respond under
conditions of complex rhythmic stimulation: is the unit capable of isolating and
responding to a single periodic component of a complex rhythmic stimulus?

5.2. Response of Single Units to Periodic Stimulation

If the unit is to be used within a network for self-organizing a perception of metrical
structure, it will be exposed to stimulus frequencies that lie outside of its response
range. Therefore, we must understand how the unit responds to periodic stimula-
tion outside of this range. We can address this issue by examining a regime diagram
for the model. This analysis will be useful in understanding how the unit will
respond to any periodic driving stimulus, whether that stimulus arises from an
external signal or from the output of another oscillator in a network. Thus, the
analysis will provide insight into several key aspects of our proposal for modeling
the perception of metrical structure.

In order to understand the unit’s response to periodic stimulation, we can
formulate a circle map that summarizes the phase-locking behavior of the oscillator
in response to a periodic signal. We assume that the driving signal has period ¢, and
p is the resting period of the driven oscillator. We then use the delta rule to derive
a non-linear coupling term, which gives the following circle map:

Oiv1 =i+ % — 1 sech? y(cos 2mt; — 1) sin 270 )

where 1, is the coupling strength for phase-tracking, and ¢; represents the phase of
the driven oscillation at which the driver fires on iteration 7. This equation reveals
the relationship between this circle map and the sine circle map, because when y =
0, sech’ y(cos 2md; — 1) = 1.

To create a regime diagram, rather than solving the model equations to deter-
mine analytically the boundaries of phase-locked states (as in Figure 3(a)), we
repeatedly iterate this difference equation for different initial values of g/p and 1y,
beginning with ¢, = 0 (i.e. we assume that the oscillators initially fire together). This
allows us to calculate the number of cycles that it takes for the system to converge
on stable phase-locked states, which is useful since time-to-convergence is an
important factor in real-time processing.

Iteration of the equation yields the regime diagrams of Figure 6. Figures 6(a)—(c)
show stable phase-locking modes for rational ratios, ¢/p such that p < 8. Darker
regions correspond to regions of faster convergence. Each individual picture corre-
sponds to a different value of y. Figure 6(a), the regime diagram for our model with
Y= 0, again shows the relationship between this circle map and the sine circle map
(compare Figure 6(a) with Figure 3(a)). Figures 6(b) and (c) show entrainment
zones for y= 2 and y = 8, respectively. As the diagrams show, the effect of increasing
7Y, thereby shrinking the oscillator’s temporal receptive field, is to shrink the zones
of 0:1 and 1:1 entrainment while widening the regions corresponding to more
complex ratios. This allows the oscillator to acquire stable phase-locks in complex
ratios with the stimulus more easily.
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Figure 6. Regime diagrams summarizing phase-locking behavior for various values
of y. Darker regions correspond to parameter values that yield faster phase-locking.
White regions are regions of quasi-periodic response. (a) y=0; (b) y=2; (c) Y=8.
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Regime diagrams for the frequency-tracking version of the oscillator can also be
developed. We add the equation:

Qi1 =Qi+ f — 1, sech® y(cos 2md; — ) sin 27d; -5‘(% 8)

and recalculate p; according to equation (5) at each iteration. Figure 7 shows the
frequency-tracking resonance tongues. For easy comparison with Figure 6, we
added equation (8) to the model keeping M. fixed at a value of 2.5, and varied 1,
(in equation (7)) along the y-axis. Figures 7(a)—(c) show resonance tongues for y=
0, 2 and 8, respectively. The entrainment regions for the frequency-tracking
oscillator are larger than the corresponding regions for phase-locking alone. Frequency-
tracking causes widening of the resonance tongues. Therefore, not only does
frequency-tracking act as a sort of memory, but it enhances the stability of the
oscillator’s response in the presence of timing deviations.

The regime diagrams above detail the behavior of our oscillatory unit in response
to periodic stimulation. In so doing, the analysis summarizes key implications of
our single unit model for resonance-based theories of metrical structure. Firstly,
regime diagrams will capture the content of resonance theories regarding the
well-formedness of metrical structures. Rather than formulate a set of rules sum-
marizing allowable beat period ratios, we may specify the connectivity of a network
and a set of parameters to each unit, and let the system dynamics enumerate
allowable beat-period ratios. In principle any ratio of relatively prime integers may
describe the relationship between two levels of beats. Thus, this approach affords
a wider scope than conventional theories of metrical structure, incorporating not
only integer ratios (such as 2:1 and 3:1), but also polyrhythmic ratios. Secondly,
the width of each resonance tongue describes the stability of each beat period ratio
in the face of timing variability. Therefore, the regime diagram provides an enumer-
ation of allowable beat period ratios by sensitivity to timing variability. One
implication of this observation is that in practice the number of mode-locks systems
can achieve will be limited, preventing extravagant theoretical claims regarding the
perception of polyrhythmic structure. This brings us to the issue of timing variabil-
ity. The style of the above analysis raises the possibility that this entrainment theory
may allow the formulation of theories of meter perception that adequately handle
timing variability in musical performance. It also suggests that the units may be able
to isolate effectively individual periodic components of complex rhythmic patterns.
These and other empirical issues are examined in the following section.

5.3. Rhythmic Stumulation

As we have just seen, the response of a single unit to a simple periodic stimulus is
quite complex. The response to a rhythmic performance will be even more complex.
Therefore, rather than jumping to the complexity of a network of oscillators, we
examine the behavior of individual units in more detail. In this section, we expose
an unconnected system of oscillators to a performed musical rhythm, in order to
address the response of individual units to complex temporal patterns. We
demonstrate how individual units can isolate and track component periodicities in
a complex rhythm, and also show how units realize natural metric preferences. We
also address the problem of timing variability. Finally, the output of a system of
multiple units may be interpreted as a perception of metrical structure. In fact, we
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Figure 7. Regime diagrams summarizing phase-locking behavior for various values

of y, with frequency-tracking turned on (compare with Figure 6). Frequency-tracking
strength is fixed at N2 =2.5. (a) y=0; (b) y=2; (c) y=8.
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Figure 8. Two oscillators responding to an improvised melody: (a) piano roll

notation for the melody; (b) input to the oscillators; (c) weighted sum of the

oscillators’ output; (d) oscillator 1’s period tracking curve; (e) oscillator 4’s period
tracking curve.

will observe a system of unconnected units behaving quite reasonably in response
to complex rhythmic stimulation.

We exposed a system of oscillators to one of the musical performances collected
in an earlier study of musical improvisation (Large ez al., in press). This performance
was collected on a computer-monitored Yamaha Disklavier acoustic upright piano.
Optical sensors and solenoids in the piano allowed precise recording and playback
without affecting the touch or sound of the acoustic instrument. The pitch, timing
and hammer velocity values (correlated with intensity) for each note event were
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recorded. The pianist performed and recorded an original melody, as presented in
musical notation, five times. With the musical notation remaining in place, the
pianist was then asked to play five ‘simple’ improvisations. All performances were
of a single-line melody only; the subject was instructed not to play harmonic
accompaniment. The recording yielded a list of MIDI events, from which we
extracted note-on times to use as input to our model. Figure 8(a) gives the
performance in piano-roll notation, and Figure 8(b) shows the input, s(?), to the
system of oscillators. Our metrical interpretation of this performance, in the form
of a transcription, is given in Figure 9.

For this study, we composed a system of oscillators with different frequency
ranges. Such systems are useful for self-organizing metrical responses to rhythmic
stimuli (LLarge & Kolen, 1993). We set each oscillator’s period range according to
the rule pmix = ¥3pmin. We then spaced oscillators such that the relationship between
the resting period of one oscillator and the next was given by pi+1 = 2> This
relationship, in conjunction with the frequency range of each oscillator, provides for
slight overlap in resonant frequency ranges between oscillators. We composed a
system of two ‘octaves’ of oscillators, six in all. The minimum period of the entire
system was 600 ms, and the maximum was 2560 ms. For each oscillator, we set 1,
=0.159, n2 = 3.1416.

We exposed the entire bank of oscillators to the performance, and each oscillator
responded independently to the discrete-event onsets. We assumed that the initial
onset of the performance phase-reset all oscillators. Two of the six oscillators
(oscillators 1 and 4) acquired stable mode-locks for this performance, the remaining
oscillators never stabilized. Figure 8(c) shows the output of these two oscillators,
combined according to the rule [01(2) + 04(2)]/2. Figures 8(d) and (e) show the
period of these two oscillators, respectively, as they track the expressive timing of
the performance.

This single example provides much insight into the behavior of individual oscilla-
tors in response to musical rhythms. It also provides insight into the issues involved
in using such units to build a network for meter perception. First, each of these
oscillators is isolating a periodic component of the complex rhythm without any
phenomenal accent information. The global response, as can be seen from the
combined output of the two units in Figure 8(c), shows that a stable metrical
interpretation of the input rhythm emerges rather quickly, with strong and weak beats
clearly observable. According to our metrical interpretation of this performance (see
Figure 9), these two oscillators are correctly responding to the metrical structure at
the quarter-note and half-note levels. Also, as Figures 8(d) and (e) show, the oscillators
are tracking the performance over rather large changes in tempo.

To understand how this happens, let us first examine how the units respond to
timing variation in performance. Note that by the middle section of the performance
(14 <t< 17), unit 1 has locked into a periodic component of the rhythm, and is

Figure 9. Transcription of the improvised melody from Figure 8. Grace notes are
not transcribed.
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maintaining a relatively stable tempo. The next few onsets signal an audible
ritardando in the performance. At each of these onsets the unit fires a bit early. The
effect of the input in each case is to cause a slight positive phase shift, and a slight
lengthening of the unit’s period. The units can be seen to follow the systematic
timing deviations that occur in this musical performance.

Next, we examine how individual units isolate periodic components in complex
rhythmic patterns. We also see how this process instantiates metrical preferences
for individual units, which manifest themselves as the alignment between adjacent
levels of beats. We are interested in understanding which onset of a group is
interpreted by each unit to mark the beat at its beat period level. We can gain some
insight by examining Figure 10, which shows a close-up for units 1 and 4 as they
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Figure 10. A close-up of two oscillators’ response to the first few seconds of an
improvised performance: (a) piano roll notation of the melody; (b) input to the oscillators;
(c) oscillator 1’s output; (d) oscillator 4’s output.



Resonance and Musical Meter 201

respond individually in the early seconds of the performance. The panel for each
unit shows the individual output pulses. Consider responses to the group of onsets
between = 1 and ¢ = 2. The second onset (at z = 1.5) is ignored by unit 1, because
it does not fall within the unit’s expectancy region. The same onset, however, causes
a slight negative phase and period adjustment in unit 4 (see also Figure 8(e) at z =
1.5). The third onset (at z= 1.7) causes unit 1 to make a rather large adjustment
and unit 4 to make another small adjustment, eliciting coincident output pulses
from both units. We interpret this onset as marking the second half of the 4/4
measure (see Figure 9), therefore both oscillators are responding correctly. How-
ever, the two onsets immediately following do cause some adjustment in both units.
The response is still in flux.

Interestingly, both units respond almost identically to the next group of onsets,
between times =3 and ¢ = 4. This time, however, they respond maximally to the
‘wrong’ onset (the third of the group). The fourth and fifth onsets actually mark
the onset of the second measure according to our interpretation. These onsets do
have some effect on both oscillators. However, it is the next two onsets (not
counting the grace note accompanying the first onset) that clearly establish the beat
at the quarter-note level. At this point, both oscillators lock into the rhythm,
responding correctly to the remainder of the performance with little difficulty.

It is difficult to extract precise rules to explain individual unit preferences.
However, there are some general observations that can be made. First, each unit’s
choice is brought about by a subtle interplay between the unit’s point of maximum
expectancy (in the current cycle), the spacing of event onsets around this point, the
width of the unit’s expectancy region (determined by 7y, the output gain), and the
absolute amount of adjustment made to phase and period in response to each onset
(determined by the coupling strengths, 1; and 1n.).

Assuming fairly high coupling strengths, as we used in the above example,
consider a group of event onsets that surrounds a unit’s point of maximum
expectancy, such that the unit ‘expects’ that an event somewhere between the first
and last event of the group will mark the beat. If the spacing of the surrounding
onsets is greater than the width of the unit’s expectancy region, then the unit will
simply ignore the surrounding events. However, as we squeeze the onsets closer
together, encroaching on the unit’s expectancy region, the unit will begin to respond
to these onsets. If the onsets are very close together, the unit will continue to
respond until reaching the end of the group. Thus, each unit tends to favor the end
of a group of events, where ‘end of the group’ is defined in relation to the width of
the unit’s expectancy region. Additionally, places where a number of events occur
in rapid succession (grace notes above, or chords for example) act as points of
greater ‘gravity’ for all units, because they have additional impact via the delta rules.

This analysis has illustrated several important aspects of our proposal. Firstly,
the individual oscillatory units we propose can successfully pick out and lock on to
periodic components of complex rhythmic patterns without making any assump-
tions about the structure of phenomenal accent patterns in the stimulus. This
distinguishes our model from attempts to model musical beat using traditional
phase-locked loop circuits. Secondly, the way in which units with different native
periods accomplish this task effectively implements metrical preferences. Metrical
preferences manifest themselves as the alignment, or relative phase, between adja-
cent levels of beats. This system of unconnected units correctly interpreted two
levels of metrical structure for a complex performed rhythm, without any attempt
to implement metrical well-formedness constraints. We assume that, in general, it
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will be necessary to implement well-formedness constraints using interactions
among oscillators. However, results such as this suggest that the structure of
rhythmic patterns, even for very complex performances, may contain more infor-
mation than had previously been thought. Finally, this example demonstrates the
proposed oscillatory units handling systematic timing deviations throughout a
rhythmically free improvised performance. These results suggest that theories of
metrical structure based on such models of entrainment may provide more complete
theoretical accounts of metrical structure perception than have previously been
offered.

5.4. Implementation Issues

We have described our model as a single abstract processing unit, in order to focus
attention on the adequacy of the proposal for modeling the human response to
musical rhythm. However, the issues surrounding implementation deserve some
attention. Page (1993), in his proposal of an oscillatory connectionist network for
tracking musical beats, recruits a relatively large network of traditional connectionist
units into a neural implementation of a standard phase-locked loop. The heart of
the network is a gated pace-maker circuit (Carpenter & Grossberg, 1983). Page
then implements a type II phase detector and a low-pass filter using networks of
connectionist processing units, to provide an error signal that controls adjustments
of phase and period in the gated pacemaker. It seems likely that the oscillatory unit
that we have proposed above could yield to a similar implementation strategy using
a large network of simpler connectionist units with appropriate dynamics.

It is not clear, however, that a complex implementation strategy such as Page’s
(1993) is necessary. Consider that synchronization behavior has been proposed by
other connectionist modelers to explain how the brain solves problems of binding.
Often, a network of two units produces the oscillatory behavior of interest, and
synchronization arises given simple couplings (e.g. Wang, 1993). Such proposals
have received considerable physiological support, especially since the discovery of
oscillations and synchronization in the cat visual cortex (Eckhorn ez al., 1989; Gray
etal., 1989). McAuley (1993, 1994), who has proposed entrainment models for the
perception of rhythm, has suggested that behaviors relevant to this task, including
frequency-tracking, may be found at the single neuron level. While we welcome this
possibility, we do have some reservations. We have proposed a functional approach,
not an implementation-level strategy. We have proposed oscillatory units to describe
how the brain may execute the relatively high-level cognitive function of meter
perception. Therefore we assume that our abstract, functional units represent higher
levels of abstraction than individual neurons. Further, consider that the behaviors
we have identified as necessary for rhythm perception may be implemented using
large networks of simpler oscillatory elements. For these reasons, we suggest that
the behavior of these abstract units may be plausibly regarded as the emergent
behavior of a wide range of possible brain structures from simple neuronal substruc-
tures to large networks of oscillatory neurons.

6. General Discussion

The primary goal of our proposal has been to understand the implications of
entrainment for theories of metrical structure and musical expectancy. To this end,
we have proposed an abstract oscillatory unit that may be composed into networks
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for modeling the perception of metrical structure. The unit may synchronize its
periodic output pulses with an incoming rhythmic pattern. The unit responds to
event onsets that occur within its temporal receptive field by adjusting its phase and
period, and ignores stimulus pulses that occur outside this field. The width of the
receptive field can be adjusted using a parameter called output gain. This enables
the unit to isolate single periodic components of complex rhythms.

Analysis of the behavior of a single unit in response to periodic stimulation
reveals complex dynamics. In principle, the unit may mode-lock to a periodic
stimulus in any one of an infinite number of rational ratios. Tuning the unit’s
temporal receptive field has the effect of adjusting the relative stability of mode-
locking regions. Large temporal receptive fields result in a preference for simple
ratios while finely tuned regions allow more complex ratios. These properties have
important implications for entrainment theories of metrical structure. Regime
diagrams will summarize the content of such theories regarding the well-formedness
of metrical structures. The Farey tree enumerates the possible relationships between
two levels of beats, while the corresponding regime diagram describes the stability
of resulting metrical relationships.

The phase- and frequency-locking behavior of individual units implicitly de-
scribes a set of metrical preferences—a set of preferred phase relationships between
two levels of beats in a metrical structure, relative to the structure of the incoming
rhythm. Such preferences may be best understood in terms of the characteristic
response of an individual unit to a complex rhythmic pattern. Ultimately, in a
network, the influence of other units may mediate individual unit preferences, and
subsets of units will respond to an afferent rhythmic pattern as a whole. We have
also demonstrated that entrainment provides a robust approach to the perception
of meter in musical performance. This allows us to account for the perception of
meter in the face of timing variability. Thus, the model embodies a dynamic solution
to the ‘quantization problem’ (Desain & Honing, 1991). Finally, we demonstrated
a system of oscillatory units correctly tracking two metrical levels in an improvised
melodic performance. The rhythm of the improvised melody was complex, yet the
simple system behaved quite reasonably. This indicates that our proposal may
provide the basis for more comprehensive, robust and parsimonious theories of the
perception of metrical structure.

6.1. Future Work

The primary goal of this article has been to understand the implications of
entrainment for theories of musical meter. We have stopped short of proposing a
theory of musical meter. Before attempting to construct such a theory, we would
need to resolve at least two issues. The first is the issue of phenomenal accent. We
have seen how a tightly grouped set of onsets (a chord, or a melody note with an
accompanying grace note) may impact the preference of individual units. The
model, as it now stands, does not specify how other types of phenomenal accent
(e.g. intensity, or large pitch leaps) may affect individual unit preferences regarding
which events are interpreted as marking the beat. One possibility calls for a
real-valued representation of event onsets, s(z), to carry accent information. Because
of the formulation of the delta rules, events with greater accent would cause greater
phase and period adjustments. Although this technique appears promising, it does
not provide a theory of accent such as Todd’s (1994) ‘rhythmogram’ model.

The second issue that stands between our entrainment mechanism and a theory
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of musical meter is the issue of network construction. In this article, we have
concentrated on the behavior of individual units independently responding to
afferent rhythms. Yet one would expect individual units within a network to interact,
responding to the outputs of other units in the network. The important question is:
Could a stable response emerge from such a network subjected to a musical event
sequence? Our analysis of the single unit case suggests that subsets of units in a
loosely coupled network could self-organize a coherent response to an afferent
rhythm. In addition, the interaction would instantiate metrical well-formedness
constraints. The major challenge facing this approach is to determine the nature of
the interaction. We leave the issues of network construction and phenomenal accent
unresolved, and we regard these as important areas for future exploration. We
believe that an understanding of mechanisms of entrainment will result in theories
of meter perception that are wider in scope, and more parsimonious, than those
that have previously been offered. Entrainment and self-organization provide ex-
pressive power and useful physicalist constraints unavailable within more general-
purpose theoretical frameworks. At the same time, these principles offer greater
robustness to deal with the problems associated with the perception of actual
musical performances.

6.2. Implications for Connectionist Approaches to Expectancy

At the outset of this article, we pointed to two limitations of recurrent neural
network approaches to musical expectancy. The first problem was the representa-
tion of temporal context. Mozer (1993) and deVries and Principe (1992) have
suggested that an exponential recency gradient, inherent in most network architec-
tures, limits the ability of recurrent networks to represent temporal context. The
most recent items presented to the network carry more weight than previous inputs,
inhibiting the network’s ability to capture global structure. Other connectionist
approaches have addressed this issue by using a system of short-term memory delays
to explicitly capture temporal context (Lang et al., 1990; Unnikrishnan et al., 1991;
Bodenhausen & Waibel, 1991; deVries & Principe, 1992); (for a review, see Mozer,
1993). Delays may be hard-wired or learned during batch training, but during
processing they remain fixed. The problem with a fixed-memory delay solution for
music processing should now be apparent. Music lacks fixed temporal structure.
Musical signals display complex forms of temporal organization including expressive
timing deviations and periodic structure on multiple time-scales.

The second problem with recurrent neural network approaches to music expec-
tancy was their inability to generalize to novel rates of presentation. Cottrell ez al.
(1993) have attempted to solve this problem by implementing a strategy for
rate-invariant sequence recognition. They first trained a recurrent network to
predict a target input signal presented at some ‘normal’ rate. A typical recurrent
network would be able to track the target signal at this rate, but would lose the
signal at other rates. Cottrell ez al. augmented their network to control its own
processing rate by adapting time constants and processing delays. Using prediction
error, the recurrent network adapted its processing rate to match the rate of the
current signal, much as a phase-locked loop varies its internal frequency to match
the phase of an incoming signal. This approach appears to yield plausible explana-
tions for some aspects of perception, including the perception of music. It is not a
general solution to the problem of rate invariance in music, however, because it
applies only to learned sequences.
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Each approach described above addresses individual aspects of temporal se-
quence recognition and prediction, and leaves others unattended. Resonance-based
approaches provide an alternative that combines the strengths of the above-men-
tioned proposals, while solving some remaining problems. The combined output of
a system of oscillators, as shown in Figure 8(c), can provide complex temporal
control (i.e. pulses of attention) to affect the further processing of a musical
sequence. A resonance-based system could adapt its processing rate according to
the structure of the signal, without memorizing the signal in advance. Memory
delays, implemented as resonance-based components, could likewise adapt to the
rate of the incoming signal. In addition, the structure of memory itself could adapt
to reflect the temporal organization (e.g. the metrical structure) of the incoming
signal. Thus, we feel that resonance mechanisms offer a particularly novel route
toward understanding musical expectancy.

7. Conclusions

Lashley (1951) identified the problem of serial order . . . the logical and orderly
arrangement of thought and action” as a central problem for psychologists, neuro-
biologists, and all those who ultimately wish to describe the phenomena of mind in
terms of the mathematical and physical sciences. Lashley realized that the problem
was not merely one of sequence processing. The temporal structure of human
perception and action implies that the temporal structure of neural computation is
extraordinarily complex (Lashley, 1951). In this regard, the study of music is
invaluable to the understanding of neural computation. Music, unlike natural
language, forces us to deal with all aspects of time: time is so fundamental to music
that it cannot be conveniently and convincingly abstracted away. It may even be
that composers and performers shape the temporal structure of music to reflect and
to explore natural modes of temporal organization in the human nervous system.

For inherently temporal tasks, such as perception and motor coordination, we
agree that resonance provides a more useful metaphor than general-purpose com-
putation (Gibson, 1966, 1979; Treffner & Turvey, 1993). According to this view,
the brain may be treated as a special-purpose device, capable of temporarily
adapting its function to specific perception—action situations (Kelso & deGuzman,
1988). In perception, the nervous system may adapt endogenous modes of temporal
organization to external rhythmic patterns, controlling attention and memory
(Jones, 1976). Other connectionists have noted the fundamental consonance of
such dynamical systems approaches with modern connectionist cognitive modeling
(e.g. van Gelder & Port, in press). Ours is an attempt to bring the two closer together
to overcome the limitations of current connectionist models. We have found music
perception to be a fertile testing ground for this approach. Our current proposal
attempts to explain the mechanisms underlying temporal adaptation in the human
response to musical rhythms. We believe that this approach will lead to more robust
and parsimonious theories of musical meter and musical expectancy.
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Notes

1. What Next is also the name of a computer program that models musical expectancy (Larson, 1993).
2. The term ‘subjective rhythm’ is a misnomer according to modern terminology. According to
conventional modern usage, this phenomenon would be called ‘subjective meter’.
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