
Bayesian Harmonic Models for Musical Signal
Analysis

M. Davy and S. J. Godsill
University of Cambridge, UK.

SUMMARY

This paper is concerned with the Bayesian analysis of musical signals. The ultimate
aim is to use Bayesian hierarchical structures in order to infer quantities at the highest
level, including such quantities as musical pitch, dynamics, timbre, instrument identity,
etc. Analysis of real musical signals is complicated by many things, including the presence
of transient sounds, noises and the complex structure of musical pitches in the frequency
domain. The problem is truly Bayesian in that there is a wealth of (often subjective) prior
knwowledge about how musical signals are constructed, which can be exploited in order
to achieve more accurate inference about the musical structure. Here we propose devel-
opments to an earlier Bayesian model which describes each component ‘note’ at a given
time in terms of a fundamental frequency, partials (‘harmonics’), and amplitude. This
basic model is modified for greater realism to include non-white residuals, time-varying
amplitudes and partials ‘detuned’ from the natural linear relationship. The unknown pa-
rameters of the new model are simulated using a variable dimension MCMC algorithm,
leading to a highly sophisticated analysis tool. We discuss how the models and algorithms
can be applied for feature extraction, polyphonic music transcription, source separation
and restoration of musical sources.

Keywords: MUSICAL ANALYSIS, AUTOMATIC PITCH TRANSCRIPTION, PITCH ESTIMA-
TION, INSTRUMENT CLASSIFICATION, AUDITORY SCENE ANALYSIS

1 Introduction
Inference about the high-level information contained in musical audio signals is complex, and
requires sophisticated signal processing tools (Bregman, 1990). In this paper, we focus on the
automatic interpretation of musical signals. Musical audio is highly structured, both in the
time domain and in the frequency domain. In the time domain, tempo specifies the range of
possible note transition rates. In the frequency domain, two levels of structure can be consid-
ered. First, each note is composed of a fundamental frequency (related to the ‘pitch’ of the
note), and partials whose relative amplitudes determine the timbre of the note1. The frequen-
cies of the partials are approximately integer multiples of the fundamental frequency. Second,
several notes played at the same time form chords or polyphony. The fundamental frequen-
cies of each note comprising a chord are typically related by simple multiplicative rules. For

1This frequency domain description can be regarded as an empirical approximation to the true process, which
is in reality a complex non-linear time-domain system (McIntyre, Schumacher and Woodhouse, 1983; Fletcher
and Rossing, 1998)
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example, a C major chord may be composed of the frequencies 523 Hz, 659 Hz 5/4 523
Hz and 785 Hz 3/2 523 Hz. An additional level of structure is the melody, which gives
the frequency dependence of successive notes. A given melody is characterised by the suc-
cession of fundamental frequencies at specific time instants. Figure 2 shows a spectrogram
analysis for a simple monophonic (single note) flute recording (this may be auditioned at www-
sigproc.eng.cam.ac.uk/˜ sjg/sounds/flute.wav). In this both the temporal
segmentation and the frequency domain structure are clearly visible on the plot. In polyphonic
musical examples, several (possibly many!) such structures are superimposed, and the eye is
then typically unable to separate the individual note structures from the spectrogram alone.

The goals of a musical analysis can be manifold, and we seek to make our models general
enough that they will fit with the inference requirements at hand. Some important goals and ap-
plications, which can all be expressed in probabilistic terms through the use of suitably chosen
model structures, include automatic transcription (generation of a musical ‘score’), classifica-
tion and search (e.g. determining which instruments are playing or whether a particular tune is
present) and source separation (separation of individual instruments from a polyphonic mix).

It should be clear from this discussion that musical audio provides an ideal structure for
Bayesian modelling and inference: there is plenty of prior information available (both sub-
jective and physically-based), there is a natural hierarchical structure (from individual partial
frequencies through notes, chords and eventually whole melodies). All of these elements of the
structure should ideally be estimated jointly in order to exploit the full power of the information
available. This is a formidable task that none has successfully achieved to our knowledge. Most
researchers have focused either on very high level, or very low level, modelling alone. Here
we attempt partially to bridge the gap between these extremes, by exploring models which di-
rectly model musical signals in terms of their component ‘notes’, while retaining a moderately
realistic signal level model. Of course, in future work we would wish to see the whole task
performed jointly, and we will expect to see dramatic performance improvements once this is
properly achieved.

At the level of musical notes, two principal tasks may be identified for the analysis of mu-
sical audio: a segmentation step that identifies note transitions in time, and an estimation step
in which the number of notes as well as their fundamental frequencies, their partial structure
and other characteristics are estimated at any given time. We focus on the latter, since efficient
music segmentation algorithms such as the time-frequency (Laurent and Doncarli, 1998), Sup-
port Vector Machines (Davy and Godsill, 2002b) or generalised likelihood ratio (Basseville
and Nikiforov, 1993) techniques can be used for this step.

Numerous musical pitch estimation and analysis techniques can be found in the literature.
Most apply only to monophonic (single note) recordings and rely on nonparametric signal anal-
ysis tools (local autocorrelation function,spectrogram, etc.). We do not have space to reference
all approaches here. Certain authors have, however, adopted methods with a statistical mod-
elling flavour, often using iterative procedures to estimate the individual components of a mu-
sical signal, see for example (De Cheveigne, 1993; Virtanen and Klapuri, 2001; De Cheveigne
and Kawahara, 1999). Bayesian approaches have been surprisingly rare, considering the large
quantities of prior information available about musical signals. Notable exceptions include
(Kashino, Nakadai, Kinoshita and Tanaka, 1995; Kashino and Murase, 1999), who adopt a
Bayesian hierarchical structure for high level features in music such as chords, notes, timbre,
etc. Bayesian models for polyphonic music have been proposed in (Walmsley, Godsill and
Rayner, 1998; Walmsley, Godsill and Rayner, 1999) and it is these that we extend and discuss
in this paper.
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In this paper, we devise novel Bayesian models for periodic, or nearly periodic, components
in a musical signal. The work develops upon models devised for automatic pitch transcription
in (Walmsley et al., 1998; Walmsley et al., 1999) in which it is assumed that each musical note
may be described by a fundamental frequency and linearly related partials with unknown am-
plitudes. The number of notes, and also the number of harmonics for each note are generally
unknown and so a reversible jump MCMC procedure is adopted for inference in this variable
dimension probability space; see (Andrieu and Doucet, 1999; Godsill and Rayner, 1998a; God-
sill and Rayner, 1998b; Davy, Doncarli and Tourneret, 2002) for some relevant MCMC work
in signal processing and audio. Use of these powerful inference methods allows estimation
of pitch, harmonic amplitudes, and the number of notes/harmonics present at each time. The
methods of (Walmsley et al., 1998; Walmsley et al., 1999) have shown promise in highly
complex problems with many notes simultaneously present. However, in the presence of non-
stationary or ambiguous data, problems are expected in terms of large residual modelling er-
rors and pitch errors (especially errors of +/- one octave). Here we seek to address some of
these shortcomings by elaboration of the model to include more flexibility in the modelling
of non-stationary data, modelling of non-white residual noise, and also to allow the modelling
of inharmonicity (or ‘detuning’ of individual harmonics relative to the usual linear frequency
spacing). As before, a variable dimension MCMC strategy is adopted for inference in the new
model, and novel proposal mechanisms are developed for this purpose.

The paper is organized as follows. In Section 2, we present the basic harmonic model for the
description of musical signals. Moreover, we specify the probabilistic framework, and give the
parameter priors. In Section 3, we discuss estimation objectives and summarise the Bayesian
computational method. Simulation results are presented in Section 4, and finally a discussion
is given. Given space restrictions it has been impossible to describe in detail the prior models
and exact MCMC implementation scheme used. In fact we have implemented several different
versions of the models and MCMC algorithms, and the code is still undergoing development as
more sophisticated and realistic modelling assumptions are incorporated. A snapshot detaling
the implementation which generated the simulation results for this paper can be found as Davy
and Godsill (2002a).

2 Bayesian model for musical analysis
Consider for the moment a short-time frame of musical audio data, denoted , in which
note transitions do not occur. This would correspond, for example, to the analysis of a single
musical chord. Throughout, we assume that the continuous time audio waveform has
been discretised with a sampling frequency rad.s , so that discrete time observations are
obtained as . We assume that is bandlimited to

rad.s , or equivalently that it has been prefiltered with an ideal low-pass filter having
cut-off frequency rad.s .

In this section we describe Bayesian models suited to musical audio analysis. We first
introduce a robust monophonic (single note) model for music. We then explain how to expand
it to a polyphonic (many note) model, and discuss the salient features of the approach. It is
assumed throughout that the musical audio has been segmented such that no note transitions
occur for .
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Figure 1: Waveform: flute extract
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Figure 2: Spectrogram: flute extract
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Figure 3: Pitch estimation from flute extract
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2.1 Monophonic case: single note models
In the monophonic case it is assumed that at any given time only one single musical pitch is
sounding, e.g. solo trumpet, or solo clarinet, etc. From this simple case we can build more
sophisticated polyphonic (many note) structures by superposition of several monophonic units.

Physical considerations and empirical observation of spectrograms (see e.g. Fig. 2 - it is
clear from this that there is a series of spectral ‘lines’ corresponding to the fundamental and
partials of each note) lead to the conclusion that the notes in musical signals are composed
of a fundamental frequency and a set of partials. This classic model, see e.g. (Serra,
1997), results from the approximate short-term periodicity of musical signals, which enables
a Fourier series decomposition. In the simplest cases, this idealised assumption holds well
and the following model can be applied for short time segments (as in (Walmsley et al., 1998;
Walmsley et al., 1999)):

(1)

for . Here, is the number of partials present, and give the
amplitudes of these partials, and is a residual noise component. Note that is here
scaled for convenience - its audible frequency is .

It turns out that this model is over-idealised for many realistic cases and must be modified
in several ways to improve performance. In particular, partials can be expected to exhibit
time-varying amplitudes, and the partials can be expected to deviate from the ideal frequency
spacing. These two facts can be accommodated in a new model:

(2)

where the partial amplitudes and can now depend on time, and de-tuning parameters
allow each partial to be offset from its nominal frequency of .
Many evolution models are possible for the amplitude processes and , including

random walks, autoregressions, etc., and most would be tractable within our Bayesian frame-
work. It is important, however, to regularise the evolution of these components a priori in order
that ambiguities between true frequency modelling and modelling of the time-varying ampli-
tudes do not occur. We adopt a simple solution which consists of representing the amplitudes

and in terms of smooth basis functions , (with fixed and known)
such that

(3)

There are many possible choices for the basis functions, and in practice any sufficiently smooth2
interpolation functions will do. Here we have implemented a simple scheme involving raised

2The number of basis functions ( ) has to be upper bounded to avoid unidentifiability: low frequencies
can actually be modelled by a time-varying amplitude as well as by a sinusoid. It is thus important to limit the
number of basis functions such that amp. max is below the lowest note frequency in a given
harmonic signal (e.g., 20 Hz).
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Figure 4: Typical set of Gabor atoms

cosine functions (Hanning windows) with 50% overlap, see Fig. 4. Since is typically cho-
sen much smaller than , the reparameterisation in terms of basis coefficients and
is of much lower dimensionality than the original formulation in terms of and . The
monophonic note model now becomes:

(4)

We note that the model can now be seen as a representation of in terms of a set of Gabor
atoms (Flandrin, 1999). Here, each atom has a precise time-frequency location
and an amplitude where is the temporal centre of . We will refer to each
term or as an ‘atom’ in the subsequent material.

2.2 A polyphonic harmonic model
The above monophonic model can be easily expanded to the polyphonic case, that is for signals
composed of concurrent notes. A suitable model is:

(5)

for . Each note, , now has its own set of parameters, and the nota-
tion is extended in an obvious way with an additional subscript ‘ ’. The (unknown) parameters
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determining the polyphonic model of Eq. (5) are: the total number of notes , the number
of partials for each note , the de-tuning parameters
with , the fundamental frequencies and the
amplitudes . It is assumed that is prespecified.

In vector notation the model is now written as:

(6)

where , , the matrix contains the Gabor atoms
stacked in columns, and contains the amplitude parameters and . The detailed
expressions for and are given in (Davy and Godsill, 2002a).

In practice, musical signals also have non-harmonic components, such as emitted air sounds
or aspiration noise. These components, in addition to any background noise, are subsumed in
the noise term in Eq. (5). It is desirable that the noise models accurately all the possible
sources of model errors. A simple and general possibility is the autoregressive (AR) model of
order :

(7)

where is a zero mean Gaussian white noise of variance . This introduces an additional set
of parameters , and .

Given the linear model formulation of Eq. (5) and the assumption of i.i.d. Gaussian excita-
tion for the AR process, we immediately obtain the likelihood function:

(8)

The -dimensional matrix is constructed by stacking the AR coefficients in rows,
with appropriate zero padding, as detailed in (Davy and Godsill, 2002a).

2.3 Features of the Model
The models proposed in earlier subsections, both monophonic and polyphonic, all fall into the
general category of the linear model. Under a Gaussian prior for this will facilitate inference
in the model by allowing exact simulation of from its full conditional, and marginalisation
of from the posterior distribution. This can provide an important dimensionality reduction
in the model since is often high-dimensional. This, however, is all standard material, and
we see the main interest of our model to be in the specific structure chosen for the -matrix
and in the prior distributions of the unknown parameters, both of which are carefully tuned to
subjective and objective information about musical signals.

The polyphonic model presented as Eq. 5 has several features that distinguish it from other
work in the area. Firstly, it directly incorporates the frequency relationship between partials
and fundamental frequencies. This is different from typical approaches in the literature to
musical pitch transcription which will estimate the frequencies of each line spectral component
independently of the others, performing grouping into units such as chords and notes as a post-
processing stage (but note that papers such as (Gribonval and Bacry, 2001) and (Klapuri, 1999)
go some way towards integrating the harmonic structure directly into the model). This misses
an opportunity for greater estimation accuracy through direct modelling of the waveform at
the level of notes. We retain this feature in our model, based on the earlier model of Eq. (1)
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(Walmsley et al., 1998; Walmsley et al., 1999). An extension provided in the model of Eq. (5)
is the incorporation of detuned harmonics with parameters . Many researchers believe
this to be an important component of any realistic musical instrument model (Fletcher and
Rossing, 1998) and we plan to investigate this claim through use of the new model. Potential
ambiguities can occur if the parameters allow one partial (harmonic) to stray into the
frequency range of adjacent harmonics. However, this ambiguity is suppressed here by careful
choice of priors that favour . Note that this model, which essentially includes
random deviations from the natural harmonic positions, could easily be extended to model the
more systematic trends in spacing of harmonics observed in e.g. string instruments (Fletcher
and Rossing, 1998).

Secondly, instruments produce notes with time varying amplitude, a typical example is
the note attack. A constant amplitude model such as Eq. (1) is clearly unable to deal with
such a case and will lead to misleading parameter inferences. The chosen decomposition of
amplitudes in terms of a set of basis functions (3) ensures smoothness, and reduces the number
of parameters in the model considerably.

Finally, the residual noise is an AR process that can model residual noise from instruments
as well as general background noise.

Further improvements in modelling could be achieved by allowing the fundamental fre-
quencies to vary over the time-frame - however, this leads to a much more intractable model
that we have avoided implementing thus far - provided frame sizes are kept short, the frequen-
cies can usually be modelled as constant within a frame. See (Walmsley et al., 1999) for some
progress on models with time-varying frequency.

Even without time-varying frequencies the price of this more flexible model is a large num-
ber of unknown parameters. The principal unknowns are, then, the number of notes , the fun-
damental frequency, number of harmonics and amplitudes for each note: ,
the AR parameters and the variance . This variable-dimension space of parameters is em-
bedded in a Bayesian scheme as outlined in the next section. To our knowledge this problem
has never received a fully Bayesian treatment before. As will be seen, the Bayesian priors, in
addition to the special structure of , play a key role in defining the model.

2.4 Bayesian model
A natural hierarchical prior structure for the musical model is as follows:

where is introduced later. The form of the prior distributions can be chosen to reflect prior
beliefs about particular types of music, or particular instruments, and this is certainly an inter-
esting line of future study. Here we adopt a generic approach in which the priors are designed
to match the average character of musical notes. We consider the prior distributions one by
one.

Prior for . The amplitudes of the partials determine the characteristic ‘timbre’ of a musical
note. Hence it is important to model these accurately in applications such as source separa-
tion and musical instrument classification. We adopt a zero-mean Gaussian prior for these
parameters. This matches well the variability observed when the same note is played under
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slightly different conditions or on different instruments. It is also reasonable to assume the
scale of the amplitudes is related to the scale of the AR residual process, since the AR resid-
ual models principally non-harmonic noises produced by the instruments. Thus we adopt a
zero-mean Gaussian prior with covariance matrix . Choice of the matrix will then
determine the properties of the prior. We have implemented a number of possibilities here,
and it is clear that the prior would ideally be instrument-specific. However, it is possible to
build in a certain amount of physical prior knowledge without limiting to very narrow classes
of instrument. See for example Fig. 5. This displays a single short-time Fourier magnitude
spectrum for the flute extract in Fig. 1. The spectrum is computed from approximately the first
0.25s of the music where no note transitions occur. The fundamental frequency and partials are
clearly visible, exhibiting a slow decay in amplitude with decreasing frequency. This general
observation applies to most acoustical sounds and so can be usefully incorporated in a prior.
One successful implementation sets as diagonal with diagonal elements equal to ,
where is the number of the partial, is experimentally determined ( is a good match
to many signals we have analysed), and is an unknown scale parameter that is sampled in
the MCMC scheme with an inverted gamma prior. This form of covariance matrix assumes
joint prior independence of all notes, partials and atoms. While this functions well in prac-
tice, it may be argued that dependence should be modelled between partials and atoms within
a particular note. There are many ways this could be achieved and we leave this as a future
topic of research. As an alternative to these physically based priors, we have also implemented
with some success the well knwon G-prior which has been found to be effective in similar con-
texts (Andrieu and Doucet, 1999; Walmsley et al., 1999). A full investigation of the relative
merits of these choices is again left as a topic of future work.

Prior for and . The number of partials is again an instrument- and realisation-specific
quantity. The precise distribution can be learned from training examples with different instru-
ments. The general feature is that a particular instrument has a mean number of partials with a
certain spread about this value. In order to model this, we have adopted an independent Pois-
son prior for each , truncated to user-specified maximum and minimum limits. Similarly,
the number of notes, , has a truncated Poisson prior. These are specified vaguely for general
musical extracts, but can be tuned more precisely when a particular instrument is known to be
present.

Prior for . A third key parameter is the vector of detuning factors, , which is aimed at
modelling slight harmonic de-tuning among the partials. Its value is expected to be close
to zero, and here we assume no dependence between the parameters of different partials,
although for certain instruments theory would dictate the general form of the s (Fletcher and
Rossing, 1998). Here a zero mean independent Gaussian is assumed, with variance , fixed
to a small value in order to favor small de-tuning parameters. The distribution can additionally
be truncated in order that adjacent partials within a single note do not cross over one another
in the frequency domain.

Prior for . For some instruments such as piano or organ, notes are tuned to a fixed grid of
frequencies (one for each key of the instrument). In other instruments, the player will usually
tune notes to be close to the fixed grid of note frequencies, see e.g. the pitch transcription
of the flute extract in Fig. 3. A convenient and informative prior would thus favour these
fixed frequencies above others. Moreover, when several notes are played at the same time (a
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Figure 5: Flute extract

chord), there exist simple relations between the fundamental frequencies. The prior density
should reflect this prior information. However, these considerations only apply to

tonal Western music, and for the sake of generality we here adopt a uniform prior over some
region of interest, min max . Again, there are plenty of interesting possibilities for
informative priors in future investigations.

Remaining parameters. Briefly, regarding the noise , is inverted gamma with pa-
rameters and , is zero-mean Gaussian, with diagonal covariance matrix . is fixed
in our implementations thus far, but we note that standard samplers are readily available should
this parameter become important (Godsill, 2001; Troughton and Godsill, 1998; Troughton and
Godsill, 2001; Vermaak, Andrieu, Doucet and Godsill, 1999).

Posterior distribution Given the above prior structure, the posterior distribution may be
computed. In particular, and are marginalised using standard linear model computations
(Bernardo and Smith, 1994;West and Harrison, 1997) to give a reduced posterior .
Full conditionals are also readily available for , , and , owing to the conjugate prior
structures chosen. These distributions are all employed in the variable dimension MCMC al-
gorithms for computation, as summarised in the next section.

3 Bayesian computations
The precise objectives of inference in these models is very much application driven. In the case
of pitch estimation, for example, point estimates will typically be required for the fundamental
frequencies . The posterior distribution of these parameters will also give a useful estimate
of the uncertainty and multimodality in the posterior. In source separation and instrument
classification tasks, estimates and posterior distributions of the partial amplitiudes, the detuning
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parameters, fundamental frequency and number of harmonics are required for each note. There
are however potential pitfalls in making these estimates, as the individual note ordering is not
constrained in our model and it is quite conceivable that two notes are swapped during the
MCMC simulation. An ordering by, say, increasing fundamental frequency or energy would
help somewhat, although note swapping could still occur when large jumps in parameter values
are made (e.g. a change in fundamental frequency by an octave or more). We have avoided
these ambiguities in this work by estimating functionals that do not depend upon the note
labelling. These are computed as Monte Carlo approximations to posterior means:

(9)

where is the collection of all unknowns in the model,
is a given integrable function with respect to the posterior and is the sample space for the
posterior distribution.3 are (possibly dependent) Monte Carlo samples drawn from .

A suitable family of functions to estimate are spectrogram-like representations. The short-
time energy spectrum of the th component in the model Eq. (5) is defined as

(10)

where is the Fourier transform of
The construction of the spectrogram-like representation consists in computing for

and various values of in

(11)

As stated above, these computations require that a set of samples , , , , ,
, , is available from the posterior . The re-

versible jump MCMC algorithm for achieving this is summarised in the following paragraphs.
The simulation algorithm is a variable dimensionMCMC procedure, using reversible jumps

to achieve model space moves for both the number of harmonics in each note and the number of
notes. Other parameters are updated using Metropolis-within Gibbs sampling moves for non-
standard conditionals and Gibbs sampling where the conditionals are standard. The posterior
distribution in this problem is highly multimodal and strongly peaked. This is partly as a result
of ambiguities inherent in the model, and implies that the MCMC algorithms have to be care-
fully constructed in order to avoid getting stuck in local traps of the distribution. In fact much
of the innovative work in this project has been concerned with generation of effective proposal
distributions for fast exploration of the parameter space. As well as standard random walk
moves, these include independence proposals based upon the sample autocorrelation function
and spectrum of the data, and octave/fifth-jumping moves aimed at moving rapidly between
local maxima (these moves update the number of partials as well, preserving the spectral struc-
ture, and this leads to improved acceptance rates). The reversible jump proposals allow for
several partials to be added/removed at once from a note, and notes may be split and merged
in meaningful ways. Full details can be found in (Davy and Godsill, 2002a).

3The integral over the discrete parameters should be seen as a discrete sum over all the possible values
of these discrete parameters.
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4 Simulation results
Results are presented based on two implementations. The first is a full implementation of the
models as described in the paper with detuned partials and unknown numbers of partials
and number of notes . The full details of this sampler can be found in (Davy and Godsill,
2002a). This first sampler is used to demonstrate the effectiveness of the model in analysising
short data sets containing isolated notes and chords. The second sampler is a reduced version of
the first, in which the partials are not detuned (i.e. is fixed to zero), and the number of notes
is specified a priori (but is sampled using a reversible jump procedure). As a result,

though less robust and general, the second sampler takes far less computational time, both per
iteration and in terms of number of iterations to convergence. It is thus used for a rapid frame-
based analysis of long data sets containing many different pitches and note transitions. In this
way we hope to demonstrate both the potential of the full model and also the possibilities of
realistic analysis for long monophonic and polyphonic musical extracts.

4.1 Full sampler
The first example is a 2-note mixture of a saxophone and trumpet, playing with fundamental
frequencies Hz (F) and Hz (C), assuming A440 Hz tuning. This short extract is taken
from example ‘Commit’ at 2.5s, see reduced sampler section. Note that the number of notes,
as well as the number of partials for each notes were unspecified for the MCMC simulations.
After fitting the model with MCMC to the data, the fitting error is almost perfect when viewed
in the time domain. Figure 6 displays the spectra of the two estimated notes as well as the
spectrum of the error signal. As can be seen, both the number of notes and the number of
partials were accurately estimated (note however that the 10th partial of the note F was missed,
but this had no major consequence for the inference). In addition, the fundamental frequencies
are correctly estimated.

We have also plotted the spectrogram-like representation of the estimated notes, see Fig-
ure 7. As can be seen, the notes are very concentrated around the ’true frequencies’ Hz,
and Hz, which shows that the posterior distribution is well concentrated around the true
frequency values. Moreover, the spectrogram of the original data has also been computed
(for equal comparison, we used as windowing function with 50% overlap). The frequen-
cies and amplitudes of the line components in the two representations are very similar, which
demonstrates again the accuracy of the approach. An audio animation of the MCMC proce-
dure during convergence can be listened to at http://www-sigproc.eng.cam.ac.uk/
˜md283/harmonic.html.

4.2 Reduced sampler
The reduced sampler is applied frame-wise to the data, as in the restoration processing of
(Godsill and Rayner, 1998b). The waveform was arbitrarily segmented into blocks of duration
0.1s with 50% overlap and the reduced MCMC sampler applied in turn to each block. First a
short solo flute extract considered here is the opening of Debussy’s Syrinx, downsampled to
a 22050 Hz sampling rate. This is monophonic throughout and hence processed with
throughout. The pitch estimates obtained are shown in Fig. 3, corresponding to the waveform
and spectrogram in the figures above it. Estimated pitches are plotted logarithmically with grid
lines showing semitone steps relative to A440Hz. The estimated pitch corresponds exactly
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Figure 6: Comparison of the original spectrum with MCMC-estimated spectra. In order to
improve clarity, the original spectrum (top graph in each panel) has been translated by adding
50dB to its amplitude in the four panels. (Top row) Estimated spectra of the individual notes.
(Bottom Left) Spectrum of notes 1 and 2 superimposed. (Bottom Right) Spectrum of the
residual error.

to a manual transcription of the recording with the exception of the brief low G around 12s.
Close listening around 12s shows that the flute plays a low distortion undertone in addition
to the scored pitch at this point, and the algorithm is clearly modelling this undertone. The
‘drop-out’ between 9s and 10s corresponds to a short period of silence. Informal examination
of spectrograms indicates that the reversible jump algorithm for determining the number of
harmonics is very successful. This demonstrates the high reliability and accuracy of the models
for monophonic pitch estimation. Next the example ‘Commit’ (see full sampler above) is
processed in its entirity. There are two notes playing throughout, so is used. Figure 8
displays the pitch estimation results for the extract. Note that the number of notes is known,
and was provided for inference. Comparison with ground truth shows the pitch estimation
accuracy in the presence of polyphonic music.
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Figure 7: (Left) Spectrogram-like representation inferred from the MCMC samples using
Equation (11). (Right) Spectrogram of the original time series, computed using the windows
.

5 Discussion
We have presented rather limited results here. The methods have in fact been tested on a
range of real audio material and found to be robust provided that there are no more than 3
notes playing simultaneously, in which case ambiguities can cause errors in the fundamental
frequency estimation. This result is similar to those reported by other authors using other
techniques, such as (Virtanen and Klapuri, 2001; Kashino et al., 1995). However, these other
methods integrate contextual information or more specific instrument-based knowledge into
the processing, while we have specified prior distributions at a very generic level and have not
integrated temporal information from surrounding data or the relationships that exist between
notes at a particular time. These aspects can all be encoded within a Bayesian framework and
we anticipate that future incorporation of ideas such as these into our problem will lead to
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Figure 8: Ground truth (manual transcription) and pitch extraction for Commit extract, assum-
ing A440 Hz tuning.
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significant enhancements in performance. Computation remains a concern, however, as the
distributions involved are highly multimodal and intractable to more efficient analysis.

REFERENCES

ANDRIEU, C. AND DOUCET, A. (1999). Joint Bayesian Detection and Estimation of Noisy
Sinusoids via Reversible Jump MCMC. IEEE Trans. Signal Processing 47(10) 2667–2676.

BASSEVILLE, M. AND NIKIFOROV, I. (1993). Detection of Abrupt Changes : Theory and
Application. Prentice Hall; ISBN: 0131267809.

BERNARDO, J. M. AND SMITH, A. F. M. (1994). Bayesian Theory. John Wiley & Sons.

BREGMAN, A. (1990). Auditory scene analysis. Cambridge, MA: MIT Press.

DAVY, M., DONCARLI, C. AND TOURNERET, J. Y. (2002). Classification of chirp signals
using hierarchical bayesian learning and mcmc methods. IEEE Trans. Signal Processing
50(2) 377–388.

DAVY, M. AND GODSILL, S. (2002a). Bayesian harmonic meodels for musical pitch estima-
tion and analysis. Tech. Rep. CUED/F-INFENG/TR.431 Engineering Department, Univer-
sity of Cambridge, UK.

DAVY, M. AND GODSILL, S. (2002b). Detection of abrupt spectral changes using support
vector machines. An application to audio signal segmentation. In Proc. IEEE ICASSP-02.

DE CHEVEIGNE, A. (1993). Separation of concurrent harmonic sounds: fundamental fre-
quency estimation and a time-domain cancellation model for auditory processing. J. Acous-
tical Society of America 93(6) 3271–3290.

DE CHEVEIGNE, A. AND KAWAHARA, H. (1999). Multiple period estimation and pitch
perception model. Speech Communication 27 175–185.

FLANDRIN, P. (1999). Time-Frequency/Time-Scale Analysis. Academic Press.

FLETCHER, N. AND ROSSING, T. (1998). The Physics of Musical Instruments. Berlin:
Springer-Verlag second edn. ISBN: 0-387-98374-0.

GODSILL, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for
model uncertainty. J. Comp. Graph. Stats. 10(2) 230–248.

GODSILL, S. J. AND RAYNER, P. J. W. (1998a). Digital Audio Restoration: A Statistical
Model-Based Approach. Berlin: Springer, ISBN 3 540 76222 1.

GODSILL, S. J. AND RAYNER, P. J. W. (1998b). Robust reconstruction and analysis of au-
toregressive signals in impulsive noise using the Gibbs sampler. IEEE Trans. on Speech and
Audio Processing 6(4) 352–372.

15



GRIBONVAL, R. AND BACRY, E. (2001). Harmonic decomposition of audio signals with
matching pursuit. Tech. rep. IRISA-INRIA.

KASHINO, K. AND MURASE, H. (1999). A sound source identification system for ensemble
music based on template adaptation and music stream extraction. Speech Communication
27 337–349.

KASHINO, K., NAKADAI, K., KINOSHITA, T. AND TANAKA, H. (1995). Organisation of
hierarchical perceptual sounds: music scene analysis with autonomous processing modules
and a quantitative information integration mechanism. In Proc. 14th International joint
conference on artificial intelligence 158–164.

KLAPURI, A. (1999). Pitch estimation using multiple independent time-frequency windows.
In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 115–
118.

LAURENT, H. AND DONCARLI, C. (1998). Stationarity index for abrupt changes detection in
the time-frequency plane. IEEE Signal Processing Letters 5(2) 43 – 45.

MCINTYRE, M., SCHUMACHER, R. AND WOODHOUSE, J. (1983). On the oscillations of
musical instruments. J. Acoustical Society of America 74(5) 1325–1345.

SERRA, X. (1997). Musical Signal Processing chap. Musical Sound Modeling With Sinusoids
plus Noise. Swets and Zeitlinger.

TROUGHTON, P. AND GODSILL, S. J. (1998). A reversible jump sampler for autoregres-
sive time series. In Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing vol. IV 2257–2260.

TROUGHTON, P. T. AND GODSILL, S. J. (2001). MCMC methods for restoration of nonlin-
early distorted autoregressive signals. Signal Processing 81(1) 83–97.

VERMAAK, J., ANDRIEU, C., DOUCET, A. AND GODSILL, S. J. (1999). Bayesian model
selection of autoregressive processes. J. Time Series Anal. (Submitted for publication).

VIRTANEN, T. AND KLAPURI, A. (2001). Separation of harmonic sounds using multipitch
analysis and iterative parameter estimation. In Proc. IEEE Workshop on Audio and Acous-
tics, Mohonk, NY State 83–86.

WALMSLEY, P., GODSILL, S. J. AND RAYNER, P. J. W. (1998). Multidimensional optimisa-
tion of harmonic signals. In Proc. European Conference on Signal Processing.

WALMSLEY, P. J., GODSILL, S. J. AND RAYNER, P. J. W. (1999). Polyphonic pitch tracking
using joint Bayesian estimation of multiple frame parameters. In Proc. IEEE Workshop on
Audio and Acoustics, Mohonk, NY StateMohonk, NY State.

WEST, M. AND HARRISON, J. (1997). Bayesian Forecasting and Dynamic Models. New
York: Springer-Verlag 2nd edn.

16


