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‘ Introduction

= Does voice have a visible distinguishable
pattern?
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Using a robust image classifier by Viola &
Jones (2001) we can quickly classify music
against speech on real world data

2 Find simple basic features that computes the
difference of amount of energy
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The Features

10000
8000 e R tEeabw | R
6000f

Frequency

4000 Fieie e

2000 ==

‘ ‘ T ‘ T T T T
| | | .
_ a0l | | | | | |
Single frame ™ 3 ik N | |
= 60f |||\ \|| | | i
e |l r
< 40t lll,lf | \|LI.-'| | | -
I'J ‘ |
20 I| u \‘ .'| II'JIII|| I ‘ ‘ ]
N LAY I
0 b= e vl 1 e | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency

H B

B,— W+ B, = X,




The Features
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The Features

How do we
find the
position of the
filter?

The filters
have also
different sizes!
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‘ The Features
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The Features threshold
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AdaBoost

Successful general purpose learning method

At each iteration r a weak learner /1 returns a
binary prediction with error epsilon.

Strong learner

Weak learners

Input
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Set a weight distribution w'= (w', ..., w')
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AdaBoost

Set a weight distribution w'= (w', ..., w')
over the data points

For1 ... T
o Find A’ by minimizing the weighted error
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AdaBoost

Set a weight distribution w'= (w', ..., w')
over the data points

For1..T
o Find A’ by minimizing the weighted error
€= j 11[ Jey W w; over the features parameters

1 Compute the confidence (th%ln( l_te )
€




AdaBoost

Set a weight distribution w'= (w',..., w')

over the data points '

For1 ... T
o Find A’ by minimizing the weighted error

€= I Wi

t
i1 ; over the features parameters

1 Compute the confidence (xt:%ln( l_te )

0 Update weight vector w ¢
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AdaBoost

Set a weight distribution w'= (w', ..., w')
over the data points

For1 ... T
o Find A’ by minimizing the weighted error

€= I Wi

t
. ; over the features parameters

1 Compute the confidence (th%ln( l_te )

0 Update weight vector w ¢
Output the final strong learner

£ (x)=sign(Y, _ o'h'(x))
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Optimization

The amount of energy of the filter can
be computed in constant time
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Optimization

The convolution of the filter can be
Computed in Constant time
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Optimization

A comprehensive search in the parameter
space can be avoided

Observation:
Slight change in the
parameters do not
change the error
significantly
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Optimization

A set of random starting point is chosen, then
a discrete gradient descent is performed.

The overall
performance is
equivalent at the
cost of few more
iterations.
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Optimization

The performance can be increased by a simple
smoothing on the output of the previous k frames

Observation:

If in the last £ frames there has been

speech (or music), it is highly probable that
current frame T will be speech (or music) too.




Results

Dataset of real world radio transmission
with music, talks, jingles, etc..
used by Scheirer and Slaney (1997)

11200 frames of normalized and processed
with 20 ms STFT at a resolution of 256
points.



Results
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Results

Better than typical frame level features

Feature CPU Error

Rolloff 17% ~46 3 %
Spec. Cent. 17% ~39 £8 %
Spec. Flux 17% ~39 1 %
ZCR 0% ~38 +4 %

Ceps Resid 46% ~37 7 %

Proposed <1% ~12 2 %



Demo

Real-time implementation as \Winamp plugin
available at:
www.iro.umontreal.ca/~casagran/winamp
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Best suited in an ensemble algorithm
among other features

Alone it is already capable of good
performance

Extremely fast during detection
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Conclusions

Best suited in an ensemble algorithm among
other features

Alone it is already capable of good
performance

Extremely fast during detection

Can learn any type of pattern

0 The patterns do not need to be limited to one
frame!

Simple and easy implementation



End Part 1

Thank you!

0 Questions?



Part 2 — Audio Genre Recognition

* Blues

 Classical

» Country

* Disco

* Hiphop

DB » audio features . Jazz

* Metal

* Pop
.wav/.mp3 * Reggae

* Rock
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Signal audio is a real-valued vector

Why not classify it directly?
2 Very high-dimensional vector
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Audio Features : why?

Signal audio is a real-valued vector

Why not classify it directly?
2 Very high-dimensional vector
0 classification should have shift invariance

0 small differences in spectral magnitude are...
important for small magnitudes (quiet frequencies)
not important for large magnitudes (loud frequencies)

0 global frequency scaling is irrelevant
0 global frequency shifting is highly relevant
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Timbre — almost-instant sound quality

Rhythm — repeated sound structure over a
few seconds
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Audio Features : essence of music?

Timbre — almost-instant sound quality
0 cepstral coefficients: real(fft (log( T abs(fft(s)) ) ) )

rceps: T = |
mfcc: T implements a Mel-scale projection
other options for T are Bark-scale and log-scale.

0 zero-crossing rate

a spectral centroid and flatness
E[] and Var[] of normalized FFT

0 linear predictive coefficients & reconstruction error

Rhythm — repeated sound structure over a
few seconds

0 important, interesting, but not used at MIREX
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Audio Features : for AdaBoost

Segment Feature Extraction
0 input: a signal of (1024 * ¢) samples

0 define s(j) to be the sub-signal of length 1024 starting at
j¥1024

0 define r(j) = ( mfce(s(j)), reeps(s(j)), lpc(s(j)), zer(s(j)),
ro(s(j)), fftc(s())) )

MFCC FFTC
| | | |
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Audio Features : for AdaBoost

Segment Feature Extraction
0 input: a signal of (1024 * ¢) samples

0 define s(j) to be the sub-signal of length 1024 starting at
j¥1024

o define r(j) = ( mfce(s(j)), reeps(s(j)), lpc(s())), zcr(s(j)),
ro(s(j)), fftc(s()) )
a return ( E[r(J)], Var[ r(J) ] ) for J uniform on [0,c-1]
relative ordering of sub-signals is ignored
MFCC FFTC
| | | |
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Algorithm

We used AdaBoost.MH to classify each
window



Algorithm
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Algorithm

We used AdaBoost.MH (Schapire & Singer
1998) to classify each window

a0 Weight distribution over examples and

!
classes W i

2 Find the dimension and threshold that minimizes
the weighted error on one-vs-all binary classifiers

.I__.-,/ - (r) o \x__ll.
h x x 11 x 1 x x
/' !
ex1 ex2 ex3 ex4 ex5 ex7 ex8 ex9 (1)

(1)
«22113123—= h,22xxxx2x —
~ h(:) X X X x 3 x x 3



Evaluation

Tzanetakis Database
2 1100 files

2 10 classes:

blues, classical, country, disco, hiphop, jazz, metal, pop,
reggae, rock

Correct Rate

G. Tzanetakis (2002) 61%
T. L1 (2003) 79%
Our Approach (MIREX) 83%

With Autocorrelation 86%
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Evaluation

The weak map

Data Dimensions:

classes — —0, 0

B Example 2: class 1




Evaluation

The weak map
o RCEPS
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Mirex Competition

Two Databases

2 Magnatune — 10 classes
ambient, blues, classical, electronic, ethnic, folk, jazz, new
age, punk, rock.

2 USPOP - 6 classes
country, electronica & dance, new age, rap & hiphop
,reggae, rock.



Mirex Competition Results - USPS

USPOP Raw

Rank Participant Classification Accuracy

1 Bergstra, Casagrande, Eck & Kégl (1) 86.29%
2  Mandel & Ellis 85.65%
3 Pampalk, E. 80.38%
4  Lidy & Rauber (SSD+RH) 79.75%
5 West, K. 78.90%
6 Lidy & Rauber (RP+SSD) 78.48%
6  Ahrendt, P. 78.48%
8  Lidy & Rauber (RP+SSD+RH) 78.27%
9  Scaringella, N. 75.74%
10  Soares, V. 66.67%
11  Tzanetakis, G. 63.29%
12 Burred, J. 47.68%
13 Chen & Gao 22.93%
14 Li, M. TO *



Mirex Competition Results - Magna

Magnatune Hierarchical

Rank Participant Classification Accuracy

1  Bergstra, Casagrande, Eck & Keégl (1) 77.25%
2  Mandel & Ellis 71.96%
3 West, K. 71.67%
4  Lidy & Rauber (RP+SSD) 71.08%
5  Lidy & Rauber (RP+SSD+RH) 70.88%
6 Lidy & Rauber (SSD+RH) 70.78%
7  Scaringella, N. 70.47%
8  Pampalk, E. 69.90%
9  Ahrendt, P. 64.61%
10 Burred, J. 59.22%
11 Tzanetakis, G. 58.14%
12  Soares, V. 55.29%
13 Li, M. TO *
13 Chen & Gao DNC *



Mirex Competition Results - Overall

Mean of Magnatune Hierarchical

Rank Participant Classification Accuracy
and USPOP Raw Classification Accuracy

1  Bergstra, Casagrande, Eck & Kégl (1) 81.77%
2  Mandel & Ellis 78.81%
3 West, K. 75.29%
4  Lidy & Rauber (SSD+RH) 75.27%
5 Pampalk, E. 75.14%
6 Lidy & Rauber (RP+SSD) 74.78%
7  Lidy & Rauber (RP+SSD+RH) 74.58%
8  Scaringella. N. 73.11%
9  Ahrendt, P. 71.55%
10 Soares, V. 60.98%
11 Tzanetakis, G. 60.72%
12 Burred, J. 53.45%



The End - Again

Thank you!

2 Questions?



