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Abstract. Few types of signal streams are as ubiquitous as music.
Here we consider the problem of extracting essential ingredients
of music signals, such as well-defined global temporal structure
in the form of nested periodicities (or meter). Can we construct
an adaptive signal processing device that learns by example how to
generate new instances of a given musical style? Because recurrent
neural networks can in principle learn the temporal structure of a
signal, they are good candidates for such a task. Unfortunately,
music composed by standard recurrent neural networks (RNNs)
often lacks global coherence. The reason for this failure seems
to be that RNNs cannot keep track of temporally distant events
that indicate global music structure. Long Short-Term Memory
(LSTM) has succeeded in similar domains where other RNNs have
failed, such as timing & counting and learning of context sensi-
tive languages. In the current study we show that LSTM is also
a good mechanism for learning to compose music. We present ex-
perimental results showing that LSTM successfully learns a form of
blues music and is able to compose novel (and we believe pleasing)
melodies in that style. Remarkably, once the network has found
the relevant structure it does not drift from it: LSTM is able to
play the blues with good timing and proper structure as long as
one is willing to listen.

INTRODUCTION

Music is among the most widely consumed types of signal streams. For
this reason alone, signal processing techniques for finding and extracting and
reproducing musical structure are of considerable interest. In particular,
machine learning techniques for composing (good) music might have not only
academic but also commercial potential.
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Most music has well-defined global temporal structure in the form of
nested periodicities or meter. A waltz, for example, has a 3

4
meter, meaning

that important melodic events occur every three quarter notes (or every first
note in a bar). Chord changes occur more slowly but are in general aligned
with the bars, with chords defining much of stylistic structure. For this
reason one can say of music that some notes are more important than others:
in general a learning mechanism should spend more resources on metrically-
important notes than others. In doing so it can learn to recreate not only
“surface level” musical structure but the deeper structure that defines a style.

Because recurrent neural networks (RNNs) can in principle learn such
temporal structure, they are good candidates for such a task. The most
straight-forward way to compose1 music with an RNN is to use the network
as single-step predictor. The network learns to predict notes at time t + 1
using earlier notes at times ≤ t as inputs. After learning has been stopped
the network can be seeded with initial input values—perhaps from training
data–and can then generate novel compositions by using its own outputs to
generate subsequent inputs. This note-by-note approach was first examined
by Todd et al. [19, 1] and later used by others [18, 13].

A feed-forward network would have no chance of composing music in this
fashion. Lacking the ability to store any information about the past, such a
network would be unable to keep track of where it is in a song. In principle
an RNN does not suffer from this limitation. With recurrent connections it
can use hidden layer activations as memory and thus is capable of exhibiting
(seemingly arbitrary) temporal dynamics. In practice, however, RNNs do not
perform very well at this task. As Mozer [13] aptly wrote about his attempts
to compose music with RNNs, “While the local contours made sense, the
pieces were not musically coherent, lacking thematic structure and having
minimal phrase structure and rhythmic organization”.

The reason for this failure is likely linked to the problem of vanishing gra-
dients [10] in RNNs. In gradient methods such as Back-Propagation Through
Time (BPTT) [20] and Real-Time Recurrent Learning (RTRL) [16] error flow
either vanishes quickly or explodes exponentially, making it impossible for the
networks to deal correctly with long-term dependencies. In the case of music,
long-term dependencies are at the heart of what defines a particular style,
with events spanning several notes or even many bars contributing to the for-
mation of metrical and phrasal structure [2]. The clearest example of these
dependencies are chord changes. In a musical form like early rock-and-roll
music for example, the same chord can be held for four bars or more. Even if
melodies are constrained to contain notes no shorter than an eighth note, a
network must regularly and reliably bridge time spans of 32 events or more.

The most relevant previous research is that of Mozer [13], who did note-
by-note composition of single-voice melodies accompanied by chords. In the

1In this paper we use the terms composition and improvisation loosely. It is probably

more accurate to describe the behavior of the network as improvisation because it is in-

venting new melodies on top of a set form; however, the end goal is the creation of new

melodies and new forms, thus the use of the term composition.
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“CONCERT” model, Mozer used sophisticated RNN procedures including
BPTT, log-likelihood objective functions and probabilistic interpretation of
the output values. In addition to these neural network methods, Mozer em-
ployed a psychologically-realistic distributed input encoding [17] that gave
the network an inductive bias towards chromatically and harmonically re-
lated notes. He used a second encoding method [12] to generate distributed
representations of chords.

As was mentioned above, a BPTT-trained RNN does a poor job of learn-
ing long-term dependencies. To offset this, Mozer used a distributed encoding
of duration that allowed him to process a note of any duration in a single
network timestep. By representing in a single timestep a note rather than
a slice of time, the number of time steps to be bridged by the network in
learning global structure is greatly reduced. For example, to allow sixteenth
notes in a network which encodes slices of time directly requires that a whole
note span at minimum 16 time steps. One CONCERT composition (Figure
8 in the paper) contained only 76 notes but would require 172 time steps
presuming the sixteenth notes found in the piece are to be allowed.

Even with sophisticated RNN techniques and psychologically-realistic dis-
tributed representation of melody, chords and duration the CONCERT ar-
chitecture failed to capture global musical structure2. Though networks reg-
ularly outperformed third-order transition table approaches, they failed in all
cases to find global structure. In analyzing this performance Mozer suggests
that, for the note-by-note method to work it is necessary that the network
can induce structure at multiple levels. We agree and offer the following
architecture as one possible solution.

AN LSTM MUSIC COMPOSER

LSTM Architecture: Due to space constraints it is impossible to describe
LSTM in depth. See [7, 8] for details. In summary, LSTM is designed
to obtain constant error flow through time and to protect this error flow
from undesired perturbations. LSTM uses linear units called Constant Error

Carousels (CECs) to overcome error decay problems plaguing previous RNNs
[9, 10]. Each CEC has a fixed self-connection and is surrounded by a cloud
of nonlinear units responsible for controlling the flow of information in and
out of the CEC. Typically, a multiplicative input gate unit learns to protect
the flow from perturbation by irrelevant inputs. Likewise, a multiplicative
output gate unit learns to protect other units from perturbation by currently
irrelevant memory contents. A forget gate learns to reset a memory cell
when its content is obsolete. Learning is done by gradient descent method
that uses a slightly modified, truncated BPTT and a customized version of
RTRL. Output units use BPTT; output gates use the truncated version of

2Mozer cannot be faulted for overstating the achievements of the model. He suggest

that the “ER” in CONCERT is meant to stand for “ERudite” but that it could also mean

“ERsatz” or ERratic”.
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BPTT; while weights to cells, input gates and forget gates use truncated
RTRL. LSTM performance is improved in online learning situations by using
a Kalman filter to control weight updates [14].

Data Representation: We avoid psychologically realistic distributed
encodings and instead represent the data in a simple local form (similar to
[19] ). We use one input/target unit per note, with 1.0 representing on and
0.0 representing off. (In later experiments we used the common technique
of adjusting input units to have a mean of 0 and a standard deviation of
1.0.) Unlike CONCERT this representation leaves it to the network to learn
an inductive bias towards chromatically and harmonically related notes. De-
spite this, we prefer a localist representation for several reasons. First it is
implicitly multi-voice and makes no artificial distinction between chords and
melodies. (In fact, we implement chords by simply turning on the appropriate
notes in the input vector.) Second it is an easy task to generate probability
distributions over the set of possible notes, with the flexibility to treat single
note probabilities as independent or dependent from one another.

The representation of time is straightforward, with one input vector rep-
resenting a slice of real time. The stepsize of quantization can of course vary;
if the quantization is set at the eighth note level (as it is for all experiments
in this study) then eight network time steps are required to process a whole
note. This method is preferable for LSTM because it forces the network to
learn the relative durations of notes, making it easier for the counting and
timing mechanisms to work [6].

Two representational issues are ignored in this representation. First, there
is no explicit way to determine when a note ends. This means that eight
eighth notes of the same pitch are represented exactly the same way as,
say, four quarter notes of the same pitch. One way to implement this with-
out changing input and target data structures is to decrease the stepsize of
quantization and always mark note endings with a zero. With this method,
a quantization level of sixteen steps per whole note would generate unique
codes for eight eighth notes and four quarter notes of the same pitch. A
second method is to have special unit(s) in the network to indicate the be-
ginning of a note. This method was employed by Todd [19] and is certainly
viable. However, it is not clear how such a method would scale to data sets
with multi-voice melodies.

In simulations for this study, a range of 12 notes were possible for chords
and 13 notes were possible for melodies Figure 1. Though we divided chord
notes from melody notes for these simulations, this division is artificial:
Chord notes are represented no differently than melody notes and in future
experiments we intend to blend the two in a more realistic manner.

Training Data: For the experiments in this study, a form of 12-bar
blues popular among bebop jazz musicians is used. With a quantization
stepsize of 8 notes per bar, this yields a single song length of 96 network
time steps. The chords used did not vary from song to song and are shown
in Figure 2. Chords inversions were chosen so that the chords would fit into
the allocated range of notes. For Experiment 1, only these chords were pre-
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Figure 1: Possible note values for these simulations
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Figure 2: Chords for training data (transposed up one octave).

sented. For Experiment 2, a single melody line was presented along with
the chords. The melody line was built using the pentatonic scale (Figure 3)
commonly used in this style of music. Training melodies were constructed

�� �� ��� ��� ��
� �

Figure 3: Pentatonic scale used for training data melodies.

by concatenating bar-long segments of music written by the first author to
fit musically with each chord. Datasets were constructed by choosing ran-
domly from the space of unique complete pieces (n = 212 = 4096). Only
quarter notes were used. No rests were used. Space constraints make it im-
possible to include examples. However several of these training pieces are
provided as sheet music (Acrobat .pdf) and audio (MIDI, MP3 and wav) at
http://www.idsia.ch/~doug/blues/index.html.

EXPERIMENT 1 — LEARNING CHORDS

In this experiment we show that LSTM can learn to reproduce a musical
chord structure. Our motivation is to ensure that the chord structure of
the song can in fact be induced in absence of its melody. Otherwise it is
unclear whether LSTM is taking advantage of the local structure in melody
to predict global chord structure. This is especially a risk when input data
is generated using a random recombination of a relatively small number of
musical examples, as was done here.

Network Topology and Experimental Parameters: The chords
used are the ones described in Section 2. No melodies are presented. The
quantization timestep is eight events per whole note. In the network four cell
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blocks containing 2 cells each are fully connected to each other and to the
input layer. The output layer is fully connected to all cells and to the input
layer. Forget gate, input gate and output gate biases for the four blocks are
set at -0.5, -1.0, -1.5 and -2.0. This allows the blocks to come online one by
one. Output biases were set at 0.5. Learning rate was set at .00001. Mo-
mentum rate [15] was set at .9. Weights being burned after every timestep.
Experiments showed that learning was faster if the network was reset after
making one (or a small number) of gross errors. Resetting went as follows: on
error, burn existing weights, reset the input pattern and clear partial deriva-
tives, activations and cell states. Gers et al. [6] use a similar strategy. The
squashing function at the output layer was the logistic sigmoid with range
[0,1].

Training and Testing: The goal was to predict at the output the prob-
ability for a given note to be on or off. For predicting probabilities root mean
squared error (RMSE) is not appropriate. Instead the network was trained
using cross-entropy as the objective function. The error function Ei for out-
put activation yi and target value ti is Ei = −tiln(yi) − (1 − ti)ln(1 − yi).
This yields a δ term at the output layer of (ti− yi). See, e.g., [11] for details.
By using a series of binomial formulations rather than a single multinomial
formulation (softmax) we treat outputs as statistically independent of one
another. Though this assumption is untrue, it allows the network to predict
chords and melodies in parallel and also allows for multi-voice melodies. The
network was tested by starting it with the inputs from the first timestep and
then using network predictions for ensuing time steps. Chord notes were
predicted using a decision threshold of 0.5. Training was stopped after the
network successfully predicted the entire chord sequence.

Results: LSTM easily handled this task under a wide range of learning
rates and momentum rates. Once a network could successfully generate one
full cycle through the chord sequence, it could generate any number of con-
tinuing cycles. This indicates that there was no reason to continue learning
for a longer time. As it is already well documented that LSTM excels at
timing and counting tasks [6] , success at this task is not surprising. Fast
convergence was not a goal of this study, and learning times were not care-
fully collected. Informal timing tests show learning times on the order of 15
minutes to 45 minutes of processor time on a 1Ghz Pentium depending on
parameter settings and initial random weights.

EXPERIMENT 2 — LEARNING MELODY AND CHORDS

In this experiment both melody and chords are learned. Learning continues
until the chord structure is learned and cross-entropy error is relatively low.
Note that there are far too many melodies for the network to learn them all.
Once learning has been stopped, the network is started with a seed note or
series of notes and then allowed to compose freely. The goal of the study was
to see if LSTM could learn chord structure and melody structure and then
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use that structure to advantage when composing new songs.
Network Topology and Experimental Parameters: The network

topology for this experiment differs from the previous task in that some cell
blocks processed chord information while other cell blocks processed melody
information. Eight cell blocks containing 2 cells each are used. Four of the
cell blocks are fully connected to the input units for chords. The other four
cell blocks are fully connected to the input units for melody. The chord cell
blocks have recurrent connections to themselves and to the melody cell blocks.
However, melody cell blocks are only recurrently connected to melody cell
blocks. That is, melody information does not reach the cell blocks responsible
for processing chords. At the output layer, output units for chords are fully
connected to cell blocks for chords and to input units for chords. Output
units for melody are fully connected to cell blocks for melody and to input
units for melody. The implications of such a topology are discussed below in
Section 5. Forget gate, input gate and output gate biases for the four blocks
dedicated to processing chords are set at -0.5, -1.0, -1.5 and -2.0. Gates for
processing melodies are biased in exactly the same way. All other parameters
are identical to those described for Experiment 1 in Section 3.

Training and Testing: The goal was to predict at the output the prob-
ability for a given note to be on or off. For chords, the same method as
Experiment 1 is used: the network applies a decision threshold of 0.5 for all
chord notes. For melodies we restrict the network to choosing a single note at
any given timestep. This is achieved by adjusting melody output activations
so that they sum to 1.0 and then using a uniform random number in the
range [0,1] to choose the appropriate next note. The implications of this de-
cision are discussed below in Section 5. The network was trained until it had
learned the chord structure and until objective error had reached a plateau.
Then the network was allowed to freely compose music. Music was composed
by providing a single note or series of notes (up to 24) from the training set as
input. After those were presented, network outputs were presented as inputs
at the next timestep. No algorithmic or statistical method was used to eval-
uate the musical quality of the network. In all cases the network succeeded
in reproducing chord structure while in parallel improvising new melodies.

Results: LSTM composed music in the form of blues. It learned the
chord structure in training and used that structure to constrain its melody
output in composition mode. Because is difficult to evaluate the performance
objectively—this point is commonly made in AI art research, e.g., [13] — we
urge the reader to visit http://www.idsia.ch/~doug/blues/index.html.
On that page are examples of network blues composition in sheet music form
(Acrobat .pdf) and audio (MIDI, MP3 and wav). It can be said that the
network compositions are remarkably better sounding than a random walk
across the pentatonic scale because the network compositions follow the struc-
ture of the musical form. They do diverge from the training set, sometimes
significantly. But due to the influence of the chord structure, they never
“drift” away from the form: the chord changes always bring it back. Also,
an informal survey in our lab indicates that the compositions are at times
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quite pleasant. One jazz musician3 is struck by how much the compositions
sound like real bebop jazz improvisation over this same chord structure. In
particular, the network’s tendency to intermix snippets of known melodies
with less-constrained passages is in keeping with this style.

DISCUSSION

These experiments were successful: LSTM induced both global structure and
local structure from a corpus of musical training data, and used that infor-
mation to compose in the same form. This answers Mozer’s [13] key criticism
of RNN music composition, namely that an RNN is unable to compose music
having global coherence. To our knowledge the model presented in this paper
is the first to accomplish this. That said, several parts of the experimental
setup made the task easier for the model. More research is required to know
whether the LSTM model can deal with more challenging composition tasks.

Training Data: There was no variety in the underlying chord structure.
For this reason it is perhaps better to talk about network performance as im-
provisation over a predefined (albeit learned) form rather than composition.
This lack of variation made it easier for LSTM to generate appropriately-
timed chord changes. Furthermore, quantization stepsize for these experi-
ments was rather low, at 8 time steps per whole note. As LSTM is known to
excel at datasets with long time lags, this does not pose a serious problem.
However it remains to be seen how much more difficult the task will be at,
say, 32 time steps per whole note, a stepsize which would allow two sixteenth
notes to be disambiguated from a single eighth note.

Network Architecture: There network connections were divided be-
tween chords and melody, with chords influencing melody but not vice-versa.
We believe this choice makes sense: in real music improvisation the person
playing melody (the soloist) is for the most part following the chord structure
supplied by the rhythm section. However this architectural choice presumes
that we know ahead of time how to segment chords from melodies. When
working with jazz sheet music, chord changes are almost always provided sep-
arately from melodies and so this does not pose a great problem. Classical
music compositions on the other hand make no such explicit division. Fur-
thermore in an audio signal (as opposed to sheet music) chords and melodies
are mixed together.

These are preliminary experiments, and much more research is warranted.
A comparison with BPTT and RTRL (and other candidate RNNs) would
help verify the claim that LSTM performance is better. A more interesting
training set would allow for more interesting compositions. Finally, recent
evidence suggests [5] that LSTM works better in similar situations using a
Kalman filter to control weight updates. This should be explored. Finally, the
current architecture is limited to working with symbolic representations (i.e.

3Admittedly, this musician isn’t particularly good, and also happens to be the first

author.
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modified sheet notation) of music. If the architecture were to be extended to
handle real-time performed music (i.e. MIDI or audio) it would have potential
as a tool for interactive improvisation. This would require an ability to deal
with temporal noise found in real performed music. One possibility is to
apply research on oscillator beat tracking models [4, 3] to LSTM in order to
create an inductive bias towards coupling with sometimes-noisy rhythmical
elements in the input.

CONCLUSION

A music composition model based on LSTM successfully learned the global
structure of a musical form, and used that information to compose new pieces
in the form. Two experiments were performed. The first verified that LSTM
was not relying on regularities in the melody to learn the chord structure. The
second experiment explored the ability for LSTM to generate new instances
of a musical form, in this case a bebop-jazz variation of standard 12-bar blues.
These experiments are preliminary and much more work is warranted. For
example, we have yet to compare LSTM performance to non-RNN approaches
such as HMMs and graphical models. Also, we report on LSTM behavior for
a single set of parameters; a more methodical exploration of parameter space
is warranted. However by demonstrating that an RNN can capture both the
local structure of melody and the long-term structure of a musical style, these
experiments represent an advance in neural network music composition.
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