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Abstract
This paper describes a real-time beat tracking system that rec-
ognizes a hierarchical beat structure comprising the quarter-
note, half-note, and measure levels in real-world audio sig-
nals sampled from popular-music compact discs. Most pre-
vious beat-tracking systems dealt with MIDI signals and had
difficulty in processing, in real time, audio signals contain-
ing sounds of various instruments and in tracking beats above
the quarter-note level. The system described here can process
music with drums and music without drums and can recog-
nize the hierarchical beat structure by using three kinds of
musical knowledge: of onset times, of chord changes, and
of drum patterns. This paper also describes several applica-
tions of beat tracking, such as beat-driven real-time computer
graphics and lighting control.

1 Introduction

The goal of this study is to build a real-time system that can
track musical beats in real-world audio signals, such as those
sampled from compact discs. I think that building such a
system that even in its preliminary implementation can work
in real-world environments is an important initial step in the
computational modeling of music understanding. This is be-
cause, as known from the scaling-up problem (Kitano, 1993)
in the domain of artificial intelligence, it is hard to scale-up a
system whose preliminary implementation works only in lab-
oratory (toy-world) environments. This real-world oriented
approach also facilitates the implementation of various prac-
tical applications in which music synchronization is neces-
sary.

Most previous beat-tracking related systems had difficulty
working in real-world acoustic environments. Most of them
(Dannenberg & Mont-Reynaud, 1987; Desain & Honing,
1989, 1994; Allen & Dannenberg, 1990; Driesse, 1991;
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Rosenthal, 1992a, 1992b; Rowe, 1993; Large, 1995) used
as their input MIDI-like representations, and their applica-
tions are limited because it is not easy to obtain complete
MIDI representations from real-world audio signals. Some
systems (Schloss, 1985; Katayose, Kato, Imai, & Inokuchi,
1989; Vercoe, 1994; Todd, 1994; Todd & Brown, 1996;
Scheirer, 1998) dealt with audio signals, but they either did
not consider the higher-level beat structure above the quarter-
note level or did not process popular music sampled from
compact discs in real time. Although I developed two beat-
tracking systems for real-world audio signals, one for mu-
sic with drums (Goto & Muraoka, 1994, 1995, 1998) and
the other for music without drums (Goto & Muraoka, 1996,
1999), they were separate systems and the former was not
able to recognize the measure level.

This paper describes a beat-tracking system that can deal
with the audio signals of popular-music compact discs in
real time regardless of whether or not those signals contain
drum sounds. The system can recognize thehierarchical beat
structure comprising thequarter-note level (almost regularly
spaced beat times), thehalf-note level, and themeasure level
(bar-lines).1 This structure is shown in Figure 1. It assumes
that the time-signature of an input song is 4/4 and that the
tempo is roughly constant and is either between 61 M.M.2and
185 M.M. (for music with drums) or between 61 M.M. and
120 M.M. (for music without drums). These assumptions fit
a large class of popular music.

1 Although this system does not rely on score representation, for
convenience this paper uses score-representing terminology like that
used by Rosenthal (1992a, 1992b). In this formulation the quarter-
note level indicates the temporal basic unit that a human feels in
music and that usually corresponds to a quarter note in scores.
2 Mälzel’s Metronome: the number of quarter notes per minute.
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Fig. 1. Beat-tracking problem.

The main issues in recognizing the beat structure in real-
world musical acoustic signals are (1) detecting beat-tracking
cues in audio signals, (2) interpreting the cues to infer the beat
structure, and (3) dealing with the ambiguity of interpretation.
First, it is necessary to develop methods for detecting effec-
tive musical cues in audio signals. Although various cues —
such as onset times, notes, melodies, chords, and repetitive
note patterns — were used in previous score-based or MIDI-
based systems (Dannenberg & Mont-Reynaud, 1987; Desain
& Honing, 1989, 1994; Allen & Dannenberg, 1990; Driesse,
1991; Rosenthal, 1992a, 1992b; Rowe, 1993; Large, 1995),
most of those cues are hard to detect in complex audio signals.
Second, higher-level processing using musical knowledge is
indispensable for inferring each level of the hierarchical beat
structure from the detected cues. It is not easy, however, to
make musical decisions about audio signals, and the previous
audio-based systems (Schloss, 1985; Katayose et al., 1989;
Vercoe, 1994; Todd, 1994; Todd & Brown, 1996; Scheirer,
1998) did not use such musical-knowledge-based processing
for inferring the hierarchical beat structure. Although some
of the above-mentioned MIDI-based systems used musical
knowledge, the processing they used cannot be used in audio-
based systems because the available cues are different. Third,
it must be taken into account that multiple interpretations of
beats are possible at any given time. Because there is not nec-
essarily a single specific sound that directly indicates the beat
position, there are various ambiguous situations. Two exam-
ples are those in which several detected cues may correspond
to a beat and those in which differentinter-beat intervals (the
difference between the times of two successive beats) seem
plausible.

The following sections introduce a new approach to the
beat-tracking problem and describe a beat-tracking model
that addresses the issues mentioned above. Experimental re-
sults obtained with a system based on that model are then
shown, and several of its beat-tracking applications are de-
scribed.

2 Beat-tracking problem (inverse problem)

In my formulation the beat-tracking problem is defined as a
process that organizes musical audio signals into the hierar-

Fig. 2. Beat tracking as an inverse problem.

chical beat structure. As shown in Figure 2, this problem can
be considered theinverse problem of the following three for-
ward processes by music performers: the process of indicat-
ing or implying the beat structure in musical elements when
performing music, the process of producing musical sounds
(singing or playing musical instruments), and the process of
acoustic transmission of those sounds. Although in the brains
of performers music is temporally organized according to its
hierarchical beat structure, this structure is not explicitly ex-
pressed in music; it is implied in the relations among vari-
ous musical elements which are not fixed and which are de-
pendent on musical genres or pieces. All the musical ele-
ments constituting music are then transformed into audio sig-
nals through the processes of musical sound production and
acoustic transmission.

The principal reason that beat tracking is intrinsically dif-
ficult is that it is the problem of inferring an original beat
structure that is not expressed explicitly. The degree of beat-
tracking difficulty is therefore not determined simply by the
number of musical instruments performing a musical piece;
it depends on how explicitly the beat structure is expressed
in the piece. For example, it is very easy to track beats in
a piece that has only a regular pulse sequence with a con-
stant interval. The main reason that different musical gen-
res and instruments have different tendencies with regard to
beat-tracking difficulty is that they have different customary
tendencies with regard to the explicitness with which their
beat structure is indicated.

In audio-based beat tracking, furthermore, it is also diffi-
cult to detect the musical elements that are beat-tracking cues.
In that case, the more musical instruments played simultane-
ously and the more complex the audio signal, the more diffi-
cult is the detection of those cues.

3 Beat-tracking model (inverse model)
To solve this inverse problem, I developed a beat-tracking
model that consists of two component models: the model
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Fig. 3. Beat-tracking model.

of extracting musical elements from audio signals, and the
inverse model of indicating the beat structure (Fig. 3). The
three issues raised in the Introduction are addressed in this
beat-tracking model as described in the following three sec-
tions.

3.1 Model of extracting musical elements: detecting
beat-tracking cues in audio signals

In the model of extracting musical elements, the following
three kinds of musical elements are detected as the beat-
tracking cues:

1. Onset times
2. Chord changes
3. Drum patterns

As described in Section 3.2, these elements are useful when
the hierarchical beat structure is inferred. In this model, on-
set times are represented by anonset-time vector whose di-
mensions correspond to the onset times of different frequency
ranges. A chord change is represented by achord-change
possibility that indicates how much the dominant frequency
components included in chord tones and their harmonic over-
tones change in a frequency spectrum. A drum pattern is rep-
resented by the temporal pattern of a bass drum and a snare
drum.

These elements are extracted from the frequency spectrum
calculated with the FFT (1024 samples) of the input (16 bit
/ 22.05 kHz) using the Hanning window. Since the window
is shifted by 256 samples, the frequency resolution is conse-
quently 21.53 Hz and the discrete time step (1frame-time3)
is 11.61 ms. Hereafterp(t, f ) is the power of the spectrum of
frequencyf at timet.

3.1.1 Onset-time vector

The onset-time vectors are obtained by anonset-time vec-
torizer that transforms the onset times of seven frequency

3 The frame-time is the unit of time used in this system, and the term
time in this paper is the time measured in units of the frame-time.

Fig. 4. Examples of a frequency spectrum and an onset-time vector
sequence.

Fig. 5. Extracting an onset component.

ranges (0-125 Hz, 125-250 Hz, 250-500 Hz, 0.5-1 kHz, 1-2
kHz, 2-4 kHz, and 4-11 kHz) into seven-dimensional onset-
time vectors (Fig. 4). This representation makes it possible to
consider onset times of all the frequency ranges at the same
time. The onset times can be detected by a frequency analysis
process that takes into account such factors as the rapidity of
an increase in power and the power present in nearby time-
frequency regions as shown in Figure 5 (Goto & Muraoka,
1999). Each onset time is given by the peak time found by
peak-picking4in a degree-of-onset functionD(t) = Σfd(t, f )
where

d(t, f ) =




max(p(t, f ), p(t + 1, f )) − PrevPow
(min(p(t, f ), p(t + 1, f )) > PrevPow),

0 (otherwise),
(1)

PrevPow = max(p(t − 1, f ), p(t − 1, f ± 1)). (2)

4 D(t) is linearly smoothed with a convolution kernel before its peak
time is calculated.
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(a) Frequency spectrum

(b) Histograms of frequency components in spectrum strips sliced at provisional beat times

(c) Quarter-note chord-change possibilities

Fig. 6. Example of obtaining a chord-change possibility on the basis of provisional beat times.

BecausePrevPow considersp(t−1, f ±1), a false non-onset
power increase fromp(t − 1, f ) to p(t, f ) is not picked up
even if there is a rising frequency component holding high
power on bothp(t − 1, f − 1) andp(t, f ). The onset times
in the different frequency ranges are found by limiting the
frequency range ofΣf .

3.1.2 Chord-change possibility

Because it is difficult to detect chord changes when using
only a bottom-up frequency analysis, I developed a method
for detecting them by making use of top-down information,
provisional beat times (Goto & Muraoka, 1996, 1999). The
provisional beat times are a hypothesis of the quarter-note
level and are inferred from the onset times as described in
Section 3.2.1. Possibilities of chord changes in a frequency
spectrum are examined without identifying musical notes or
chords by name. The idea for this method came from the
observation that a listener who cannot identify chord names
can nevertheless perceive chord changes. When all frequency
components included in chord tones and their harmonic over-
tones are considered, they are found to tend to change signif-
icantly when a chord is changed and to be relatively stable
when a chord is not changed. Although it is generally diffi-
cult to extract all frequency components from audio signals
correctly, the frequency components dominant during a cer-
tain period of time can be roughly identified by using a his-
togram of frequency components. The frequency spectrum is
therefore sliced into strips at the provisional beat times and
the dominant frequencies of each strip are estimated by us-
ing a histogram of frequency components in the strip (Fig. 6).
Chord-change possibilities are then obtained by comparing
dominant frequencies between adjacent strips. Because the

method takes advantage of not requiring musical notes to be
identified, it can detect chord changes in real-world audio sig-
nals, where chord identification is generally difficult.

For different purposes, the model uses two kinds of possi-
bilities of chord changes, one at the quarter-note level and the
other at the eighth-note level, by slicing the frequency spec-
trum into strips at the provisional beat times and by slicing
it at the interpolated eighth-note times. The one obtained by
slicing at the provisional beat times is called thequarter-note
chord-change possibility and the one obtained by slicing at
the eighth-note times is called theeighth-note chord-change
possibility. They respectively represent how likely a chord is,
under the current beat-position hypothesis, to change on each
quarter-note position and on each eighth-note position. The
detailed equations used in this method are described in a pa-
per focusing on beat tracking for music without drum-sounds
(Goto & Muraoka, 1999).

3.1.3 Drum pattern

A drum-sound finder detects the onset time of a bass drum
(BD) by using onset components and the onset time of a snare
drum (SD) by using noise components. Those onset times
are then formed into the drum patterns by making use of the
provisional beat times (top-down information) (Fig. 7).

[Detecting BD onset times]

Because the sound of a BD is not known in advance, the
drum-sound finder learns the characteristic frequency of a
BD by examining the extracted onset componentsd(t, f )
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Fig. 7. Forming a drum pattern by making use of provisional beat
times.

(Equation (1)). For times at which onset components are
found, the finder picks peaks along the frequency axis and
makes a histogram of them (Fig. 8). The finder then judges
that a BD has sounded at times when an onset’s peak fre-
quency coincides with the characteristic frequency that is
given by the lowest-frequency peak of the histogram.

[Detecting SD onset times]

Since the sound of a SD typically has noise components
widely distributed along the frequency axis, the finder needs
to detect such components. First, the noise components
n(t, f ) are given by the following equations:

n(t, f ) =




p(t, f ) (min(HighFreqAve, LowFreqAve)

>
1
2
p(t, f )),

0 (otherwise),
(3)

Fig. 8. Detecting a bass drum (BD) and a snare drum (SD).

HighFreqAve =
1
4

(p(t, f + 2) +
∑1

i=−1 p(t + i, f + 1)), (4)

LowFreqAve =
1
4

(p(t, f −2) +
∑1

i=−1 p(t + i, f − 1)), (5)

whereHighFreqAve andLowFreqAve respectively represent
the local averages of the power in higher and lower re-
gions of p(t, f ). When the surroundingHighFreqAve and
LowFreqAve are both larger than half ofp(t, f ), the com-
ponentp(t, f ) is not considered a peaked component but a
noise component distributed almost uniformly. As shown
in Figure 8, the noise componentsn(t, f ) are quantized: the
frequency axis of the noise components is divided into sub-
bands (the number of subbands is 16) and the mean ofn(t, f )
in each subband is calculated. The finder then calculates
c(t), which represents how widely noise components are dis-
tributed along the frequency axis:c(t) is calculated as the
product of all quantized components within the middle fre-
quency range (from 1.4 kHz to 7.5 kHz). Finally, the SD on-
set time is obtained by peak-picking ofc(t) in the same way
as in the onset-time finder.

3.2 Inverse model of indicating the beat structure:
interpreting beat-tracking cues to infer the
hierarchical beat structure

Each level of the beat structure is inferred by using the inverse
model of indicating the beat structure. The inverse model is
represented by the following three kinds of musical knowl-
edge (heuristics) corresponding to the three kinds of musical
elements.

3.2.1 Musical knowledge of onset times

To infer the quarter-note level (i.e., to determine the pro-
visional beat times), the model uses the following heuristic
knowledge:
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Fig. 9. Predicting the next beat.

(a-1) “A frequent inter-onset interval is likely to be the inter-
beat interval.”

(a-2) “Onset times tend to coincide with beat times (i.e.,
sounds are likely to occur on beats).”

The reason the termthe provisional beat times is used is that
the sequence of beat times obtained below is just a single hy-
pothesis of the quarter-note level: multiple hypotheses are
considered as explained in Section 3.3.

By using autocorrelation and cross-correlation of the
onset-time vectors, the model determines the inter-beat in-
terval and predicts the next beat time. The inter-beat inter-
val is determined by calculating the windowed and normal-
ized vectorial autocorrelation functionAc(τ ) of the onset-
time vectors:5

Ac(τ) =

∑c
t=c−AcPeriod win(c − t, AcPeriod) (�o(t) · �o(t− τ ))∑c

t=c−AcPeriod win(c − t, AcPeriod) (�o(t) · �o(t))
,

(6)
where�o(t) is the onset-time vector at timet, c is the current
time, andAcPeriod is the autocorrelation period. The win-
dow function win(t, s) whose window size iss is

win(t, s) =

{
1.0− 0.5

t

s
0 ≤ t ≤ s,

0 otherwise.
(7)

According to the knowledge(a-1), the inter-beat interval is
given by theτ with the maximum height inAc(τ ) within
an appropriate inter-beat interval range. To predict the
next beat time by using the knowledge(a-2), the model
forms a prediction field (Fig. 9) by calculating the windowed
cross-correlation functionCc(τ ) between the sumO(t) of
all dimensions of�o(t) and a tentative beat-time sequence
Ttmp(t,m) whose interval is the inter-beat interval obtained
using Equation (6):

Cc(τ ) =
c∑

t=c−CcPeriod




win(c − t, CcPeriod) O(t)
CcNumBeats∑

m=1

δ(t − Ttmp(c + τ, m))


 ,

(8)

Ttmp(t,m) =

{
t − I(t) (m = 1),
Ttmp(t, m − 1)− I(Ttmp(t, m − 1)) (m > 1),

(9)

5 Vercoe (1994) also proposed the use of a variant of autocorrelation
for rhythmic analysis.

δ(x) =

{
1 (x = 0),
0 (x �= 0),

(10)

whereI(t) is the inter-beat interval at timet, CcPeriod (=
CcNumBeatsI(c)) is the window size for calculating the
cross-correlation, and CcNumBeats (= 12) is a constant fac-
tor that determines how many previous beats are considered
in calculating the cross-correlation. The prediction field is
thus given byCc(τ ) where 0≤ τ ≤ I(c) − 1. Finally, the
local-maximum peak in the prediction field is selected as the
next beat time while considering to pursue the peak close to
the sum of the previously selected one and the inter-beat in-
terval.

The reliability of each hypothesis of the provisional beat
times is then evaluated according to how closely the next beat
time predicted from the onset times coincides with the time
extrapolated from the past beat times (Fig. 9).

3.2.2 Musical knowledge of chord changes

To infer each level of the structure, the model uses the fol-
lowing knowledge:

(b-1) “Chords are more likely to change on beat times than
on other positions.”

(b-2) “Chords are more likely to change on half-note times
than on other positions of beat times.”

(b-3) “Chords are more likely to change at the beginnings of
measures than at other positions of half-note times.”

Figure 10 shows a sketch of how the half-note and measure
times are inferred from the chord-change possibilities. Ac-
cording to the knowledge(b-2), if the quarter-note chord-
change possibility is high enough, its time is considered to
indicate the position of the half-note times. According to the
knowledge(b-3), if the quarter-note chord-change possibility
of a half-note time is higher than that of adjacent half-note
times, its time is considered to indicate the position of the
measure times (bar-lines).

The knowledge(b-1) is used for reevaluating the reliabil-
ity of the current hypothesis: if the eighth-note chord-change
possibility tends to be higher on beat times than on eighth-
note displacement positions, the reliability is increased.

3.2.3 Musical knowledge of drum patterns

For music with drum-sounds, eight prestored drum patterns,
like those illustrated in Figure 11, are prepared. They rep-
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Fig. 10. Knowledge-based inferring.

Fig. 11. Examples of prestored drum patterns.

resent the ways drum-sounds are typically used in a lot of
popular music. The beginning of a pattern should be a half-
note time, and the length of the pattern is restricted to a half
note or a measure. In the case of a half note, patterns repeated
twice are considered to form a measure.

When an input drum pattern that is currently detected in
the audio signal matches one of the prestored drum patterns
well, the model uses the following knowledge to infer the
quarter-note and half-note levels:

(c-1) “The beginning of the input drum pattern indicates a
half-note time.”

(c-2) “The input drum pattern has the appropriate inter-beat
interval.”

Table 1. Musical knowledge selection for music with drum-sounds and music without drum-sounds.

Beat structure Without drums With drums

Measure level quarter-note chord-change possibility quarter-note chord-change possibility
(knowledge(b-3)) (knowledge(b-3))

Half-note level quarter-note chord-change possibility drum pattern (knowledge(c-1))
(knowledge(b-2))

Quarter-note level eighth-note chord-change possibility drum pattern (knowledge(c-2))
(knowledge(b-1))

Figure 10 also shows a sketch of how the half-note times are
inferred from the best-matched drum pattern: according to
the knowledge(c-1), the beginning of the best-matched pat-
tern is considered to indicate the position of a half-note time.
Note that the measure level cannot be determined this way:
the measure level is determined by using the quarter-note
chord-change possibilities as described in Section 3.2.2.

The knowledge(c-2) is used for reevaluating the reliability
of the current hypothesis: the reliability is increased accord-
ing to how well an input drum pattern matches one of the
prestored drum patterns.

3.2.4 Musical knowledge selection based on the
presence of drum-sounds

To infer the quarter-note and half-note levels, the musical
knowledge of chord changes ((b-1) and (b-2)) and the mu-
sical knowledge of drum patterns ((c-1) and (c-2)) should
be selectively applied according to the presence or absence
of drum-sounds as shown in Table 1. I therefore developed
a method for judging whether or not the input audio signal
contains drum-sounds. This judgement could not be made
simply by using the detected results because the detection of
the drum-sounds is noisy. According to the fact that in popu-
lar music a snare drum is typically played on the second and
fourth quarter notes in a measure, the method judges that the
input audio signal contains drum-sounds only when autocor-
relation of the snare drum’s onset times is high enough.

3.3 Dealing with ambiguity of interpretation

To enable ambiguous situations to be handled when the
beat-tracking cues are interpreted, a multiple-agent model
in which multiple agents examine various hypotheses of the
beat structure in parallel as illustrated in Figure 12 was de-
veloped (Goto & Muraoka, 1996, 1999). Each agent uses its
own strategy and makes a hypothesis by using the inverse
model described in Section 3.2. An agent interacts with an-
other agent to track beats cooperatively and adapts to the cur-
rent situation by adjusting its strategy. It then evaluates the
reliability of its own hypothesis according to how well the in-
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Fig. 12. Multiple hypotheses maintained by multiple agents.

verse model can be applied. The final beat-tracking result is
determined on the basis of the most reliable hypothesis.

3.4 System overview

Figure 13 shows an overview of the system based on the
beat-tracking model. In the frequency-analysis stage, the
system detects the onset-time vectors (Section 3.1.1), de-
tects onset times of bass drum and snare drum sounds
(Section 3.1.3), and judges the presence or absence of
drum-sounds (Section 3.2.4). In the beat-prediction stage,
each agent infers the quarter-note level by using the au-
tocorrelation and cross-correlation of the onset-time vec-
tors (Section 3.2.1). Each higher-level checker correspond-
ing to each agent then detects chord changes (Section 3.1.2)
and drum patterns (Section 3.1.3) by using the quarter-note
level as the top-down information. Using those detected re-
sults, each agent infers the higher levels (Section 3.2.2 and
Section 3.2.3) and evaluates the reliability of its hypothesis.
The agent manager gathers all hypotheses and then deter-
mines the final output on the basis of the most reliable one.
Finally, the beat-tracking result is transmitted to other appli-
cation programs via a computer network.

4 Experiments and results
The system was tested on monaural audio signals sampled
from commercial compact discs of popular music. Eighty-

Fig. 13. Overview of the beat-tracking system.

five songs, each at least one minute long, were used as the
inputs. Forty-five of the songs had drum-sounds (32 artists,
tempo range: 67-185 M.M.) and forty did not (28 artists,
tempo range: 62-116 M.M.). Each song had the 4/4 time-
signature and a roughly constant tempo.

In this experiment the system output was compared with
the hand-labeled hierarchical beat structure. To label the cor-
rect beat structure, I developed a beat-structure editor pro-
gram that enables a user to mark the beat positions in a dig-
itized audio signal while listening to the audio and watching
its waveform (Fig. 14). The positions can be finely adjusted
by playing back the audio with click tones at beat times, and
the half-note and measure levels can also be labeled. The
recognition rates were evaluated by using the quantitative
evaluation measures for analyzing the beat-tracking accuracy
that were proposed in earlier papers (Goto & Muraoka, 1997,
1999). Unstably tracked songs (those for which correct beats
were obtained just temporarily) were not considered to be
tracked correctly.

4.1 Results of evaluating recognition rates

The results of evaluating the recognition rates are listed in
Table 2. I also evaluated how quickly the system started to
track the correct beats stably at each level of the hierarchical
beat structure, and the start time of tracking the correct beat

Fig. 14. Beat-structure editor program.
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Table 2. Results of evaluating recognition rates at each level of the
beat structure.

Beat structure Without drums With drums

Measure level 32 of 34 songs 34 of 39 songs
(94.1%) (87.2%)

Half-note level 34 of 35 songs 39 of 39 songs
(97.1%) (100%)

Quarter-note level 35 of 40 songs 39 of 45 songs
(87.5%) (86.7%)

structure is shown in Figure 15. The horizontal axis repre-
sents the song numbers (#) arranged in order of the start time
of the quarter-note level up to song #32 (for music without
drums) and #34 (for music with drums). The mean, min-
imum, and maximum of the start time of all the correctly
tracked songs are listed in Table 3 and Table 4. These results
show that in each song where the beat structure was eventu-
ally determined correctly, the system initially had trouble de-
termining a higher rhythmic level even though a lower level
was correct.

The following are the results of analyzing the reasons the
system made mistakes:

[Music without drums]

The quarter-note level was not determined correctly in five
songs. In one of them the system tracked eighth-note dis-
placement positions because there were too many syncopa-
tions in the basic accompaniment rhythm. In three of the
other songs, although the system tracked correct beats tem-

(music without drums) (music with drums)

Fig. 15. Start time of tracking the correct beat structure.

Table 3. Start time of tracking the correct beat structure (music
without drums).

Beat structure mean min max

Measure level 18.47 s 3.42 s 42.56 s
Half-note level 13.74 s 3.42 s 36.75 s
Quarter-note level 10.99 s 0.79 s 36.75 s

Table 4. Start time of tracking the correct beat structure (music
with drums).

Beat structure mean min max

Measure level 22.00 s 6.32 s 40.05 s
Half-note level 17.15 s 4.20 s 41.89 s
Quarter-note level 13.87 s 0.52 s 41.89 s

porarily (during from 14 to 24 s), it sometimes got out of po-
sition because the onset times were very few and irregular.
In the other song the tracked beat times deviated too much
during a measure, although the quarter-note level was deter-
mined correctly during most of the song.

In a song where the half-note level was wrong, the system
failed to apply the musical knowledge of chord changes be-
cause chords were often changed at the fourth quarter note in
a measure.

In two songs where only the measure level was mistaken,
chords were often changed at every other quarter-note and the
system was not able to determine the beginnings of measures.
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[Music with drums]

The quarter-note level was not determined correctly in six
songs. In two of them the system correctly tracked beats in
the first half of the song, but the inter-beat interval became
0.75 or 1.5 times of the correct one in the middle of the song.
In two of the other songs the quarter-note level was deter-
mined correctly except that the start times were too late: 45.3
s and 51.8 s (the start time had to be less than 45 s for the
tracking to be considered correct). In the other two songs the
tracked beat times deviated too much temporarily, although
the system tracked beat times correctly during most of the
song.

The system made mistakes at the measure level in five
songs. In one of them the system was not able to deter-
mine the beginnings of measures because chords were often
changed at every quarter-note or every other quarter-note. In
two of the other songs the quarter-note chord-change pos-
sibilities were not obtained appropriately because the fre-
quency components corresponding to the chords were too
weak. In the other two songs the system determined the mea-
sure level correctly except that the start times were too late:
48.3 s and 49.9 s.

The results mentioned above show that the recognition rates
at each level of the beat structure were more than 86.7 per-
cent and that the system is robust enough to deal in real time
with real-world audio signals containing sounds of various
instruments.

4.2 Results of measuring rhythmic difficulty

It is important to measure the degree of beat-tracking dif-
ficulty for the songs that were used in testing the beat-
tracking system. As discussed in Section 2, the degree of
beat-tracking difficulty depends on how explicitly the beat
structure is expressed. It is very difficult, however, to mea-
sure its explicitness because it is influenced from various as-
pects of the songs. In fact, most previous beat-tracking stud-
ies have not dealt with this issue. I therefore tried, as a first
step, to evaluate the power transition of the input audio sig-
nals. In terms of the power transition, it is more difficult to
track beats of a song in which the power tends to be lower
on beats than between adjacent beats. In other words, the
larger the number of syncopations, the greater the difficulty
of tracking beats.

I thus proposed a quantitative measure of the rhythmic dif-
ficulty, called thepower-difference measure,6 that considers
differences between the power on beats and the power on
other positions. This measure is defined as the mean of all
the normalized power differencediff pow(n) in the song:

diff pow(n) = 0.5
powother(n) − powbeat(n)

max (powother(n), powbeat(n))
+ 0.5, (11)

6 The detailed equations of the power-difference measure are de-
scribed by Goto and Muraoka (1999).

Fig. 16. Finding the local maximum of the power.

wherepowbeat(n) represents the local maximum power on
then-th beat7 andpowother(n) represents the local maximum
power on positions between then-th beat and (n + 1)-th beat
(Fig. 16). The power-difference measure takes a value be-
tween 0 (easiest) and 1 (most difficult). For a regular pulse
sequence with a constant interval, for example, this measure
takes a value of 0.

Using this power-difference measure, I evaluated the
rhythmic difficulty of each of the songs used in testing the
system. Figure 17 shows two histograms of the measure, one
for songs without drum-sounds and the other for songs with
drum-sounds. Comparison between these two histograms in-
dicates that the power-difference measure tends to be higher
for songs without drum-sounds than with drum-sounds. In
particular, it is interesting that the measure exceeded 0.5 in
more than half of the songs without drum-sounds; this indi-
cates that the power on beats is often lower than the power
on other positions in those songs. This also suggests that a
simple idea of tracking beats by regarding large power peaks
of the input audio signal as beat positions is not feasible.

Figure 17 also indicates the songs that were incorrectly
tracked at each level of the beat structure. While the power-
difference measure tends to be higher for the songs that were
incorrectly tracked at the quarter-note level, it’s value is not
clearly related to the songs that were incorrectly tracked at
the half-note and measure levels: the influence from various
other aspects besides the power transition is dominant in in-
ferring the half-note and measure levels. Although this mea-
sure is not perfect for evaluating the rhythmic difficulty and
other aspects should be taken into consideration, it should be
a meaningful step on the road to measuring the beat-tracking
difficulty in an objective way.

5 Applications

Since beat tracking can be used to automate the time-
consuming tasks that must be completed in order to syn-
chronize events with music, it is useful in various appli-
cations, such as video editing, audio editing, and human-
computer improvisation. The development of applications

7 The hand-labeled correct quarter-note level is used for this evalu-
ation.
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(a) Histogram for 40 songs without drum-sounds.

(b) Histogram for 45 songs with drum-sounds.

Fig. 17. Evaluating beat-tracking difficulty: histograms of the evaluated power-difference measure.

Fig. 18. Virtual dancer “Cindy.”

is facilitated by using a network protocol calledRMCP
(Remote Music Control Protocol) (Goto, Neyama, & Mu-
raoka, 1997) for sharing the beat-tracking result among sev-
eral distributed processes. RMCP is designed to share sym-
bolized musical information through networks and it supports
time-scheduling using time stamps and broadcast-based in-
formation sharing without the overhead of multiple transmis-
sion.

• Beat-driven real-time computer graphics
The beat-tracking system makes it easy to create real-
time computer graphics synchronized with music and has

been used to develop a system that displays virtual dancers
and several graphic objects whose motions and positions
change in time to beats (Fig. 18). This system has sev-
eral dance sequences, each for a different mood of dance
motions. While a user selects a dance sequence manually,
the timing of each motion in the selected sequence is de-
termined automatically on the basis of the beat-tracking
results. Such a computer graphics system is suitable for
live stage, TV program, andKaraoke uses.

• Stage-lighting control
Beat tracking facilitates the automatic synchronization of
computer-controlled stage lighting with the beats in a mu-
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sical performance. Various properties of lighting — such
as color, brightness, and direction — can be changed in
time to music. At the moment this application is simu-
lated on a computer graphics display with virtual dancers.

• Intelligent drum machine
A preliminary system that can play drum patterns in time
to input musical audio signals without drum-sounds has
been implemented. This application is potentially useful
for automatic MIDI-audio synchronization and intelligent
computer accompaniment.

The beat-structure editor program mentioned in Section 4
is also useful in practical applications. A user can correct
or adjust the output beat structure when the system output
includes mistakes and can make the whole hierarchical beat
structure for a certain application from scratch.

6 Conclusion

This paper has described the beat-tracking problem in dealing
with real-world audio signals, a beat-tracking model that is a
solution to that problem, and applications based on a real-
time beat-tracking system. Experimental results show that
the system can recognize the hierarchical beat structure com-
prising the quarter-note, half-note, and measure levels in au-
dio signals of compact disc recordings. The system has also
been shown to be effective in practical applications.

The main contributions of this paper are to provide a view
in which the beat-tracking problem is regarded as an inverse
problem and to provide a new computational model that can
recognize, in real time, the hierarchical beat structure in au-
dio signals regardless of whether or not those signals con-
tain drum-sounds. The model uses sophisticated frequency-
analysis processes based on top-down information and uses
a higher-level processing based on three kinds of musical
knowledge that are selectively applied according to the pres-
ence or absence of drum-sounds. These features made it pos-
sible to overcome difficulties in making musical decisions
about complex audio signals and to infer the hierarchical beat
structure.

The system will be upgraded by enabling it to follow tempo
changes and by generalizing it to other musical genres. Fu-
ture work will include integration of the beat-tracking model
described here and other music-understanding models, such
as one detecting melody and bass lines (Goto, 1999, 2000).
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