

Part 1: A Frame-Level Speech/Music Discrimination using AdaBoost

Norman Casagrande Douglas Eck Balázs Kégl

Part 2: Audio Genre Recognition – the winner of the MIREX 2005 competition

James Bergstra Norman Casagrande Douglas Eck Balázs Kégl

Introduction

Does voice have a visible distinguishable pattern?

 Using a robust image classifier by Viola & Jones (2001) we can quickly classify music against speech on real world data

- Using a robust image classifier by Viola & Jones (2001) we can quickly classify music against speech on real world data
 - Find simple basic features that computes the difference of amount of energy

How do we find the position of the filter?

- How do we find the position of the filter?
- The filters have also different sizes!

 The output of this simple filter is already revealing a separation between speech and music

- The output of this simple filter is already revealing a separation between speech and music
- Accuracy ~68%
- Still too weak alone

- Successful general purpose learning method
- At each iteration t a weak learner h returns a binary prediction with error epsilon.

Set a weight distribution $\mathbf{w}^t = (w_1^t, \dots, w_n^t)$ over the data points

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - \Box Find h^t by minimizing the weighted error

$$\epsilon = \sum_{i=1}^{n} I_{[h^t(x_i) \neq y_i]} w_i^t$$
 over the features parameters

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - \Box Find h^t by minimizing the weighted error

$$\epsilon = \sum_{i=1}^{n} I_{[h^t(x_i) \neq y_i]} w_i^t$$
 over the features parameters

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - \Box Find h^t by minimizing the weighted error

$$\epsilon = \sum_{i=1}^{n} I_{[h^t(x_i) \neq y_i]} w_i^t$$
 over the features parameters

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - \Box Find h^t by minimizing the weighted error

$$\epsilon = \sum_{i=1}^{n} I_{[h^t(x_i) \neq y_i]} w_i^t$$
 over the features parameters

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - \Box Find h^t by minimizing the weighted error

$$\epsilon = \sum_{i=1}^{n} I_{[h^t(x_i) \neq y_i]} w_i^t$$
 over the features parameters

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - □ Find h^t by minimizing the weighted error $\epsilon = \sum_{i=1}^n I_{\{h^t(x_i) \neq y_i\}} w_i^t$ over the features parameters
 - □ Compute the confidence $\alpha^t = \frac{1}{2} \ln(\frac{1 \epsilon^t}{\epsilon^t})$

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - □ Find h^t by minimizing the weighted error $\epsilon = \sum_{i=1}^n I_{\{h^t(x_i) \neq y_i\}} w_i^t$ over the features parameters
 - Compute the confidence $\alpha^t = \frac{1}{2} \ln(\frac{1 \epsilon^t}{\epsilon^t})$
 - Update weight vector w

$$w_i^{t+1} = w_i^t \times \begin{cases} \frac{1}{2(1-\epsilon^t)} & \text{if } h^t(x_i) = y_i \\ \frac{1}{2\epsilon^t} & \text{if } h^t(x_i) \neq y_i \end{cases}$$

- Set a weight distribution $\mathbf{w}^t = (w_1^t, ..., w_n^t)$ over the data points
- For 1 ... T
 - □ Find h^t by minimizing the weighted error $\epsilon = \sum_{i=1}^n I_{\{h^t(x_i) \neq y_i\}} w_i^t$ over the features parameters
 - Compute the confidence $\alpha^t = \frac{1}{2} \ln \left(\frac{1 \epsilon^t}{\epsilon^t} \right)$
 - Update weight vector w
- Output the final strong learner

$$f(x) = sign(\sum_{t=1}^{T} \alpha^{t} h^{t}(x))$$

The amount of energy of the filter can be computed in constant time

The convolution of the filter can be computed in constant time

- A comprehensive search in the parameter space can be avoided
- Observation:
 Slight change in the parameters do not change the error significantly

- A set of random starting point is chosen, then a discrete gradient descent is performed.
- The overall performance is equivalent at the cost of few more iterations.

- The performance can be increased by a simple smoothing on the output of the previous k frames
- Observation:

If in the last k frames there has been speech (or music), it is highly probable that current frame τ will be speech (or music) too.

$$g(x_{\tau}) = \frac{\sum_{i=\tau-k}^{\tau} a^{\tau-i} f(x_{i})}{\sum_{j=\tau-k}^{\tau} a^{\tau-j}}$$

Results

- Dataset of real world radio transmission with music, talks, jingles, etc.. used by Scheirer and Slaney (1997)
- 11200 frames of normalized and processed with 20 ms STFT at a resolution of 256 points.

Results

- The error reaches a plateau after ~150 iterations/filters
- At frame level already the error get to ~12%
- With the smoothing the error drops to 6.7%

Results

Better than typical frame level features

Feature	CPU	Error
Rolloff Spec. Cent.	17% 17%	~46 ±3 % ~39 ±8 %
Spec. Flux ZCR	17% 0%	~39 ±1 % ~38 ±4 %
Ceps Resid	46%	~37 ±7 %
Proposed	<1%	~12 ±2 %

Demo

Real-time implementation as Winamp plugin available at: www.iro.umontreal.ca/~casagran/winamp

Demo

Real-time implementation as Winamp plugin available at: www.iro.umontreal.ca/~casagran/winamp

- Best suited in an ensemble algorithm among other features
- Alone it is already capable of good performance
- Extremely fast during detection

- Best suited in an ensemble algorithm among other features
- Alone it is already capable of good performance
- Extremely fast during detection
- Can learn any type of pattern
 - The patterns do not need to be limited to one frame!

Conclusions

- Best suited in an ensemble algorithm among other features
- Alone it is already capable of good performance
- Extremely fast during detection
- Can learn any type of pattern
 - The patterns do not need to be limited to one frame!
- Simple and easy implementation

End Part 1

- Thank you!
 - Questions?

Part 2 – Audio Genre Recognition

Blues

Audio Features: why?

- Signal audio is a real-valued vector
- Why not classify it directly?
 - Very high-dimensional vector

Audio Features: why?

- Signal audio is a real-valued vector
- Why not classify it directly?
 - Very high-dimensional vector
 - classification should have shift invariance

Audio Features: why?

- Signal audio is a real-valued vector
- Why not classify it directly?
 - Very high-dimensional vector
 - classification should have shift invariance
 - small differences in spectral magnitude are...
 - important for small magnitudes (quiet frequencies)
 - not important for large magnitudes (loud frequencies)
 - global frequency scaling is irrelevant
 - global frequency shifting is highly relevant

Timbre – almost-instant sound quality

 Rhythm – repeated sound structure over a few seconds

- Timbre almost-instant sound quality
 - cepstral coefficients: real(fft (log(T abs(fft(s))))
 - rceps: T = I
 - mfcc: T implements a Mel-scale projection
 - other options for T are Bark-scale and log-scale.

 Rhythm – repeated sound structure over a few seconds

- Timbre almost-instant sound quality
 - cepstral coefficients: real(fft (log(T abs(fft(s))))
 - rceps: T = I
 - mfcc: T implements a Mel-scale projection
 - other options for T are Bark-scale and log-scale.
 - zero-crossing rate

 Rhythm – repeated sound structure over a few seconds

- Timbre almost-instant sound quality
 - cepstral coefficients: real(fft (log(T abs(fft(s))))
 - rceps: T = I
 - mfcc: T implements a Mel-scale projection
 - other options for T are Bark-scale and log-scale.
 - zero-crossing rate
 - spectral centroid and flatness
 - E[] and Var[] of normalized FFT
- Rhythm repeated sound structure over a few seconds

- Timbre almost-instant sound quality
 - cepstral coefficients: real(fft (log(T abs(fft(s))))
 - rceps: T = I
 - mfcc: T implements a Mel-scale projection
 - other options for T are Bark-scale and log-scale.
 - zero-crossing rate
 - spectral centroid and flatness
 - E[] and Var[] of normalized FFT
 - linear predictive coefficients & reconstruction error
- Rhythm repeated sound structure over a few seconds

- Timbre almost-instant sound quality
 - cepstral coefficients: real(fft (log(T abs(fft(s))))
 - rceps: T = I
 - mfcc: T implements a Mel-scale projection
 - other options for T are Bark-scale and log-scale.
 - zero-crossing rate
 - spectral centroid and flatness
 - E[] and Var[] of normalized FFT
 - linear predictive coefficients & reconstruction error
- Rhythm repeated sound structure over a few seconds
 - important, interesting, but not used at MIREX

Audio Features: for AdaBoost

Segment Feature Extraction

Audio Features: for AdaBoost

Segment Feature Extraction

- input: a signal of (1024 * c) samples
- define s(j) to be the sub-signal of length 1024 starting at j*1024
- define r(j) = (mfcc(s(j)), rceps(s(j)), lpc(s(j)), zcr(s(j)), ro(s(j)), fftc(s(j)))

$$\vec{r}(j) = x_0, x_1, ..., x_{62}, x_{63},, x_{369}, x_{370}, x_{371},, x_{401}$$

Audio Features: for AdaBoost

- Segment Feature Extraction
 - input: a signal of (1024 * c) samples
 - define s(j) to be the sub-signal of length 1024 starting at j*1024
 - define r(j) = (mfcc(s(j)), rceps(s(j)), lpc(s(j)), zcr(s(j)), ro(s(j)), fftc(s(j)))
 - return (E[r(J)], Var[r(J)]) for J uniform on [0,c-1]
 - relative ordering of sub-signals is ignored

$$\vec{r}(j) = x_0, x_1, ..., x_{62}, x_{63},, x_{369}, x_{370}, x_{371},, x_{401}$$

Song

Algorithm

We used AdaBoost.MH to classify each window

Algorithm

- We used AdaBoost.MH (Schapire & Singer 1998) to classify each window
 - Weight distribution over examples and classes $w_{i,l}^t$

Algorithm

- We used AdaBoost.MH (Schapire & Singer 1998) to classify each window
 - Weight distribution over examples and classes $\boldsymbol{w}_{i.l}^t$
 - Find the dimension and threshold that minimizes the weighted error on one-vs-all binary classifiers

- Tzanetakis Database
 - □ 1100 files
 - 10 classes:
 - blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, rock

	Correct Rate
G. Tzanetakis (2002)	61%
T. Li (2003)	79%
Our Approach (MIREX)	83%
With Autocorrelation	86%

The weak map

Data Dimensions:

The weak map

The weak map

The weak map

Example 1: class 2

The weak map

Data Dimensions:

Example 1: class 2

The weak map

Data Dimensions: $-\alpha_1$ $-\alpha_2$ $-\alpha_3$ $+\alpha_4$ $-\alpha_5$

Example 2: class 1

- The weak map
 - RCEPS

Mirex Competition

Two Databases

- Magnatune 10 classes
 - ambient, blues, classical, electronic, ethnic, folk, jazz, new age, punk, rock.
- □ USPOP 6 classes
 - country, electronica & dance, new age, rap & hiphop ,reggae, rock.

Mirex Competition Results - USPS

HSPOP Row

Rank	Participant	Classification Accuracy
· ·		
1	Bergstra, Casagrande, Eck & Kégl (1)	86.29%
2	Mandel & Ellis	85.65%
3	Pampalk, E.	80.38%
4	Lidy & Rauber (SSD+RH)	79.75%
5	West, K.	78.90%
6	Lidy & Rauber (RP+SSD)	78.48%
6	Ahrendt, P.	78.48%
8	Lidy & Rauber (RP+SSD+RH)	78.27%
9	Scaringella, N.	75.74%
10	Soares, V.	66.67%
11	Tzanetakis, G.	63.29%
12	Burred, J.	47.68%
13	Chen & Gao	22.93%
14	Li, M.	TO *
14	Li, M.	TO *

Mirex Competition Results - Magna

Rank	Participant
------	--------------------

Magnatune Hierarchical Classification Accuracy

1	Bergstra, Casagrande, Eck & Kégl (1)	77.25%
2	Mandel & Ellis	71.96%
3	West, K.	71.67%
4	Lidy & Rauber (RP+SSD)	71.08%
5	Lidy & Rauber (RP+SSD+RH)	70.88%
6	Lidy & Rauber (SSD+RH)	70.78%
7	Scaringella, N.	70.47%
8	Pampalk, E.	69.90%
9	Ahrendt, P.	64.61%
10	Burred, J.	59.22%
11	Tzanetakis, G.	58.14%
12	Soares, V.	55.29%
13	Li, M.	TO *
13	Chen & Gao	DNC *

Mirex Competition Results - Overall

Rank Participant

Mean of Magnatune Hierarchical Classification Accuracy and USPOP Raw Classification Accuracy

1	Bergstra, Casagrande, Eck & Kégl (1)	81.77%
2	Mandel & Ellis	78.81%
3	West, K.	75.29%
4	Lidy & Rauber (SSD+RH)	75.27%
5	Pampalk, E.	75.14%
6	Lidy & Rauber (RP+SSD)	74.78%
7	Lidy & Rauber (RP+SSD+RH)	74.58%
8	Scaringella. N.	73.11%
9	Ahrendt, P.	71.55%
10	Soares, V.	60.98%
11	Tzanetakis, G.	60.72%
12	Burred, J.	53.45%

The End - Again

- Thank you!
 - Questions?