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Zusammenfassung

Inseln der Musik sind eine graphische Benutzerschnittstelle zu Musiksammlungen basier-
end auf einer Metapher von geographischen Landkarten. Inseln repräsentieren Musik-
genres. Berge und Hügel auf diesen Inseln repräsentieren Subgenres. Die Inseln sind
derart angeordnet, dass ähnliche Genres nahe beisammen und vielleicht sogar durch
eine Landpassage verbunden sind, während Genres, welche als sehr unterschiedlich
wahrgenommen werden, durch ein tiefes Meer getrennt sind. Die Musikstücke aus
der Sammlung werden auf der Karte entsprechend ihrem Genre platziert. Um eine
Navigation auf der Karte zu unterstützen sind die Berge und Hügel mit Bezeichnungen
versehen welche rhythmischen und anderen Eigenschaften der repräsentierten Genres
entsprechen.

Inseln der Musik sind gedacht, um die Exploration von unbekannten Musiksammlung-
en zu unterstützen. Sie könnten von Musikgeschäften eingesetzt werden, um ihren
Kunden bei der Suche nach etwas Neuem zu helfen, genauso wie sie als Schnittstelle zu
digitalen Musikbibliotheken dienen können, oder einfach zur Organisation der Musik-
sammlung zu Hause.

Diese Diplomarbeit behandelt jene Herausforderungen welche bei der automatischen
Erzeugung solcher Inseln der Musik auftreten, wenn lediglich reine Musikdaten (z.B.
MP3s) gegeben sind ohne zusätzlicher Information, wie zum Beispiel die Zuordnung der
Musikstücke zu Genres. Die größte Herausforderung liegt darin, die wahrgenommene
Ähnlichkeit zweier Musikstücke zu berechnen. Basierend auf Modelle der Psychoakustik
wird ein Ansatz präsentiert mit Fokus auf den dynamischen Eigenschaften der Musik.
Ein Neuronales Netz, im speziellen die Self-Organizing Map, wird verwendet, um die
Musiksammlung zu organisieren. Mittels einer neuen Visualisierungstechnik wird die
Karte mit den Inseln erzeugt. Des weiteren werden Methoden zur Beschreibungen der
Berge und Hügel vorgestellt.
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Abstract

Islands of Music are a graphical user interface to music collections based on a metaphor
of geographic maps. Islands represent musical genres. Mountains and hills on these
islands represent sub-genres. The islands are situated in such a way that similar genres
are close together and might even be connected by a land passage while perceptually
very different genres are separated by deep sea. The pieces of music from the collection
are placed on the map according to their genre. To support navigation on the map
the mountains and hills are labeled with words which describe rhythmic and other
properties of the genres they represent.

Islands of Music are intended to support exploration of unknown music collections.
They could be utilized by music stores to assist their customers in finding something
new to buy. They could also serve as interfaces to digital music libraries, or they could
simply be used to organize one’s personal music collection at home.

This thesis deals with the challenges involved in the automatic creation of such
Islands of Music given only raw music data (e.g. MP3s) without any further information
such as which genres the pieces of music belong to. The main challenge is to calculate
the perceived similarity of two pieces of music. An approach based on psychoacoustics
is presented which focuses on the dynamic properties of music. Using a neural network
algorithm, namely the self-organizing map, the music collection is organized and a novel
visualization technique is facilitated to create the map of islands. Furthermore, methods
to find descriptions for the mountains and hills are demonstrated.
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1. Introduction

Music is magic. It influences our emotions. It has the power to make us happy or
sad, just as it can make us relaxed or aggressive. Often it is associated with some very
special moments in our lives. Moreover, music is an important part of our cultures and
identities. However, the most fascinating aspect of music might be the fact that the
annual turnover for record sales only within the US has a magnitude of several billion
USD.

This huge industry would not exist without its customers, who are always looking
for something new to listen to. There are many ways in which customers find their
desired products.

For example, one way is to listen around. Customers might listen to what is being
played on the radio or to what friends are listening to. However, this type of search is
restricted to the subjective taste of others. Furthermore, it might take a while until a
new release reaches ones ears.

Another approach is to follow the development of artists, who have been appreciated
in the past, assuming that their work will also be appreciated in the future. However,
this kind of search does not include unknown artists or newcomers.

Customers might also follow the development of a genre like Jazz, Hip Hop, Classic
or Funk. Relying on the classification skills of other people it is possible to search
music stores for new releases in certain genres. However, classifying music into a limited
number of genres is not an easy task. Lots of music is located somewhere in between
many genres.

The tool presented in this thesis is meant to help customers find music without
limiting the search to a specific genre or artist. This tool is based on a metaphor of
geographic maps. Genres of music are represented by islands and continents. Similar
genres are located close together and might even be connected through some land
passage. On these islands there might be some further sub-genres that are represented
as mountains and hills. Again these sub-genres might be more or less similar to each
other and are arranged accordingly.

The mountains and hills on the map are labeled with words that describe certain
attributes of the associated genre, for example the type of rhythm is described rather
than using words like Pop, Jazz or Classical.

The pieces of music in the collection are placed on the map according to their genre
or sub-genre. Most of the music will be located around the mountains. However the
few located in the valleys between typical genres might be the most interesting ones.

The user can listen to the music by clicking on its representation on the map and
can explore island after island according to his or her musical taste. Furthermore, music
known to the user can be used as landmarks, to identify interesting regions on the map.

The maps with the islands of music could easily be placed on a web page of an
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1. Introduction 2

internet store. Or they could be used in any conventional music store. Simple earphones
and a touch screen monitor connected to a server would be sufficient.

These maps could also be applied to digital libraries containing music, or simply
at home to organize the private music collection. They could reveal some interesting
properties of the inherent structure of the music collection that might not have been
obvious before.

The technical requirements to develop music maps have only recently been met by
the tremendous increase in computational power as well as the availability of affordable
large storage. Now it is possible to handle the huge amount of data within music
collections and to do the complex calculations leading to the music maps described
above within reasonable time.

1.1. Scope and Overview

This thesis explores two main aspects related to music maps. One is how to compute
the similarity of two pieces of music, so a whole music collection can be organized
accordingly. The second aspect is how to present this information to the user in an
intuitive way. The main goal of this thesis is to demonstrate the possibility of building
a system, which enables efficient exploration of unknown music collections, given only
the raw pieces of music without any meta information.

This thesis uses a music collection of 359 pieces with a total length of about 23
hours to illustrate and evaluate the methods. A detailed list of all pieces of music,
their authors and titles can be found in Appendix B. The music collection consists of
a mixture of pieces of music from different genres. Most of these pieces are well known
so that the reader can easily verify the presented results.

Related work can be found in Chapter 2. In particular the fields of content-based
music analysis and approaches based on the Self-Organizing Map are discussed. Work
related to details on psychoacoustics, clustering algorithms, and the visualization and
automatic summarization of the results is presented in the corresponding chapters.

In Chapter 3 the methods used to extract relevant features, which enable the com-
puter to compare two pieces of music, are presented. These features are derived from
the low-level raw audio signal without any additional meta information. Based on psy-
choacoustic findings, features are constructed which reflect the dynamic and rhythmic
properties of music. All feature extraction steps are illustrated using pieces of music
from the music collection.

Chapter 4 deals with different approaches used to combine and analyze the extracted
features. Four different approaches to describe pieces of music with different lengths
are presented. All methods are evaluated with the music collection.

The simplest of these approaches, which produces a quality that is comparable to
the other approaches, is used to describe a possible user interface in Chapter 5. A
novel method to visualize clusters in a Self-Organizing Map is presented along with



1. Introduction 3

methods to give automatic summaries for groups of music. Furthermore, a HTML-
based demonstration with a small subset of the music collection, which is available on
the internet1, is briefly described. This demonstration is intended to enable the reader
to explore and to listen to Islands of Music.

Finally in Chapter 6 this work is concluded. A summary and further work together
with interesting directions, with possibly very promising results are discussed.

1.2. Notation and Conventions

In the mathematical notation an italic typeface indicates scalar values, e.g. f, t. The
indexes of matrices are usually indicated by i, j, k and if not stated otherwise, run from
the lowest to the highest index. Using the Matlab r© convention all indexes of vectors
and matrices start with 1. Bold typeface indicates vectors and matrices, the former
using lower case symbols, e.g. x,m, and the latter using upper case symbols, e.g. P,S.
Note however, that exceptions to this convention do appear.

1http://student.ifs.tuwien.ac.at/~elias/music



2. Related Work

Music has been analyzed since the ancient Greeks. Pythagoras is credited with recog-
nizing that strings whose lengths are related as the ratio of small integers sounds good
when plucked at the same time. Since then a lot of research has been conducted and
very sophisticated models and systems have been developed.

In the scope of this thesis especially systems which are designed to search for music
based on its content are interesting, since this is the main motivation for this thesis. Sec-
tion 2.1 reviews the literature on content-based music retrieval and section 2.2 focuses
on approaches using the SOM algorithm. Work related to details on psychoacoustics,
clustering algorithms, and the visualization and automatic summarization of the results
is presented in the respective chapters.

2.1. Content-Based Music Retrieval

There are several possibilities to search for music based on its content. One is to use
metadata information consisting of descriptions which have manually been assigned to
each piece of music. These descriptions can be as simple as the name of the piece
of music, but also more complex like an assignment to a specific genre or a verbal
description of the music. The necessary standards are provided, for example, by the
MPEG 7 standard [NL99]. A system based on MPEG 7 to compare sounds has, for
example, been presented by [PMH00].

Often pieces of music have lyrics, thus another possibility would be to apply methods
from text document retrieval to search for music. Such systems are currently in use, for
example, BigLyrics.com and LyricCrawler.com are two of the currently biggest music
lyric search engines on the web. Using the lyrics as descriptions of the music it is
possible to create an interface to allow an exploration of music archives where pieces of
music with similar lyrics are located close to each other on a 2-dimensional map display
using methods which have been developed mainly for text document collections, such
as the SOMLib [RM99] or the WebSOM [KHLK98].

Sometimes music is available in the MIDI format [MID96] and for a limited subset of
music automatic transcription to the MIDI format is possible (e.g. [Moo77, MSW96b]).
Music archives in MIDI format contain information on the exact melody for each song.
Hawley presented a system [Haw90], where the user enters a melody on a keyboard and
tunes whose beginnings exactly match the input are retrieved. Ghias et al. [GLCS95]
presented a system where the user hummes a query, which is reduced to relative in-
formation such as if a note is higher, lower or about the same as the previous, and
retrieves songs which have similar melodies. One of the best known representatives of
such systems is the New Zealand Musical Digital Library [MSW+96a, BNMW+99].

Additionally to the melody of a piece of music information on its style can be
4



2. Related Work 5

abstracted from the MIDI data. Dannenberg et al. [DTW97] described a system,
which classified solo improvised trumpet performances into one of the four styles: lyrical,
frantic, syncopated, or pointillistic.

However, not always metadata is available and the metadata available might be
erroneous, incomplete or inaccurate due to the deficiencies of manual labor. Likewise
song lyrics are not always available, speech recognition systems only have a limited
capability of extracting the lyrics automatically. And finally most music is available in
MP3 or other similar formats rather than in MIDI. Thus content-based systems which
directly analyze the raw music data (acoustical signals) have been developed. The
models of these systems for music processing are usually sub-symbolic [Lem89] since
they operate directly on acoustical signals and do not involve an explicit symbolization
step as, for example, in [Wid01], where the musical structure is analyzed on a very
abstract level.

An overview of systems analyzing audio databases was presented by Foote [Foo99].
However, Foote focuses particularly on systems for retrieval of speech or partly-speech
audio data. Several studies and overviews related to content-based audio signal clas-
sification are available (e.g. [Ger00, LW01]), however, they do not treat content-based
music classification in detail.

Wold et al. [WBKW96] presented a system which analyzes sounds based on their
pitch, loudness, brightness, and bandwidth over time and tracked the mean, variance,
and autocorrelation functions of these properties. They analyze sounds such as speech
and individual musical notes, but do not focus on whole music collections.

Other approaches (e.g. [Foo97, BKWW99, Log00]) are based on methods developed
in the digital speech processing community using Mel Frequency Cepstral Coefficients
(MFCCs). MFCCs are motivated by perceptual and computational considerations, for
example, instead of calculating the exact loudness sensation only decibel values are used.
Furthermore the techniques appropriate to process speech data are not necessarily the
best for processing music. For example, the MFCCs ignore some of the dynamic aspects
of music.

Recently Scheirer [Sch00] presented a model of human perceptual behavior and
briefly discussed how his model can be applied to classifying music into genre categories
and performing music similarity-matching. However, he has not applied his model to
large scale music collections. The collection he uses consisted of 75 songs from each of
which he selected two 5-second sequences.

2.2. Approaches using Self-Organizing Maps

This thesis is built upon the work of Frühwirth and Rauber [Frü01, FR01, RF01], who
have shown that it is possible to cluster and organize music using neural networks.
In their work they extract features from MP3 files which enable a self-organizing map
(SOM) [Koh01] to learn the inherent structure within a music collection. The feature



2. Related Work 6

extraction process consists of several steps.
They first transform the audio signals into the frequency domain using a fast Fourier

transformation (FFT) with about 20 millisecond windows. In the frequency domain
they select 17 frequencies for further processing. They split each piece of music into
5-second sequences. They remove the first and the last sequences to avoid fade-in and
fade-out effects. From the remaining they select a subset using only every second to
third sequence. Each frequency band from the selected sequences is then transformed
into the frequency domain yielding 256 coefficients. They combine these 256 values for
the 17 bands in a 4352-dimensional vector representing a 5-second sequence. These
vectors reflect the dynamic properties of the selected frequencies.

A SOM is used to organize the large number of 5 second sequences on a 2-dimensional
map in such a way that similar sequences are located close to each other. The different
sequences of one piece of music might be scattered across the map if it contains a lot
of variations. To get the pieces together again another feature vector is created using
the information on where the different sequences of one piece of music are located.
With this information another SOM is trained which organizes the pieces of music on
a 2-dimensional map.

This thesis follows some of the proposals for further work presented by Frühwirth
[Frü01] and tries to combine the well working approach with psychoacoustics methods
to improve the performance.

An overview of psychoacoustics can be found in [ZF99]. Psychoacoustics deals with
the relationship of physical sounds and the human brain’s interpretation of them. For
example, Feiten [FG94] applies psychoacoustics to cluster about 100 different music
instruments according to their sounds. He uses the concepts of critical-bands and spe-
cific loudness, which are further discussed in Chapter 3. Feiten divides the sounds into
sequences of very short (6 milliseconds) steady-state components, assuming that sim-
ilar sounds are similar sequences of steady-state sounds. He then applies the SOM
algorithm to order them according to their similarity on a 2-dimensional map. Each
dynamic sound is represented by a trajectory on this map, and similar dynamic sounds
have similar trajectories, which Feiten uses to create a (SOM) map of the music instru-
ments.

Feiten’s approach is very accurate and works very well with music instruments.
However it is computationally expensive. Using only 300 millisecond sounds to describe
each of the 100 music instruments, yields 5000 different steady-state sounds. A small
music collection with about 10 hours of music would result in about 6 million steady-
state sounds.

A similar approach as Feiten’s where a SOM was used to cluster music instruments
was presented by Cosi et al. [CPL94]. While Feiten applies general psychoacoustic mod-
els, Cosi et al. rely on specific methods developed by the speech processing community
to process the audio signals.

Another approach using the SOM was published by Leman [Lem94, Lem95]. Leman
used the SOM to represent tonality in music and using this 2-dimensional representation
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to analyze cadence sequences of pieces of music. Leman’s goal is to analyze music and
he is especially interested in musicology and hopes to provide tools of interest for music
theorists in understanding the nature of music. Thus the goal is rather different to the
one of this thesis.



3. Feature Extraction

Music with a duration of 5 minutes is usually represented by 13 million values. These
values describe the physical properties of the acoustical waves, which we hear. When
analyzing this data it is necessary to remove the irrelevant parts and emphasize the
important features. The extraction of these features from the raw data is the most
critical part in the process of creating a content-based organization in a music collection.
If it were possible to extract one single feature that directly indicates which genre a
piece of music belongs to, everything else would be trivial.

Good features should be intuitively meaningful, based on psychoacoustic findings,
and robust towards variations which are insignificant to our hearing sensation. Fur-
thermore, they should lead to an organization of the music collection that makes sense
and not be too expensive to compute.

It is necessary to consider computational aspects because the raw data of even small
music collections easily consumes several gigabytes of storage. A detailed analysis of all
this information and all its possible meanings would be computationally prohibitive. It
thus is necessary to reduce the amount of information to what is relevant in respect to
the overall goal, which is to organize music according to its genre. These genres are not
clearly defined and different people might assign the same piece of music to different
genres. However, there are some attributes of the raw data, which definitely do not
determine the genre. For example, removing the first second of a piece of music does
not change its genre, but the raw data compared bit wise will be completely different.
Generally the duration of a piece of music is not relevant. Neither does a particular
melody define a genre. The same melody can be interpreted in different genre styles
just as different melodies might be members of the same genre. Likewise, the number
of instruments involved plays a minor role in defining the genre.

One of the attributes that is rather typical for a genre is its rhythm which is why this
thesis primarily focuses on the dynamics of music, and in particular on the fluctuation
strength [Fas82] of the specific loudness per critical-band [Fel55, ZFS57].

The following sections describe the feature extraction steps starting with the raw
data, which is transformed from the time-domain to its frequency-domain representa-
tion. In the frequency-domain several transformations are applied to obtain the specific
loudness per critical-band.

Based on the specific loudness per critical-band the loudness fluctuation in a time
interval of about 6 seconds is analyzed and an image in the dimensions of critical-band,
modulation frequency, and fluctuation strength is created. To this image gradient
and Gaussian filters are applied to emphasize important characteristics and remove
insignificant ones. The modified fluctuation strength is used as final feature for the
clustering algorithms.

8



3. Feature Extraction 9

3.1. Raw Audio Data

There are different possibilities to code digitized music. This thesis focuses on Pulse
Coded Modulation (PCM) audio data to which any digital music representation can be
transformed. For example, MP3 files can easily be decoded to PCM using almost any
of the currently available audio players.

The PCM data is the discrete representation of a continuous acoustical wave. The
amplitude is usually represented by 16 bits, which allows the description of more than
65,000 different amplitude levels. The time axis is usually sampled 44,100 times per
second, which is one amplitude value approximately every 23 microseconds. The unit
of the sampling frequency is Hertz (Hz), measured in cycles per second. The amplitude
values are dimensionless although they correspond to sound pressure levels. The actual
level depends on the sound system used to create physical acoustic waves.

Figure 3.1 illustrates 44kHz PCM data at different magnitude levels. The song Freak
on a Leash by Korn is rather aggressive, loud, and perhaps even a little noisy. At least
one electric guitar, a strange sounding male voice, and drums create a freaky sound
experience. In contrast Für Elise by Beethoven is a rather peaceful, classical piano
solo. These two pieces of music will be used throughout the thesis to illustrate the
different steps of the feature extraction process. The envelope of the acoustical wave in
Für Elise over the interval of one-minute has several modulations and seldom reaches
the highest levels, while Freak on a Leash is constantly around the maximum amplitude
level. There is also a significant difference in the interval of only 20 milliseconds (ms),
where Freak on a Leash has a more jagged structure than Für Elise.

Obviously some basic descriptions of the audio signals would be sufficient to dis-
tinguish the peaceful-classical from the aggressive-noisy. One commonly used feature
of signals is their zero-crossings (e.g. [SMK98, ZK98]), counting the times the signal
crosses over the zero line. Another possibility is to analyze the envelope of the signal
and extract beat information, based on the correlation between the magnitude of the
envelope and the loudness [Dix00]. The main advantage of any features extracted di-
rectly from the PCM data is that they avoid computationally expensive preprocessing,
which is necessary to transform the PCM data into data more representative of what
we perceive. For example, it is not possible to recognize if there are vocals or not, or if
the energy in the audio signal derives from instruments with high or low pitch.

Besides finding a representation that corresponds with our perception, it is also
necessary to reduce the amount of data. A 5-second stereo sound sampled at 44kHz
with 16 bit values equals almost 7 megabytes of data. For this reason the music is
down-sampled to 11kHz, the two stereo channels are added up to one (mono), and only
a fraction of every song is used for further processing. Specifically only every third
6-second sequence is further processed, starting after the first 12 seconds (fade-in) and
ending before the last 12 seconds (fade-out). Additionally, zeros at the beginning or
end of the music are truncated. This leads to a data reduction by a factor of over 16.

Changing stereo to mono has no significant impact on the perception of the music
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(a) Korn, Freak on the Leash
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(b) Beethoven, Für Elise

Figure 3.1: The 44kHz PCM data of two very different pieces of music at different time
scales. The titles of the subplots indicate their time intervals. The second minute was
chosen since the first minute includes fade-in effects. Starting with an interval of 60
seconds each subsequent subplot magnifies the first fifth of the previous interval. This
is indicated by the dotted lines. For each of the two pieces of music, the amplitude
values are relative to the highest amplitude within the one-minute intervals.

genre. Using only a small fraction of an entire piece of music should be sufficient since
humans are able to recognize the genre within seconds. Often it is possible to recognize
the genre by listening to only one 6-second sequence of a piece of music. A more accurate
classification is possible if a few sequences throughout the piece of music are listened
to. However, the first and the last seconds of a piece of music usually contain fade-in
and fade-out effects, which do not help in determining the genre. Neither should the
down-sampling affect the ability to recognize the genre. In simple experiments using
average computer speakers it was hardly possible to recognize the difference between
44kHz and 11kHz for most songs, while the genres remain clearly recognizable. Figure
3.2 depicts the effect of down-sampling. Notice that some of the fine details are lost,
however, the signals still look alike. It is important to mention that down-sampling to
11kHz means that only frequencies up to 5.5kHz are noticeable, which will be discussed
in the next section. This is definitely far below the 16kHz an average human can hear,
however, 5.5kHz are sufficient to cover the spectrum we use in speech, and almost all
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Figure 3.2: The effects of down-sampling on a 20ms sequence of Freak on a Leash. This
sequence is the same as the one in the last subplot of Figure 3.1(a).

frequencies used in music [ZF99]. Furthermore, very high frequencies are usually not
perceived as pleasant and thus do not play a very significant role in music.

3.2. Loudness Sensation

Loudness belongs to the category of intensity sensations. The loudness of a sound
is measured by comparing it to a reference sound. The 1kHz tone is a very popular
reference tone in psychoacoustics, and the loudness of the 1kHz tone at 40dB is defined
to be 1 sone. A sound perceived to be twice as loud is defined to be 2 sone and so on.

To calculate the loudness sensation from raw audio data several transformations
are necessary. The raw audio data is first decomposed into its frequencies using a
discrete Fourier transformation. These frequencies are bundled according to the non-
linear critical-band rate scale (bark). Then spectral masking effects are applied before
the decibel values are calculated. The decibel values are transformed to equal loudness
levels (phon) and finally from these the specific loudness sensation is calculated (sone).

At the end of this section each transformation is illustrated using examples from
the music collection used for the experiments conducted for this thesis.

3.2.1. Discrete Fourier Transformation

Complex acoustical signals consist of several waves with different frequencies and am-
plitudes. The inner ear (cochlea) of humans decomposes the incoming acoustical waves
into separate frequencies. The energy of different frequencies is transferred to and con-
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centrated at different locations along the basilar membrane. Thus, it is appropriate to
transform the PCM data into the frequency domain before analyzing it further. This
can be achieved using, for example, Fourier Transformations. Alternatives include
Wavelets [Chu92], but are not considered in this thesis.

Theory

In this subsection only the most important characteristics are summarized. A more
detailed description can be found, for example, in [Bri74, PTVF92].

Using the linear Fourier transform, a continuous signal can be transformed between
its time domain representation, denoted by h(t), and the frequency domain representa-
tion H(f). The respective equations are

H(f) =
∫ +∞

−∞
h(t)e2πiftdt, and

h(t) =
∫ +∞

−∞
H(f)e−2πiftdf. (3.1)

Note that i2 = −1 and eix = cos(x) + i sin(x).
Pharseval’s theorem, states that the total power in the signal is the same whether

calculated in the time domain or the frequency domain. This is important for the
loudness calculation of a sound and is formulated as

∫ +∞

−∞
|h(t)|2dt =

∫ +∞

−∞
|H(f)|2df. (3.2)

The one-sided power spectral density Ph(f), defines how much power is contained
within the frequency interval between f and f + df . For real valued signals it is
calculated as Ph(f) = 2|H(f)|2.

As mentioned before, the audio signal is sampled at a fixed sampling rate, so the
function is not continuous h(t) but discrete h(k∆t) with k denoting the whole-numbered
index of the sample. The constant ∆t denotes the time interval between two samples,
which is determined by the sampling frequency (for 11kHz data ∆t is less then 0.1ms).

For any sampling interval ∆t there is a special frequency fc, called the Nyquist
critical frequency, given by fc ≡ 1/(2∆t). To describe a sine wave two samples per
period are necessary. One sample point to define the positive peak and one for the
negative peak.

Shannons sampling theorem states that a sampled continuous bandwidth limited
function h(t) is completely determined by its samples (measured at k∆t) if all its
frequencies are smaller in magnitude than fc. More accurately, if H(f) = 0 for all
|f | > fc, then h(t) is given explicitly by the formula

h(t) = ∆t
+∞∑

k=−∞
h(k∆t)

sin (2πfc (t− k∆t))
π(t− k∆t)

. (3.3)

This is remarkable since the information of a signal with a potentially infinite amount
of information is reduced to a finite amount. On the other hand physical signals, such
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as audio signals are usually not bandwidth limited. Sampling and applying a discrete
Fourier transformation to audio signals will fold the energy contained in the frequencies
beyond fc into the range within fc. More accurately the energy of the frequency fc+∆f

is moved to fc−∆f . This is know as aliasing. The only way to avoid this is by low-pass
filtering the original signal before sampling.

Putting it all together, when down-sampling the 44kHz PCM signal to 11kHz it is
necessary to apply a low-pass filter that cuts off frequencies beyond 5.5kHz. From the
PCM signal sampled at 11kHz it is possible to obtain the true Fourier transform for
frequencies up to 5.5kHz.

The discrete Fourier transform is applied to h(k∆t) with k = 1, . . . , N assuming
that the period length of h(t) = N∆t. For simplicity N is assumed to be even. Since
the Fourier transformation is linear, N inputs can only produce N independent outputs,
which correspond to the frequencies given by

f(n) ≡ n

N∆t
, n = −N

2
, . . . ,

N

2
. (3.4)

Notice that there are N+1 values, however, the two extremes of n are equal. For real
valued signals H(f(n)) is symmetric resulting in a frequency resolution of

fres(n,N,∆t) ≡ n

N∆t
, n = 0, . . . ,

N

2
. (3.5)

The estimation of the discrete Fourier transform which maps N complex numbers to
N complex numbers is given by

H (f (n)) ≈ ∆t
N∑

k=1

h(k∆t) e2πi(k−1)n/N (3.6)

The Fast Fourier Transformation (FFT) calculates the discrete Fourier transform
in O(Nlog2N) instead of O(N2) operations. Especially if N is a power of 2, the Fourier
transform can be calculated very efficiently. The Matlab r© FFT functions used for this
thesis are based on the FFTW1 library which has been developed at the MIT.

As mentioned above, the assumption is that the function h(k∆t) has a period of
N . This is rather unlikely when an arbitrary sequence is taken out of a music signal.
For example, the signal might start with a high amplitude at k = 1 and have a low
amplitude at k = N . This leads to a discontinuity which gives rise to ringing (leakage)
or sidelobes, which can be seen as errors in the frequency-domain. To reduce these
effects, window functions w(k) are used and multiplied with the signal function h(k∆t)
in the time-domain. A common choice for a windowing function is the Hanning window.
Figure 3.3 depicts the Hanning window and its effect on a signal and its power spectrum.
The Hanning window is calculated as

w(k) =
1
2

(
1− cos

(
2π

k − 1
N − 1

))
, k = 1, . . . , N. (3.7)

1http://www.fftw.org
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Figure 3.3: The upper subplot shows the Hanning function over an interval of 256
samples plotted with the solid line. The dotted lines indicate the values for the Hanning
functions with 50% overlap. The center subplot depicts the effects of the Hanning
function applied to a signal. The signal is the same as the one in Figure 3.2. It is
taken from Freak on a Leash, sampled at 11kHz, in the interval 60s to 60s+23ms. The
solid line is the result of multiplying the Hanning window with the sample values, the
dotted line is the original waveform. Notice that while the original signal starts with
an amplitude of about -0.25 and ends with an amplitude of 0.17, the signal multiplied
with the Hanning function starts and ends at zero. The lower subplot shows the effects
of the Hanning function in the frequency domain. Again the solid line represents the
signal to which the Hanning function has been applied, and the dotted line represents
the original signal. The decibel (dB) values will be explained in subsection 3.2.4.

Application

One of the aspects of music is that the frequencies change continuously, however, within
very short time frames the frequencies are approximately constant. These very short
sequences can be seen as fundamental building blocks of music. Thus, a piece of music
can be described with subsequent frequency patterns, each representing a time quantum.

A common choice for this interval is 20ms. The music data used for this thesis is
sampled at 11025Hz. To optimize the FFT the number of samples N should be a power
of 2. However, this does not mean that it is necessary to have N samples. Shorter
signals can be padded with zeros. Using 23ms time frames corresponds to 256 samples
and results in a frequency resolution of about 43Hz in a range from 0 to 5.5kHz. As
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indicated in Figure 3.3 a 50% overlap between the windows is used. Notice that the
sum of the two overlapping Hanning windows at any point always equals 1. A 50%
overlap increases the time resolution by a factor 2 to about 12ms. The results of the
FFT are visualized in Figure 3.7 as the one-sided power spectral density Ph(f).

The calculations are implemented as follows. The raw audio data is given in vectors
yt of length N corresponding to 23ms at the time frame t. The power spectrum matrix
P(n, t), where n is the index for the frequency and t for the time frame can be calculated
using,

y′t = WN yt,

Yt = fft(yt), and

P(n, t) = |Yt(n)|2 1
N

. (3.8)

The index n ranges from 1 to N/2+1. The matrix WN contains the Hanning function
weights for N points on the diagonal with zeros elsewhere where N = 256 at 11kHz.
The fft function is taken from the previously mentioned FFTW library.

The data after this feature extraction step basically still has the same size. While
the discrete Fourier transformation yields 129 values for 256 sample values, the 50%
overlap increases the amount of data by 2.

3.2.2. Critical-Bands

So far a piece of music is represented by a frequency snapshot every 12ms. These have
one value every 43Hz starting at 0Hz up to 5.5kHz, where each value represents the
power of the respective frequency.

As stated previously, the inner ear separates the frequencies, transfers, and con-
centrates them at certain locations along the basilar membrane. The inner ear can
be regarded as a complex system of a series of band-pass filters with an asymmetri-
cal shape of frequency response. The center frequencies of these band-pass filters are
closely related to the critical-band rates. Where these bands should be centered or how
wide they should be, has been analyzed throughout several psychoacoustic experiments
[ZF99]. While we can distinguish low frequencies of up to about 500Hz well, our ability
decreases above 500Hz with approximately a factor of 0.2f , where f is the frequency.
This is shown in experiments using a loud tone to mask a more quiet one. At high
frequencies these two tones need to be rather far apart regarding their frequencies,
while at lower frequencies the quiet tone will still be noticeable at smaller distances. In
addition to these masking effects the critical-bandwidth is also very closely related to
just noticeable frequency variations. Within a critical-band it is difficult to notice any
variations. This can be tested by presenting two tones to a listener and asking which
of the two has a higher or lower frequency.

Since the critical-band scale has been used very frequently, it has been assigned a
unit, the bark. The name has been chosen in memory of Barkhausen, a scientist who
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Figure 3.4: The basic characteristics of the critical-band rate scale. Two adjoining
markers on the plotted line indicate the upper and lower frequency borders for a critical-
band. For example, the 24th band starts at 12kHz and ends at 15.5kHz.

introduced the phon to describe loudness levels for which critical-bands play an impor-
tant role. Figure 3.4 shows the main characteristics of this scale. At low frequencies
below 500Hz the critical-bands are about 100Hz wide. The width of the critical bands
increases rapidly with the frequency. The 24th critical-band has a width of 3500Hz. The
9th critical-band has the center frequency of 1kHz. The critical-band rate is important
for understanding many characteristics of the human ear.

A critical-band value is calculated by summing up the values of the power spectrum
within the respective lower fa(i) and upper fb(i) frequency limits of the i-th critical-
band. This can be formulated as

B(i, t) =
∑

nεI(i)

P(n, t), I(i) = {n | fa(i) < fres(n− 1, 256, 1/11025) ≤ fb(i)} (3.9)

where i, t, n are indexes and B is a matrix containing the power within the i-th critical-
band at a specific time interval t. P is the matrix representing the power per frequency
and time interval t obtained from Equation 3.8. The relation between actual frequency
and the row index n of P can be obtained using fres(n− 1, 256, 1/11025) (cf. Equation
3.5). The necessary upper and lower limits for each critical-band are listed in Table 3.1
[ZF99]. Notice that P(1, t), which represents the power at 0Hz, is not used.

While the critical-band rate is defined having 24 bands, only the first 20 are used
in this thesis, since the highest frequencies in the data are limited to 5.5kHz. The 129
power spectrum values are now represented by 20 critical-bands values. This corre-
sponds to a data reduction by a factor of about 6.5.

3.2.3. Masking

As mentioned before, the critical-bands are closely related to masking effects. Masking is
the occlusion of one sound by another sound. A loud sound might mask a simultaneous
sound (simultaneous masking), or a sound closely following (post-masking) or preceding
(pre-masking) it. Pre-masking is usually neglected since it can only be measured during
about 20ms. Post-masking, on the other hand can last longer than 100ms and ends after
about a 200ms delay. Simultaneous masking occurs when the test sound and the masker
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Table 3.1: Critical-band rate z, lower (fa) and upper (fb) frequency limits of the
critical bandwidths, f∆, centered at fc [ZF99].

z fa, fb fc z f∆ z fa, fb fc z f∆

Bark Hz Hz Bark Hz Bark Hz Hz Bark Hz
0 0 12 1720

50 0.5 100 1850 12.5 280
1 100 13 2000

150 1.5 100 2150 13.5 320
2 200 14 2320

250 2.5 100 2500 14.5 380
3 300 15 2700

350 3.5 100 2900 15.5 450
4 400 16 3150

570 4.5 110 3400 16.5 550
5 510 17 3700

570 5.5 120 4000 17.5 700
6 630 18 4400

700 6.5 140 4800 18.5 900
7 770 19 5300

840 7.5 150 5800 19.5 1100
8 920 20 6400

1000 8.5 160 7000 20.5 1300
9 1080 21 7700

1170 9.5 190 8500 21.5 1800
10 1270 22 9500

1370 10.5 210 10500 22.5 2500
11 1480 23 12000

1600 11.5 240 13500 23.5 3500
12 1720 24 15500

1850 12.5 280

are present simultaneously. For this thesis the spreading function is used to estimate
the effects of simultaneous masking across the critical-bands [SAH79]. The spreading
function defines the influence of the j-th critical-band on the i-th and is calculated as

S(i, j) = 15.81 + 7.5(i− j + 0.474)− 17.5
√

1 + (i− j + 0.474)2. (3.10)

The spread critical-band rate spectrum matrix BS is obtained by multiplying B with
S as follows

BS(i, t) =
20∑

j=1

S(i, j)B(j, t), which is equivalent to

BS = SB. (3.11)

The simultaneous masking asymmetrically spreads the power spectrum over the critical-
bands. The masking influence of a critical-band is higher on bands above it than on
those below it.
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3.2.4. Decibel

Before calculating sone values it is necessary to transform the data into decibel. The
intensity unit of physical audio signals is sound pressure and is measured in Pascal (Pa).
The values of the PCM data correspond to the sound pressure. It is very common to
transform the sound pressure into decibel (dB). Decibel is the logarithm, to the base
of 10, of the ratio between two amounts of power. The decibel value of a sound is
calculated as the ratio between its pressure and the pressure of the hearing threshold
given by 20µPa. The sound pressure level in dB is calculated as

sdB = 10 log10

p

p0
, (3.12)

where p is the power of the sound pressure, and p0 is the power of the sound pressure
of the hearing threshold. The power is calculated as the squared sound pressure.

Parseval’s theorem states that the power of the signal is the same whether calculated
in the time domain or the frequency domain, so the dB values can be calculated for the
spread critical-band matrix BS . A parameter to adjust is the reference value p0. Note
that the influence of the hearing threshold p0 on the decibel calculations is non-linear.
If the hearing threshold is too low insignificant sounds will become significant, on the
other hand if it is too high significant sounds will become insignificant.

Knowing that the sound pressure of the signals is digitized using 16 bit, it could
be assumed that the most quiet, just noticeable power of the sound pressure level
corresponds to 1 (or -1). When using p0 = 1 the notation db(SPL) is used, where
SPL stands for sound pressure level. The maximal decibel value for the energy at a
certain frequency using db(SPL) is 96dB. However, the use of this assumption has led
to sone values beyond the limit of damage risk in the experiments conducted for this
thesis. This occurs because the energy of the frequencies are added together in the
critical-bands and the masking function used is additive. The problem with decibel
values beyond the limit of damage risk is that only equal loudness contours for levels
below the limit are available, thus it is not possible to calculate accurate phon values
(see next section), which have a non-linear correlation to the decibel values. To be able
to calculate the phon values the PCM amplitudes of the music collection were scaled so
that all sounds are below the limit of damage risk. This corresponds to turning down
the volume to a level at which the loudness of all music listened to, is within healthy
ranges. The hearing threshold parameter p0 was set to 1/0.35. The loudness matrix in
decibel, LdB, is calculated as follows,

B′
S(i, t) = min(BS(i, t), p0), and

LdB(i, t) = 10 log10

1
p0

B′
S(i, t). (3.13)

Note that the first step is made in order to avoid the logarithm of zero.



3. Feature Extraction 19

10
−1

10
0

10
1

0

20

40

60

80

100

120

Frequency [kHz]

Lo
ud

ne
ss

 [d
B

]

Figure 3.5: Equal loudness contours for 3, 20, 40, 60, 80 and 100 phon. The respective
sone values are 0, 0.15, 1, 4, 16 and 64 sone. The dotted vertical lines indicate the
positions of the center frequencies of the critical-bands (see Table 3.1). Notice how
the critical-bands are almost evenly spaced on the log-frequency axis around 500Hz to
6kHz. The dots correspond to the values of the Celc matrix used to estimate the phon
values from the dB values. The dip around 2kHz to 5kHz corresponds to the frequency
spectrum we are most sensitive to.

3.2.5. Phon

The relationship between the sound pressure level in decibel and our hearing sensation
measured in sone is not linear. The perceived loudness depends on the frequency of the
tone. Figure 3.5 shows so-called loudness levels for pure tones, which are measured in
phon. The phon is defined using the 1kHz tone and the decibel scale. For example, a
pure tone at any frequency with 40 phon is as loud as a pure tone with 40dB at 1kHz.
We are most sensitive to frequencies around 2kHz to 5kHz. The hearing threshold
rapidly rises around the lower and upper frequency limits, which are respectively about
20Hz and 16kHz.

Although the equal loudness contours are obtained from experiments with pure
tones, they are frequently applied to calculate the specific loudness of the critical-
band rate spectrum. The loudness matrix in phon, Lphon, can be calculated using
the equal loudness contour matrix Celc and the corresponding phone values to each
contour cphon = [3, 20, 40, 60, 80, 100]. Celc(i, j) contains the decibel values of the j-th
loudness contour at the i-th critical-band. The values are illustrated in Figure 3.5 and
can be found in Appendix A.2.1. Values in between two equal loudness contours are



3. Feature Extraction 20

0 10 20 30 40 50 60
0

50

100

Lo
ud

ne
ss

 L
ev

el
 [p

ho
n]

Loudness Sensation [sone]

Figure 3.6: The relationship between the loudness level and the loudness sensation.

interpolated linearly, as follows

L′dB(i, t) = max(LdB(i, t),Celc(i, 1)),

leveli,t = argmin
j

(L′dB(i, t) < Celc(i, j)),

ri,t =
L′dB(i, t)−Celc(i, leveli,t − 1)

Celc(i, leveli,t)−Celc(i, leveli,t − 1)
, and

Lphon(i, t) = cphon(leveli,t − 1) + ri,t cphon(leveli,t). (3.14)

Note that Lphon(i, t) can only be calculated if there exists an equal loudness contour j

in Celc(i, j) so that cphon(j) > Lphon(i, t). The highest decibel level used here is 100dB
and p0 (see above) is adjusted manually so all sounds are below this limit.

3.2.6. Sone

Finally, from the loudness level Lphon the specific loudness sensation Lsone per critical-
band, following [Bla81], is calculated as,

Lsone(i, t) =

{
2

1
10(Lphon(i,t)−40) if Lphon(i, t) > 40(
1
40Lphon (i, t)

)2.642 otherwise.
(3.15)

The relationship between phon and sone can be seen in Figure 3.6. For low values
up to 40 phon the sensation rises slowly until it reaches 1 sone at 40 phon. Beyond 40
phon the sensation increases at a faster rate. The highest values that occurred in the
experiments conducted for this thesis are below 60 sone, due to the adjustment of the
threshold in quiet p0.

Figure 3.7 demonstrates the effects of the different loudness calculations using the
previously introduced titles Für Elise by Beethoven, and Freak on a Leash by Korn.
Notice that the maximum specific loudness of Freak on a Leash is about 4 times higher
then the maximum of Für Elise. Furthermore, Freak on a Leash covers the whole
critical-band rate spectrum and seems to create a chaotic sensation pattern while Für
Elise is primarily active only in the critical-bands from 3 to 9 bark.

3.2.7. Examples

The methods applied so far have mainly been developed based on experiments with very
simple sounds. Alternative ways to calculate Lsone include models which simulate each
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part of the ear, from the deflections of the outer ear to the activations of the neurons
in the auditory nerve [DP96]. A Matlab r© toolbox, namely HUTear2 [HP99], which
implements such models has been developed at the Helsinki University of Technology.

On the other hand, the methods described in the previous sections have success-
fully been applied several times, for example, in [FG94, Yan99]. Similar methods are
frequently used especially in the speech processing community [GM99]. However, this
is not a guarantee that these methods work in this context. It is important to fully un-
derstand what this series of transformations has done with the data, and what exactly
the data “looks like” before the data-mining process is continued and further feature
extraction steps are applied.

To obtain a better understanding of the preprocessing steps so far, they are illus-
trated in Figures 3.7 and 3.8. On the left side of Figure 3.7 is the first 6-second sequence
extracted from Beethoven, Für Elise. Starting at about the 2nd second, the main theme
can be seen. It is a quiet piano piece, only one tone at a time is played. On the right side
is the first 6-second sequence extracted from Freak on a Leash by Korn. A distorted
voice articulates strange sounds while instruments including drums and probably at
least one electric guitar play a scratchy theme, all in all a very interesting and unusual
sound experience.

PCM Audio Signal

The first row in Figure 3.7 represents the PCM data introduced in Section 3.1. Al-
though the amplitude cannot be directly expressed as a physical unit, the amplitude
values correspond to sound pressure values. While Für Elise hardly reaches 5% of the
maximum amplitude at its highest sound pressure intensities, the amplitude of Freak
on a Leash comes close to the maximum several times. This is also reflected in the
subsequent plots and can be seen from the color-bars to the right of each plot. The
intensities reach a maximum of about 60dB or 6 sone on the left, and about 80dB or
25 sone on the right side. Note that the original difference in amplitude by a factor of
20 only causes a sensation difference of a factor of about 4. As part of the experiments
conducted for this thesis the PCM data was originally scaled so that the maximum value
of a piece of music equals the maximum possible amplitude. This was later dismissed
since it showed no significant positive effects on the final results. Intuitively, it can be
argued that the volume settings of the speakers are usually not changed while listening
to different pieces of music. If there are significant differences in the sound intensities,
then these might be important characteristics of the respective pieces of music.

Power Spectrum

The power spectrum subplots in Figure 3.7 represent 511 time frames each with 129
frequency values. Each time frame represents about 23ms and overlaps half of the

2http://www.acoustics.hut.fi/software/HUTear
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Figure 3.7: The feature extraction steps from the 11kHz PCM audio signal to the
specific loudness per critical-band.

preceding and half of the succeeding time frame. The pure power spectrum would not
reveal much information, which is why the decibel values are used. The values displayed
P′ have the following relationship to P,

P′(i, t) = 10 log10

1
p0

min(p0,P(i, t)). (3.16)

On the left side the harmonics are very clearly visible as the equidistant, parallel,
horizontal lines, which become weaker at higher frequencies. With a higher frequency
resolution, for example, by increasing the sampling frequency or using a wider time
frame, it would be possible to determine the exact pitch of the piano tones played (e.g.
[Ell96]). However, the exact pitch is not relevant for the genre of a piece of music.

The harmonics of Für Elise can also be used to estimate the intensities of the tones
played. The further up on the frequency scale the harmonics are still visible, the more
intense the keynote has been played.

The power spectrum of Freak on a Leash suggests that there is not much variation
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in the music sequence. The main characteristic seems to be a texture of vertical lines,
indicating the beats. However, there are also some harmonics visible as vertical lines.
Very typical is how the whole spectrum is active and that the power intensities are
highest in the lower frequencies.

As mentioned previously in this chapter, the audio data is down-sampled to 11kHz
resulting in a Nyquist frequency of about 5.5 kHz. The main active frequencies of
Für Elise are contained within this spectrum which corresponds to what can be seen
in the subplot. On the other side Freak on a Leash contains high frequencies that
are not within the spectrum, as the subplot suggests the texture continues over the
entire audible spectrum. However, simple tests using average PC speakers revealed no
difference in the sound sensation of Freak on a Leash at 11kHz or 44kHz sampling rate.
Notice how the average specific loudness sensation decreases from bark 17 to bark 20.
Thus, the limit of 5.5kHz is suitable for Freak on a Leash.

Critical-Band Rate Spectrum

These subplots of Figure 3.7 contain about 85% less values than the power spectrum
plots, and yet they preserve the main characteristics. Especially the temporal resolution
is the same, which is important since the determination of the dynamics of a piece of
music later on relies on high temporal resolutions.

The values of the critical-band rate spectrum B have been transformed to decibel
just as those of the power spectrum, and all subsequent are, expect for the specific
loudness sensation. Notice that the decibel range slightly increases as the frequencies
are bundled together into critical-bands.

Generally it appears that the data has become fuzzy. The harmonics of Für Elise
are hardly recognizable while some diffuse activities have become more apparent. On
the other hand the keynotes of Für Elise are still clearly recognizable. Notice that a
deficiency has become more apparent as well. When listening to the sequence there
is no bass noticeable, however, the subplot shows a significant activity at bark 1, it is
present in the power spectrum, but being limited to the lowest frequencies it is hardly
visible. This seems to be some error in the recording but does not influence the perceived
sound quality. Notice also how this deficiency gradually disappears in the subsequent
processing steps.

The critical-band rate spectrum of Freak on a Leash reveals an effect caused by
low-pass filtering the music up to 5.5Hz. While throughout bark 1 to 19 the intensities
are rather continuous, at bark 20 there is a discontinuity. The values of the 20th
critical-band are clearly lower compared to the 19th. The answer to this can be found
looking at Table 3.1. The 20th critical-band is defined from 5.3kHz to 6.4kHz. Despite
this apparent discontinuity the information necessary to determine the genre is still
contained in the data, in the same way, as the genre can be determined listening to the
low-pass filtered music.



3. Feature Extraction 24

Spread Critical-Band Rate Spectrum

These subplots of Figure 3.7 have the same frequency resolution as the previous, how-
ever, a spreading function is applied which smoothens the critical-band intensities.
Notice that the spreading function [SAH79] leads to slightly higher decibel values.

The spreading function is asymmetric with a stronger influence on the bands above
than on those below the one it is centered on. It is also important that the spread-
ing function does not influence the temporal resolution. Post-masking effects, which
smoothen the temporal dimension, have been ignored since they showed negative influ-
ences on the determination of the exact beat intervals.

Looking at the spread critical-band rate spectrum it is not possible to recognize the
harmonics of the tones. While the harmonics influence our sensation an untrained lis-
tener is not able to identify them exactly. Instead, an untrained listener might perceive
the harmonics as shadows of the keynote that add to tones richness.

Wonho Yang [Yan99] mentions that spreading the critical-bands might not have a
positive impact when trying to measure the objective speech quality. Generally some
perhaps very typical and important features might be lost through the smoothing.
However, the context of this thesis is limited to the dynamics of a piece of music. In
this context the spreading is useful, since it is not a significant difference if a piece of
music is dynamic at bark 10 or at bark 11.

Specific Loudness Level - Phon

The specific loudness level subplots in Figure 3.7 reveal the effects of the equal loudness
level transformation for the critical-bands. While the intensities in the lower frequen-
cies are reduced the intensities around bark 18 are increased. Für Elise does not use
the frequencies around 4kHz (which corresponds to the 18th critical-band). The con-
stant activity in the background, which becomes apparent, is another deficiency in the
recording. This deficiency seems to be caused by the generally very quiet recording,
which enables broadband noise to become noticeable, especially in the frequency spec-
trum we are most sensible too, which is around 4kHz. However, in the same way as
this deficiency does not appear to be significant in the illustrated specific loudness level
images, it does not influence the perceived genre when listening to the recording of Für
Elise.

On the other side Freak on a Leash uses the frequencies around 4kHz frequently.
Some not recognizable instruments and some parts of the distorted male voice are active
in that area.

Notice how the magnitude of the decibel values has not changed significantly through-
out the transformation steps applied so far.

Specific Loudness Sensation - Sone

The final results of the loudness calculation can be seen in the last row of subplots in
Figure 3.7. The image of Für Elise has become clear again and the single tones can be
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recognized. The data corresponds quite well to the perceived music. The first 2 seconds
of the sequence are rather quiet, three quiet tones are played right at the start and then
there is a short pause. The first is the most intense at about bark 5. The second one
follows shortly after and is played very faint. It can be seen around bark 4 to 5 with a
very short pause to the first tone. The third tone is played a little stronger than the
second and can be seen around bark 3. Then there is the pause that is ended as the
main theme of Für Elise starts to play. Notice the quickly played gentile variations in
the critical-band spectrum around bark 6 to 7 before the tones are played slower and
drop down to bark 5. Then in three steps, starting at bark 3, the tones slowly rise back
to bark 5.

The sound of Freak on a Leash is far more complex and cannot be analyzed in a
similar way. Although there is something like a melody, which is played throughout the
sequence, it is hard to localize it in the specific loudness sensation plot. The melody
is not the main characteristic of this sequence, whereas the strange sounding sound-
scape definitely is. Something that can be noticed is the recurrent pattern at the low
frequencies. Three times there is a larger pause with a specific pattern right before it.
Between these there are two smaller pauses. These are followed immediately by a sound
running down the frequencies from about bark 5 to 2. And these again, are followed
every time in the same distance, by a sound running down the frequencies from bark 5
to 2, although not as intense.

Further Comparison

In the previous subsections the differences between the two pieces of music compared
to each other were obvious. However, not all music is as clearly distinguishable. Figure
3.8 depicts the feature extraction steps applied to the famous song Yesterday from the
Beatles, and Rock DJ from Robbie Williams, which has been in the charts recently. As
in Figure 3.7 the first 6second segment is used. Within these 6 seconds Robbie Williams
is singing: “. . . getting high and the girls even more so. Wave your hands if you’re not
with a man. Can I kick it? . . . ”. His voice is accompanied by a heavy, but not fast beat
with a very low pitch. To each bass beat there is a response which sounds somehow like
a plucked chord with a higher pitch than the bass. And a piano plays a simple melody
on top of some of the beats. The 6-second sequence of Yesterday contains: “. . . now
it looks as though there here to stay . . . ”, starting a little after the first second of the
sequence and ending before the fifth second. This part is sung slowly by a male voice
and is accompanied only by a guitar playing a few chords.

The PCM subplot of Yesterday seems to have similarities with Rock DJ and Für
Elise. While the PCM subplot of Rock DJ seems to be between Yesterday and Freak
on a Leash. Unlike Für Elise both have amplitude values covering the whole spectrum,
Rock DJ a little more so than Yesterday.

The power spectrum of Rock DJ reveals the importance of the beat for the respective
music sequence. While the power spectrum of Yesterday shows countless harmonics in
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Figure 3.8: Two pieces of music that are not as different as the two in Figure 3.7.

the range of 2kHz to 4kHz, created by the singer. For example the harmonics after
the 4th second correspond the sung word “stay”, just before it, the word “to” is sung
rather quite. And before that the word “here” is sung, its harmonics are clearly visible
as well. The exact pattern in the range of 2kHz to 4kHz is very interesting for speech
recognition, however, for assigning a piece of music to a genre it is not relevant.

This is underlined by the subsequent plots. The patterns created by the harmonics
are not recognizable any longer. Looking at the specific loudness sensation it is only
possible to determine when a word has been sung and at about which frequency. For
example, the first word “now” (the very first visible word type sound event is a remain-
ing of “away” but only an “e” is hearable), has a significant variation in its frequency.
Starting at about 16 bark it drops down to 6 bark.

Comparing all four 6-second sequences in the Figures 3.7 and 3.8 the following can
be said in regard to their dynamics. Beethoven’s Für Elise is faintly active in the
frequencies around bark 3 to 9. It uses a lot of variations in the speed, there is hardly
any recurrent beat pattern. Freak on a Leash has a beat pattern, however, most of the
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activities seem rather random, and are confined to the spectrum around bark 16 and
around bark 2. Rock DJ ’s activities are spread out a little more evenly over almost the
whole spectrum. Rock DJ also has a very strong, but not as fast beat. Yesterday has
a constant activity around and below bark 5. Although there does not seem to be a
strong beat pattern such as in Rock DJ, or Freak on a Leash, the beats are far stronger
than in Für Elise.

3.3. Dynamics

So far each song is represented by several 6-second sequences of the specific loudness
sensation per critical-band, Lsone(i, t). It would be possible to use Lsone(i, t) to calculate
similarities between the data. One option would be to compare two sequences La

sone

and Lb
sone point-wise, i.e. comparing La

sone(i, t) and Lb
sone(i, t) for all i and t. The result

might be quite surprising. For example, shifting Rock DJ (Figure 3.8) by only 40ms
would result in a huge difference to the un-shifted sequences - although they sound the
same. The same problem would occur for any of the other sequences presented in the
previous section. Thus, the final representation of the data must be invariant to time
shifts.

As mentioned before, the aim is to gather information on the dynamics of a sequence.
Weil [Wei99] and Frühwirth [Frü01] have used the Fourier transforms of the activities
in the frequency bands, which are also used here. Ellis [Ell96] has shown that using a
similar concept it is possible to predict the pitch of a sound. Ellis analyzed periodically
recurring peeks in the loudness of a frequency band by calculating the autocorrelation.
The main difference between Weil, Früwirth and Ellis is the frequency ranges they
analyze. While Ellis analyzes patterns with periods of about one millisecond (which
corresponds to frequencies up to 1kHz), Frühwirth limits his investigation to frequencies
up to 25Hz. Weil uses a similar spectrum as Frühwirth, though limits his analysis to
15Hz.

3.3.1. Amplitude Modulated Loudness

The loudness of a critical-band usually rises and falls several times. Often there is a
periodical pattern, also known as the rhythm. At every beat the loudness sensation
rises, and the beats are usually very accurately timed.

The loudness values of a critical-band over a certain time period can be regarded as
a signal that has been sampled at discrete points in time. The periodical patterns of
this signal can then be assumed to originate from a mixture of sinuids. These sinuids
modulate the amplitude of the loudness, and can be calculated by a Fourier transform.

An example might illustrate this. To add a strong and deep bass with 120 beats per
minute (bpm) to a piece of music, a good start would be to set the first critical-band
(bark 1) to a constant noise sensation of 10 sone. Then one could modulate the loudness
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Figure 3.9: The relationship between fluctuation strength and the modulation fre-
quency.

using a sine wave with a period of 2Hz and an amplitude of 10 sone.
The modulation frequencies, which can be analyzed using the 6-second sequences

and time quanta of 12ms, are in the range from 0 to 43Hz with an accuracy of 0.17Hz.
Notice that a modulation frequency of 43Hz corresponds to almost 2600bpm.

The modulation amplitude ∆Li(n) with the frequency fres(n, 512, 256/11025/2) (cf.
Equation 3.5) of the i-th critical-band is calculated as follows,

∆Li = fft(Lsone(i, 1 . . . 511)), (3.17)

where Lsone(i, 1 . . . 511) is a 6-second sequence of the the i-th critical-band of any piece
of music. The fft function is the same as in Equation 3.8. Since there are only 511
values for the FFT, the signal is padded with one zero.

3.3.2. Fluctuation Strength

The amplitude modulation of the loudness has different effects on our sensation de-
pending on the frequency. The sensation of fluctuation strength [Ter68, Fas82] is most
intense around 4Hz and gradually decreases up to a modulation frequency of 15Hz (cf.
Figure 3.9). At 15Hz the sensation of roughness starts to increase, reaches its maximum
at about 70Hz, and starts to decreases at about 150Hz. Above 150Hz the sensation of
hearing three separately audible tones increases [ZF99].

The fluctuation strength of a tone with the loudness ∆L, which is 100% amplitude
modulated with the frequency fmod can be expressed by,

fflux(∆L, fmod) ∝ ∆L

(fmod/4Hz) + (4Hz/fmod)
. (3.18)

The modulation amplitudes F(i, n) of the i-th critical-band and the modulation
frequency fres(n, 512, 128/11025) (cf. Equation 3.5) are weighted according to the fluc-
tuation strength sensation as follows,

F(i, n) = fflux(|∆Li(n + 1)|, fres(n)), (3.19)

Notice that ∆L(0), with fres(0, 512, 128/11025) = 0Hz, is ignored since it does not
influence the fluctuation.
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(c) Modified Fluctuation Strength Spectrum

Figure 3.10: Basic statistics of all 6-second sequences in the music collection used.

Figure 3.10 depicts the effect of calculating the fluctuation strength. The modulation
amplitudes (cf. Figure 3.10(a)) are highest at the lowest modulation frequencies. All
other frequencies would play a minor role in calculating the distances between two
sequences.

The fluctuation strength (cf. Figure 3.10(b)) is spread out more evenly across the
spectrum. Notice that the standard deviation shows clear patterns of vertical lines,
which are caused by sequences with a strong beat at the corresponding modulation
frequencies. Around bark 1 to 3 there are some highlights, these are typical bass
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patterns.
As mentioned above the highest modulation frequency which can be calculated is

about 43Hz. However, music will usually not show much fluctuation at frequencies
beyond 10Hz (600bpm). Figure 3.10(b) shows the standard deviation of the fluctuation
strength of all sequences. It rapidly decreases after about 5Hz and there is hardly any
fluctuation around 15Hz. The mean, median, and maximum values of the fluctuation
strength confirm that there is not much activity beyond 10Hz. To reduce the amount
of data only the frequency values up to 10Hz are used, which are the first 60 values.

3.3.3. Modified Fluctuation Strength

The fluctuation strength can be used for point-wise comparison of two music sequences.
Each F(i, n) has a meaning which does not depend on time shifts. For example, the
value at F(1, 8) describes the fluctuation strength at the first critical-band (bark 1)
with the modulation frequency of 1Hz, which corresponds to a bass with 60bpm.

The 3-dimensional matrices F can be treated as images as they are, for example, in
Figure 3.11. Individual characteristics of these images can be emphasized or suppressed
using image processing methods. A similar approach where image processing techniques
are applied to music data was presented by Mellinger [Mel91]. However, unlike in this
thesis, Mellinger’s focus was on sound source separation in the context of auditory scene
analysis and music transcription.

There are two basic types of fluctuation patterns. In Figure 3.11 this can be seen.
Classical music does not tend to have one dominant periodical beat pattern. It usually
has a lot of variation in its tempo. On the other hand contemporary rock music usually
contains at least one strong specific beat. This is reflected in the specific fluctuation
strength in such a way that rock music has sharp vertical lines. These often range over
all the critical-bands, sometimes only in the lower frequencies, sometimes only in the
higher frequencies. On the contrary, for example, Für Elise or similar music will have
a more spread fluctuation over several frequencies close to each other. To distinguish
these two types of patterns more clearly a gradient filter is used to emphasize sharp
vertical lines.

After emphasizing vertical lines it is necessary to suppress irrelevant characteristics,
in particular the exact location of peeks. This can be illustrated, for example, using
three 6-second music sequences given as Fa, Fb, and Fc. For simplicity they shall
contain all zeros except for Fa(2, 8) = 10 sone and Fb(1, 9) = 10 sone. The sequences
Fa and Fb both have a bass beat, with almost the same frequency. However, using for
example the Euclidian vector norm, the sequences Fa and Fb would be double as far
apart from each other as they are from Fc. More intuitive would be if Fa and Fb would
be much closer to each other than they are to Fc. To be able to use the Euclidean
vector norm and recognize such similarities some spreading is applied. In the above
example Fa is smoothened so that, for example, the peek at Fa(2, 8) is spread first over
the critical-bands up and down 4 bands and then over the modulation frequencies with
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Gaussian weighting factors. The same is done for the peek at Fb(1, 9) resulting in the
desired effects regarding their Euclidean distances.

The modified fluctuation strength (MFS) Fmod is calculated as follows,

F′(i, n) = |F(i, n)− F(i, n + 1)|, and

Fmod = SiF′Sn. (3.20)

The first part of this equation calculates the difference between two adjacent modu-
lation frequencies n and n + 1, this emphasizes the vertical lines, which correspond to
specific beats. The values for the matrixes Si and Sn can be found in Appendix A.2.2.
Si is a 20 by 20 matrix, defining how the values of F′ are spread over the critical-bands.
Sn is a 60 by 60 matrix, with the spreading values for the modulation frequencies. The
index n only runs from 1 to 60, ignoring the modulation frequencies beyond 10Hz.

Figure 3.10(c) shows the basic statistics of the MFS. The main difference is the
range of the maximum and standard deviation values. Since high peeks are spread
across the neighboring modulation frequencies and critical-bands, their peek values
decrease, and so does the standard deviation. The main characteristics, such as the
vertical lines, which can be seen in the maximum and standard deviation statistics, are
not significantly modified.

3.3.4. Examples

In Figure 3.11 the already introduced sequences of Korn, Freak on a Leash and Beethoven,
Für Elise are used to demonstrate the relationship between the specific loudness given
by Lsone and the MFS Fmod. Only the first 60 values (excluding the 0Hz value) are used,
which corresponds to the frequencies up to 10Hz. Notice the difference in the ranges of
the values. The application of the gradient filter reduces the fluctuation strength of Für
Elise, while the main vertical line a little below 7Hz in Freak on a Leash is emphasized.

The effects of calculating the fluctuation strength from the modulation amplitudes
can also be seen very clearly in Figure 3.11. Looking only at the modulation amplitude
of Für Elise is seems as though there is no beat. The rhythmic event plot (details see
below) indicates that there are several rhythmic events with the average frequency of
about 3.6Hz. In the fluctuation strength subplot the modulation frequencies around
4Hz are emphasized more. There are no clear vertical lines though, since there are no
periodic beats recurring with the exact distance in between. On the other side Freak
on a Leash has a very clear vertical line, corresponding to the sound of drums which
add periodical beats to the music.

Model of Rhythm

To compare the results obtained using the fluctuation strength with models based on
the overall loudness, the model of rhythm presented in [ZF99] is used.

A rhythmic event is defined as a maximum in the loudness-time function. More
specifically the model postulates that only maxima above a value of 0.43Nm are used,
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Figure 3.11: Fluctuation strength comparision between the 6-second sequences of
Beethoven, Für Elise and Korn, Freak on a Leash. The second row of subplots repre-
sent the rhythmic events. They are titled with the average and the standard deviation
of the distances between the rhythmic events. The plotted line corresponds to the sum
of the specific loudness in each critical-band. The circles mark the rhythmic events.

where Nm represents the loudness of the highest maximum within a relevant time, which
is assumed to be the interval of 6 seconds here.

A second condition is that only relative maxima of sufficient height are considered.
If ∆N < 0.12Nm then the maxima are ignored, where ∆N is the difference in loudness
between the last minimum and the respective maximum.

As a final condition, only maxima which are separated more than 120ms are con-
sidered to be separate rhythmic events. If there are several maxima within this time
frame, only the highest maxima is selected.

Notice that in Figure 3.11, in the rhythmic events subplot belonging to Für Elise,
almost all the keynotes are found, except for the one very quietly played right after the
first. While on the other side Freak on a Leash has so many rhythmic events, that it
seems difficult to recognize any pattern. Notice that there are 5 rhythmic events that
are louder than all others (very close to the maximum amplitude). These define the
main beat.
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Figure 3.12: Fluctuation strength comparison between the 6-second sequences of Robbie
Williams, Rock DJ and Beatles, Yesterday. The second row of subplots represent the
rhythmic events. They are titled with the average and the standard deviation of the
distances between the rhythmic events. The plotted line corresponds to the sum of the
specific loudness in each critical-band. The circles mark the rhythmic events.

3.4. Computational Efficiency

As mentioned previously one aspect of good features representing music is that they
should be computationally efficient as music collections grow large in size rapidly.

In this section some practical issues are summarized related to the feature extraction
process. All time statements refer a P2 350MHz with 256MB RAM using Matlab r© 6
and compiled Matlab r© functions.

The original 359 MP3 files, which are used for the experiments conducted for this
thesis, occupy about 1.3GB on the hard disc and represent about 23 hours of music.
Winamp3 was used to convert the MP3 format to the 11kHz mono PCM format. The
PCM data is known as WAV in Microsoft r© systems and as AU in Unix systems. The
PCM data occupies about 1.7GB. The conversion only takes a few minutes.

The PCM data is then read by Matlab r© and the results of the intermediate steps
are saved to the disk. The 3940 selected 6-second sequences, stored as PCM data,
occupy about 490MB of storage. The specific loudness values are stored for each piece

3http://www.winamp.com
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of music separately in the Matlab r© MAT format. Together they occupy 150MB of
storage. The fluctuation strength data matrix with all 256 modulation frequencies has
(stored in single precision) about 80MB. Matlab r© takes about 2 hours for a complete
feature extraction run.

3.5. Summary

In this chapter stepwise features have been extracted from the raw music data. Each
step has been described based on its psychoacoustical background and explained intu-
itively. The resulting features are robust in regard to variations that do not influence
the beat characteristics. Moreover, the methods described are computationally not very
expensive.

Figure 3.13 summarizes these steps and shows where and which critical parameters
have been chosen. Starting with music given in any digital form, the first step is to
down-sample the music and combine the two stereo channels into one mono channel,
represented in the PCM format. Then a discrete Fourier transform is used to obtain the
power spectrum of the signal. The parameters defining the window function (Hanning)
and the length of the time frame (256 samples) are critical but common choices. The
frequencies are then bundled into 20 critical-bands, where they are spread asymmetri-
cally before the power values are transformed into decibel values. The reference value
for the decibel value is adjusted so that there are no sounds with a loudness beyond the
limit of damage risk. The decibel values are then transformed into phon values, which
in turn are transformed to sone values, which represent the specific loudness sensation
of a piece of music in the dimensions of 23ms time intervals and critical-bands. Using
the discrete Fourier transformation again, the amplitude modulations of the loudness
patterns in the time domain are calculated. These are the basis for the loudness fluc-
tuation strength. To emphasize sharp edges the fluctuation strength is modified using
a gradient filter. To be able to apply a Euclidean metric and yet recognize similarities
between modulation frequencies and critical-bands, finally a Gaussian filter is applied
to obtain the modified fluctuation strength (MFS).

At the end of the feature extraction process each piece of music is represented by
several 6-second sequences. Each of these sequences is stored as a matrix Fmod(i, n)
representing the modified fluctuation strength value for the i-th critical-band and the
modulation frequency fres(n, 512, 128/11025) (cf. Equation 3.5). The MFS is time
invariant. It ignores not reoccurring elements in the specific loudness sensation and
emphasizes elements that reoccur in exactly the same intervals. The MFS includes
all information necessary to determine the rhythm of a piece of music, while other
information has been filtered out.

It thus offers itself as a basis for comparing the perceived similarity between two
6-second sequences of music. In the next chapter a brief evaluation will be presented
regarding the suitability of the MFS to calculate the similarity of sequences. Further-
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Figure 3.13: Summary of the feature extraction steps and the critical parameters used.

more, the problem of representing one piece of music based on the features extracted
from its sequences will be dealt with.



4. Clustering

The previous chapter dealt with the extraction of features from the raw music data. In
this chapter the music collection (Appendix B) is organized based on these features.
The main tool used for this is the self-organizing map (SOM) algorithm, which is a
clustering method with intuitive visualization capabilities. In the process of developing
this thesis the SOM has been applied several times to support the evaluation of the
feature extraction process and the SOM is the basis of the final user interface to the
music collection presented in this thesis.

In Section 4.1 the SOM is described briefly. Applying the SOM in Section 4.2
a brief evaluation of the features extracted in Chapter 3 is presented and discussed.
Section 4.3 deals with different approaches to represent one piece of music based on the
representation of its sequences. And finally in Section 4.4 the chapter is summarized.

4.1. Self-Organizing Maps

The goal of clustering data is to find groups (clusters) of data items that are similar
to each other and different from the rest of the dataset. Clustering is a method to
summarize the main characteristics of a dataset. For example, a music collection could
be summarized by describing the groups (genres) it consists of. Each group could be
described, for example, by the number and variation of its members. It might also be
interesting to know the relationship between these groups. For example, a genre might
have several sub-genres.

For the purpose of clustering data several algorithms have been developed. A recent
review can be found in [JMF99]. One very frequently employed clustering algorithm is
the SOM.

4.1.1. Background

The SOM was developed 1981 [Koh82] as an artificial neural network, which models
biological brain functions. Since then it has undergone thorough analysis [Koh01].
The algorithm and its variations have been employed several times in domains such
as machine vision, image analysis, optical character recognition, speech analysis, and
engineering applications in general, see for example, [Oja92, IAD+92, KS97, KOS+96].

The SOM is a powerful tool that can be used in most data-mining processes [Ves00b]
especially in data exploration [Kas97]. Moreover, the SOM is very efficient compared
to other non-linear alternatives such as the Generative Topographic Mapping [BSW96],
Sammon’s Mapping [Sam69], or generally Multi Dimensional Scaling [KW78]. An ex-

36
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ample for the efficiency of the SOM is the WebSOM1 project [KKL+99].

4.1.2. The Batch SOM Algorithm

One of the variations of the original SOM is the batch SOM algorithm, which is signif-
icantly faster and has one parameter less to adjust [Koh92].

Although the algorithm is different the architecture of the map is the same. The
map consists of map units, which are ordered on a grid. Usually this grid is rectangular
and 2-dimensional and is used to visualize the data. An example can be seen in Figure
4.1(c). Each of the map units is assigned to a reference vector, also known as model
or prototype vector. This vector lies in the data space and represents the data items
that are closest to it. Units, which are close to each other on the grid, also have similar
model vectors and thus represent similar data.

The batch SOM algorithm consists of two steps that are iteratively repeated until
no more significant changes occur. First the distance between all data items xi and
the model vectors mj is computed and each data item i is assigned to the unit that
represents it best ci. Vj denotes the Vernoi set of data items which are best represented
by unit mj .

In the second step each model vector is adapted to better fit the data it represents.
To ensure that each unit j represents similar data items as its neighbors, the model
vector mj is adapted not only according to Vj but also in regard to the Vernoi sets
of the units in the neighborhood. Which units are considered to be neighbors and
how much influence they have on the unit j is defined by a neighborhood function. A
common choice for the neighborhood function ht(j, k) is a Gaussian function which is
centered on mj and has a standard deviation σt which decreases with each iteration t.

Assuming a Euclidean vector space, the two steps of the batch SOM algorithm can
be formulated as

ci = argmin
j

‖xi −mj‖2, and

m∗
j =

∑
i ht(j, ci) xi∑
i′ht(j, ci′)

, (4.1)

where m∗
j is the updated model vector. Although it is usually very unlikely it might

occur that a data vector xi is equally closest to two or more model vectors. In this case
randomly one of these model vectors should be chosen to be ci.

An efficient way to implement this is to first calculate the sum sj of all data vectors
in a Vernoi set Vj and then use them to calculate the weighted average,

Vj = {xi| ci = j},
sj =

∑

xi∈Vk

xi, and

m∗
j =

∑
k ht(j, k) sj∑

k′ ht(j, k′) |Vk′|
. (4.2)

1http://websom.hut.fi/websom
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A Matlab r© implementation which was used for this thesis can be found in Appendix
A.1.1.

Parameters

Basically there are two parameters to adjust when using the batch SOM with a rectan-
gular grid and a Gaussian neighborhood function, namely the map size and σt. Usually
it is not difficult to find good parameter settings, and there are some basic rules of
thumb that are helpful.

The number of map units should be somewhere in the range of
√

(n), where n is the
number of data items. The map size is usually rectangular. Depending on the display
used (e.g. monitor or A4 paper), often a ratio between the width and the breadth of, for
example, 4 to 3 is chosen. The number of units defines the resolution of the map. More
units will lead to a higher resolution of the mapping. However, the SOM algorithm
scales approximately O(m2), in regard to the number of units m.

The second parameter σt is also know as the neighborhood radius, since it defines in
which radius of a unit other units are considered to be neighbors. In [KHKL96] well-
established schedules are published which define at which iteration the radius should
have which value. If the map is initialized well (e.g. using Principal Component Anal-
ysis) the initial radius can be set to about c/8, where c is either breadth or width of
the map, choosing the bigger value. If a random initialization is chosen then a good
initial radius is c/4. The radius then quickly decreases to 1/4 of this initial value. This
is known as the rough training phase. The actual number of iterations depends on the
ratio between data items and units. The next and final phase is the fine tuning phase.
Starting with the radius set to the value where the rough training ended the radius is
slowly decreased to 0. When the neighborhood radius is 0 the SOM algorithm is the
same as the k-means algorithm. With 0 neighborhood radius the units are only updated
in regard to the data they best fit, ignoring surrounding units, and thus representing
the data mapped to them as well as possible.

Simple Example

The algorithm is illustrated using Figure 4.1. The dataset (cf. Figure 4.1(a)) is 2-
dimensional and contains three groups each represented by 100 members and normally
distributed around their centers. Figure 4.1(b) depicts the form of the map in the data
space. Starting with a random initialization, 8 subsequent training iterations are shown.
After these 8 iterations the map fits the data rather well (cf. Figure 4.1(c)). There are
several interesting aspects of the SOM that can be seen.

First of all the SOM does not map the data linearly. A linear mapping could be
achieved using, for example, a Principle Component Analysis (PCA) [Hot33, Jol86].
The SOM uses its units efficiently, as few units as possible are wasted not representing
any data. Furthermore, areas in the data space with a high density of data items
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(c) Map

Figure 4.1: The batch SOM algorithm illustrated with a simple 2-dimensional toy
dataset. Starting with a random initialization 8 training iterations are calculated and
the position of the model vectors in the data space visualized. Finally the units are
labeled with the most frequent class they represent.

are represented by more units than areas with a lower density. This is also known as
magnification [BSW97]. The model vectors are most dense in the area of the ’o’ class
(cf. Figure 4.1(b), 8th iteration).

Interesting is also the training itself. Notice how the map slowly unfolds to fit the
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data. When the neighborhood radius is high initially, each map unit represents a large
amount of data and thus the model vectors of the units tend to be around the mean
of the whole dataset. As the neighborhood radius decreases the units become more
flexible and are able to fit the data better. Notice also how the smoothness decreases
drastically in the last two training iterations. These are the final steps of the fine tuning
phase, regardless of the neighbors the units try to match their data as well as possible.

4.2. Music Sequences

The extracted features have been demonstrated in Chapter 3 using the first sequences
of Freak on a Leash by Korn, Für Elise by Beethoven, Rock DJ by Robbie Williams,
and Yesterday by the Beatles. In this section the clustering results of these 4 pieces of
music and all their sequences are analyzed. Due to space limitations it is not possible
to present a detailed evaluation of all 3940 sequences of the 359 songs, which are listed
in Appendix B.

The sequences of the 4 songs can be seen in Figure 4.2. Generally, the sequences of
one piece of music have similar characteristics. For example, one characteristic of the 9
sequences of Für Elise is that they have very low MFS values, while those of Rock DJ
are about 10 times higher. Another rather typical characteristic is the beat pattern.
For example, Für Elise hardly has any vertical lines, while Rock DJ has a few lines that
are present in almost all of its 12 sequences. Another characteristic of Rock DJ is the
strong but rather slow bass, which can be seen in most of its sequences in the lowest 2
frequency bands at a low modulation frequency (1.7Hz).

Figure 4.3 represents a 7x10 SOM trained with all 3940 sequences and labeled with
the sequences of the 4 pieces of music. The clustering corresponds to the expected
results. Almost all sequences of Für Elise are on one unit (upper right). The sequences
of Yesterday are also close together (upper left). And there is a slight overlap (lower
center) between Freak on a Leash and Rock DJ.

The same unit to which almost all sequences of Für Elise are mapped also maps
almost all sequences of Moonlight Sonata by Beethoven and almost all sequences of
Eine kleine Nachtmusik by Mozart. There are a total of 145 sequences mapped to this
unit and all are rather peaceful classical music.

The unit that represents the sequences 1 and 4 of Yesterday represents a total of 83
sequences. For example, 11 sequences of the songs, Adia, Angel, and I will remember
you by Sarah McLachlan, 5 sequences of American Pie by Don McLean, and 4 sequences
of I believe I can Fly by R Kelly, are mapped to this unit.

The unit that represents the sequences 1, 3, 4, 5, 6 of Rock DJ represent a total
of 26 sequences. For example, it represents almost all sequences of Coco Jambo by Mr
President and 5 sequences of N2gether now by Limp Bizkit, which is one of the less
aggressive songs of Limp Bizkit.

The unit, which represents most of the Freak on a Leash sequences, namely the
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(a) Beethoven, Für Elise
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(c) Korn, Freak on a Leash
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(d) Robbie Williams, Rock DJ

Figure 4.2: The 6-second music sequences from 4 pieces of music. The images represent
the MFS diagrams presented previously.

sequences 4, 5, 7, 8, 9, and 11, represents a total of 45 sequences. For example, 12
sequences of 9 different songs by Limp Bizkit, and all 9 sequences of Love is in the air
by John Paul Young. This unit appears to be very inhomogeneous in respect to the
mapped sequences. It is not clear why Love is in the air is mapped together with Freak
on a Leash, their MFS patterns are rather different, however, they have a similar range
of values.

More insight into the map can be obtained by analyzing the units and the prototype
sequences they represent. Figure 4.4 illustrates the relative, and Figure 4.5 the absolute
model vectors. The former figure reveals details that are not visible if all model vectors
are represented mapping the absolute values to the same color scale. However, it is
important to keep the absolute values in mind. For example, the units (8,7), (9,7)
and (10,7) look very similar in Figure 4.4 apparently having the same patterns, while
Figure 4.5 reveals that there is a significant difference. The MFS values of (10,7) are
higher then those of (9,7), which are higher than those of (8,7). On the other hand the
units (1,6) and (1,7) in Figure 4.5 seem to be identical while Figure 4.4 reveals that the
difference is that (1,6) has activities in the lower and upper critical-bands while (1,7)
only has activities in the lower bands.

Notice the similarities between neighboring units, which is the result of the neighbor-
hood function of the SOM. It is interesting that between map areas with rather specific
patterns of vertical lines there are units with hardly any clear lines. For example, in
Figure 4.4 between the area around unit (9,7) and the area around unit (5,4) there
is a set of units (8,5), (7,5), (7,6), and (6,6) which mark the boarder. This is caused
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Figure 4.3: A SOM trained with all 3940 sequences where the units are labeled with
the sequences of the 4 songs.
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Figure 4.4: The model vectors of the SOM in Figure 4.3. The model vectors are rep-
resented as MFS diagrams in the dimensions of critical-band rate (vertical) vs. mod-
ulation frequency (horizontal) and modified fluctuation strength (color coding). The
color coding of each model vector is scaled to the minimum and maximum value of the
specific model vector. The values to the left of the each subplot indicate the range of
the values scaled to the range of 0 to 64 in respect to the maximum and minimum of
the all model vectors.

by the point-wise comparison. The average of two significantly different patterns of
vertical lines might result in the loss of these lines. Notice that most of the sequences
of Freak on a Leash are mapped to one of these intermediate units (6,6). Comparing
the sequences (cf. Figure 4.2(c)) and the model vector of the unit (6,6) yields that the
main similarity is the range of the values. The patterns of the sequences of Freak on a
Leash are not as smooth as their unit would suggest.

The main reason for this is that there are not enough units available to represent all
the sequences with their details. Frühwirth [Frü01] has used a SOM with 22 by 22 map
units to cluster the segments. Using similar map sizes leads to model vectors with more
details as units represent fewer sequences and thus can adapt better to them. However,
the sequences of one piece of music are then no longer represented by so few units and
tend to spread out more.

All in all the extracted features enable clustering algorithms to organize music ac-
cording to a criteria that correspond to some degree with the concept of music genres.
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Figure 4.5: The model vectors of the SOM in Figure 4.3. Unlike Figure 4.4 the color
coding is not scaled to each model vector instead it is scaled to the all model vectors.
Thus the color coding corresponds to the way the SOM algorithm sees the model vectors.
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4.3. Pieces of Music

This section deals with the question of how to represent a piece of music based on its
6-second sequences. This is necessary to obtain the final map of the whole pieces of
music and not their sequences as in the previous section. The representations should
be in a vector space and the metric, which defines the distance between the vectors of
the pieces of music, should correspond to their perceived similarity.

One straightforward approach would be to use the average of the sequences to
represent to corresponding piece of music. On the other hand it seems to be very
intuitive that most pieces of music will contain different types of sequences. For example,
a piece of music might include some slower sequences and some faster sequences. Also
the instruments used and the existence of vocals may alternate between the different
sequences of one piece of music. It is questionable if the average of a slow and a fast
sequence would be a good representation for such a piece of music.

To decide how to combine the sequences four methods are evaluated using the SOM.
The following sub-sections start with a description of Principal Component Analysis,
which is used throughout this section. Then the different methods are described and
evaluated. The methods are Gaussian Mixture Models, Fuzzy C-Means, k-means with a
simple response measure, and finally the simplest approach, the median of the sequences.

4.3.1. Principal Component Analysis

In many data analysis applications such as image recognition, e.g. [LB96], it is common
to use Principal Components Analysis (PCA) [Hot33, Jol86] to reduce the dimension-
ality of the data. Especially, when the data is highly correlated, such as the MFS
representations of the music sequences, the d-dimensional data can be compressed very
efficiently using PCA and resulting in a much lower m-dimensional eigenspace.

The PCA is a linear projection, and it guarantees that the m-dimensional eigenspace
best preserves the variance of the data in the d-dimensional space. This is equiva-
lent to preserving the sum of the squared distances between the data points in the
d-dimensional space in the m-dimensional space as well as possible. Often this is re-
ferred to as minimizing the reconstruction error or minimizing the empirical risk.

The MFS data is represented in 1200 dimensions, corresponding to first 20 critical-
bands and 60 levels of the modulation frequency in the range from 0-10Hz. These
1200 dimension can be reduced significantly using PCA while preserving most of the
information. Figure 4.6 depicts how much of the information is preserved using 20
dimensions, Figure 4.7 depicts the effects of using 80 dimensions. As can be seen using
only 20 dimensions, which is a reduction by a factor of 60, yields reasonable good
representations. The main characteristics are preserved, for example, it is clear that
the values are very low and there are no vertical lines in Für Elise, while the values
of Freak on a Leash are much higher and there is a significant vertical line below 7Hz.
Using 80 dimensions sharpens the images so that most details become apparent, for
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Figure 4.6: Comparison between the 1200-dimensional data space and the 20-
dimensional eigenspace. On the left side are the original images, on the right side
are the compressed and decompressed images, which are first projected into the 20-
dimensional eigenspace and then reconstructed (decompressed) using the eigenvectors
in the 1200-dimensional data space.

example the low valued, vertical lines of Freak on a Leash around 2Hz to 4Hz.
There are several advantages when using low-dimensional representations. Obvi-

ously, less storage is required and the clustering algorithms need fewer computations
to find solutions. Furthermore, clustering algorithms which use random elements, for
example for initialization, will more likely produce similar results in different runs,
since the number of possible solutions and the number of variables which need to be
determined are decreased significantly. All in all the benefits justify the loss of some
details.

The linear projection x∗ into the low-dimensional eigenspace of a vector x is calcu-
lated as

x∗ = (x− c)V, (4.3)

where V is a d by m matrix with orthonormal columns and c is the mean of all vectors
in the dataset. The vector x is reconstructed from x∗ with

x = x∗VT + c. (4.4)

The m columns of the matrix V are the first m eigenvectors of the covariance matrix
Q sorted descending according to their eigenvalues. The d by d matrix Q is calculated
from the dataset after c has been deducted, so that the data has zero mean. The space
spanned by the m orthonormal eigenvectors is referred to as the eigenspace. The matrix
V can be computed efficiently based on Singular Value Decomposition (SVD) [MN95].

The first 20 eigenvectors of the music dataset can be seen in Figure 4.8. The
first eigenvector represents music without a strong beat reoccurring in exactly the same
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Figure 4.7: Comparison between the 1200-dimensional data space and the 80-
dimensional eigenspace. The same as in Figure 4.6, except that the images are recon-
structed from the 80-dimensional eigenspace instead of the 20-dimensional eigenspace.

intervals, such as classical music. The second eigenvector represents music with a strong
bass with about 120bpm and a double as fast beat across all frequencies. The third
eigenvector represents similar music without a bass. Notice that the green colors are 0
values and correspond to default values. If an eigenvector represents a feature which is
beyond the average then this corresponds to red colors and if the eigenvector lacks an
average feature this is represented with blue colors. For example, the third eigenvector
has blue colors around the 120bpm (2Hz) bass. Note that the coefficients, which define
by which eigenvectors a data vector is represented, can be negative. This applies for
example to classical music, which is mainly represented by the first eigenvector. The
lengths of the eigenvectors are normalized to one.

4.3.2. Gaussian Mixture Models

As stated previously, the goal is to represent the pieces of music based on their se-
quences. One possibility is to assume that the music sequences represent only a fraction
of all available music sequences. Furthermore, it is straightforward to assume that there
are different clusters of sequences and that most sequences cannot clearly be assigned
to one specific cluster but rather have a certain probability of belonging to each cluster.
A piece of music can then be defined by the average probability by which its sequences
belong to the clusters. Finally it is necessary to make some assumptions regarding
the shape of the clusters. It is very common to assume Gaussian clusters so that each
cluster is defined through a center and a covariance matrix.

These assumptions lead to Gaussian mixture models (GMM) [DH73, Bis95]. The
GMM models the density function that generates the dataset from a mixture of Gaussian



4. Clustering 48

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 4.8: The first 20 eigenvectors with the highest eigenvalues.

basis functions (clusters). The (posterior) probability P (i|x) that a data item x is
generated by a cluster i is

P (i|x) =
P (x|i)P (i)

P (x)
, (4.5)

where P (i) is the prior probability of the cluster i and
∑

i P (i) = 1. The normalization
factor P (x) =

∑
i P (x|i) ensures that

∑
i P (i|x) = 1. The likelihood P (x|i) to observe

a data item x in a cluster i is given by the multi-dimensional normal distribution

P (x|i) =
1

(2π)d/2det(Σi)
1/2

exp
(
−1

2
(x− µi)

TΣ−1
i (x− µi)

)
, (4.6)

where d is the dimensionality of the data space. For a cluster i the center is denoted
by µi, Σi denotes the covariance matrix and det(Σi) its determinant.

The likelihood to observe the dataset X given the GMM defined by the set of
parameters θ is

`(θ) ≡ P (X|θ) =
N∏

n=1

P (xn|θ). (4.7)

The parameters of a GMM can efficiently be estimated iteratively using the EM
algorithm [DLR77]. The EM algorithm consists of two steps, namely the expectation
and the maximization step which are repeated iteratively until the likelihood function
`(θ) converges to a local maximum. For details on the EM algorithm see, for example
[Bis95, Rip96].

For the experiments with the music collection the GMM-EM functions of the Matlab r©

Netlab2 toolbox [Nab01] were used. Due to numerical problems the eigenspace with
only 20 eigenvectors was used and the number of clusters was limited to 30. To allow

2http://www.ncrg.aston.ac.uk/netlab/
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the clusters to fit the data better the full covariance matrix was estimated, which means
that the clusters could be any form of ellipsoid rotated in any direction.

To initialize the covariance matrices and the centers of the basis functions 5 iter-
ations of k-means were used. And a few GMM-EM runs were made from which the
model with the best likelihood was selected.

The 30-dimensional vector u representing a piece of music with the indices of its
sequences given by M is calculated as

u(i) =
1
|M |

∑

m∈M

P (i|xm), for i = 1 . . . 30. (4.8)

Note that
∑

i u(i) = 1.
Typical results of training a SOM based on vectors of pieces of music combined

from their sequences by GMM-EM can be seen in Figure 4.9. Because of the low-
dimensionality of the sequence eigenspace and the low number of clusters for the GMM,
the results are very stable and runs with similar parameters but (randomly chosen)
different initializations will yield very similar results.

The map unit, which represents elise (Für Elise by Beethoven), usually always
represents the same pieces of music which are adagio (Adagio from a clarinet concert
by Mozart), air (Air from the orchestrasuite #3 by Bach), kidscene (Fremde Länder
und Menschen by Schuhman), and mond (Mondscheinsonate by Beethoven). All of
these are slower, playful, peaceful, classical pieces of music with few instruments, for
example, kidscene is a piano solo, and air includes only a few string instruments.

Usually right next to this unit will be units representing fortuna (O Fortuna Imparix
Mundi by Carl Orff ), funeral (Funeral march by Chopin), avemaria (Ave Maria by
Schubert), nachtmusik (Eine kleine Nachtmusik by Mozart), schindler (Schindlers List
by John Williams), and jurasicpark (Jurassic Park by John Williams). These are also
classical, however, they appear to be more dynamic and more powerful. Generally, all
classic music in the collection on the map is located around the lower left to the center
left.

Not as clear as the mapping of elise is the mapping of korn-freak (Freak on a Leash
by Korn). The song is usually not located together with exactly the same but always
around limp-pollution (Pollution by Limp Bizkit), limp-nobodyloves (Nobody loves me
by Limp Bizkit) and other songs from Limp Bizkit. Sometimes the perceptually very
different songs deepisyourlove (How deep is your love by Take That), and wildwildwest
(Wild Wild West by Will Smith) are mapped near by too. The map does not seem
to distinguish very well between songs like korn-freak, and Limp Bizkik, Papa Roaches,
New Model Army songs in general on one side, and songs like lastchristmas (Last
Christmas by Wham) and deepisyourlove on the other side. This might be caused by
the limitations regarding the dimensionality of the eigenspace and the limited number
of clusters used to represent the sequences.

The song rockdj (Rock DJ by Robbie Williams) is always around limp-counterfeit,
limp-nookie and other Limp Bizkit songs and usually also next to cocojambo (Coco
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Figure 4.9: The SOM trained with the pieces of music represented based on the GMM-
EM approach. The blue highlighted map units are the units which represent the 4
pieces of music that are analyzed in detail. The labels are identifiers to which the full
title and interpret or author can be found in Appendix B.
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Jambo by Mr. President). All these songs have stronger beats at about the same
frequency as Rock DJ and vocals. However, there seems to be a significant perceptual
difference between the rather aggressive Limp Bizkit songs and Rock DJ.

The song yesterday-b (Yesterday by the Beatles) is always co-located with bun-
deshymne (the national anthem of Austria by Mozart), goodmorningblues (Good Morn-
ing Blues by Frank Muschalle), nma-better (Better than them by New Model Army),
revolution (Do you hear the people sing? from Les Mirables), sometimes together with
whitechristmas (White Christmas by Bing Crosby).

All in all the results are not completely satisfactory, which might be related to the
limitations caused by the numerical problems of the statistically sound GMM-EM.

4.3.3. Fuzzy C-Means

An alternative to the GMM is Fuzzy C-Means (FCM) [Bez81, CM98], which basically
offers the same solution in regard to combining sequences of a piece of music to one
vector.

The goal of FCM is to find the fuzzy cluster centers and the values of fuzzy mem-
bership of the data items to the clusters, minimizing the following error function,

E =
C∑

i=1

N∑

n=1

ρ(i,xn)b ‖xn − µi‖2 , (4.9)

where the C is the number of clusters, N is the number of data items (music sequences),
µi is the center of the i-th cluster, xn is the n-th data vector and the paramter b > 1 is
a fixed value, which needs to be specified. When b = 1 the error function is equivilant
to the error function of k-means. For b →∞ all cluster centers converge to the centroid
of the training dataset. In other words, the clusters become completely fuzzy so that
each data point belongs to every cluster to the same degree. Typically the value b is
chosen around 2 [CM98].

Additionally to the error function FCM uses the following constraints,

C∑

i=1

ρ(i,xn) = 1, for i = 1, . . . , N, (4.10)

which ensures that the membership of any data item to all clusters adds up to 1.
The FCM algorithm minimizes the error function (Equation 4.9) subject to the

constraints (Equation 4.10). A Matlab r© implementation can be found in Appendix
A.1.2..

The iterative algorithm consists of two steps which are repeated until the error
function converges. First the memberships are (re-)estimated based on some estimation
for the cluster centers, and then the cluster centers are re-estimated based on the new
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values for the membership. The respective calculations are,

µi =
∑

i ρ(i,xn)bxn∑
i ρ(i,xn)b

, and (4.11)

ρ(i,xn) =
zin∑C

k=1 zkn

, where zin = ‖xn − µi‖2/(1−b) .

Typical results when using FCM can be seen in Figure 4.10. For the experiments
with the music collection the 80 dimensional eigenspace of the music sequences was
used, the centers of the FCM were initialized using a few iterations of the faster k-
means algorithm, the number of clusters was set to 120 and the parameter b was set
to 1.1 which is rather low. The reason for the low value of b is that higher values
yielded very similar cluster centers which did not represent the variations in the data
appropriately.

The higher dimensionality of the eigenspace and the higher number of clusters dra-
matically increases the number of possible solutions to the clustering problem. Due to
the random initialization of the FCM cluster centers (more accurately, the random ini-
tialization of the k-means centers, which are used to initialize the FCM centers) there is
a greater variation between different FCM results then between the GMM-EM results.

The unit, which represents elise (Für Elise by Beethoven), usually also represents
kidscene (Fremde Länder und Menschen by Schuhmann) and mond (Mondscheinsonate
by Beethoven) and is always near merry (The Merry Peasant by Schuhmann), adadio
(Adagio from a clarinet concert by Mozart), air (Air from the orchestrasuite #3 by
Bach), fortuna (O Fortuna Imparix Mundi by Carl Orff ), funeral (Funeral march by
Chopin), and other similar classical pieces of music. Generally, all classic music in the
collection on the map is located around the lower right to the lower center.

For korn-freak (Freak on a Leash by Korn) the FCM results are slightly better
compared to those using GMM-EM, because the 4 times higher number of eigenvectors
and clusters allows a higher resolution. Frequently similar songs by Papa Roaches (such
as pr-revenge and pr-deathcell) and several songs by Limp Bizkit are located around
korn-freak, however, the song wildwildwest (Wild Wild West by Will Smith) is still in
the immediate vicinity.

The unit representing rockdj (Rock DJ by Robbie Williams) is usually always located
together with different pieces of music when comparing two FCM runs with the same
parameters but different random initialization. In Figure 4.10 rockdj is located together
with breakfree (I want to break free by Queen), nahnehnah (Nah Neh Nah by Vaya Con
Dios), and shoopshoopsong (Shoop Shoop Song by Cher). Sometimes rockdj might be
mapped as the only piece of music to a specific unit and sometimes rockdj is mapped
together with songs like cocojambo (Coco Jambo by Mr. President), submarine (Yellow
Submarine by the Beatles), sexbomb (Sexbomb by Tom Jones), or bongobong (Bongo
Bong by Manu Chao).

The unit representing yesterday-b (Yesterday by the Beatles) usually also represents
goodbye, philadelphia, she, youlearn and sometimes sunshineoflife (You are the sunshine
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Figure 4.10: The SOM trained with the pieces of music represented based on the FCM
approach. The blue highlighted map units are the units which represent the 4 pieces of
music that are analyzed in detail. The labels are identifiers to which the full title and
interpret or author can be found in Appendix B.
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of my life by Steve Wonder), kissfromarose (Kiss from a rose by Seal), wonderfulworld
(What a wonderful world by Louis Armstrong), and sml-remember (I will remember
you by Sarah McLachlan). All of these are somehow similar.

4.3.4. K-Means

As mentioned previously the k-means algorithm [Mac67] has been used to initialize the
FCM and GMM-EM algorithms. The k-means algorithm basically does the same (crisp
clustering) as the SOM, with the significant difference that there is no neighborhood
defined between two clusters (map units). Practically, k-means is equivalent to the
SOM when the neighborhood radius of the SOM is set to zero.

The k-means algorithm can be used in the same way as the FCM and GMM-EM al-
gorithms, however, each music sequence will not have a fuzzy membership or probability
of belonging to several cluster but instead will be assigned to one cluster only.

The error function the k-means algorithm minimizes is

E =
N∑

n=1

‖xn − µc(n)‖2, (4.12)

where µc(n) is the centroid of the cluster closest to the data vector xn. A Matlab r©

implementation can be found in Appendix A.1.3.
The centers of the clusters are initialized randomly, for example, by selecting C

random data items. Then two steps are repeated iteratively until the error function
(Equation 4.12) converges. The first step is to find µc(n) for all n = 1, . . . , N and in the
second step for each cluster the new center is calculated as the mean of all data items
belonging to it.

The experiments with the music collection were conducted setting the number of
clusters to 120. Several runs were made and based on the error function the best
clustering was chosen. Since each piece of music is usually represented by more than
one sequence counting the average number of sequences per cluster would yield fuzzy
results. The degree of fuzziness can be increased, for example, using a very simple
method such as giving the best matching cluster for a sequence 3 points, the second
best 2 points and the third best 1 point. Then the average points of all clusters can be
calculated for each piece of music.

A typical result of this approach can be seen in Figure 4.11. Similar to the FCM
results also here the results depend on the random initialization and thus two runs
might produce different results.

However, the classical music cluster is usually always the same. Especially, elise
(Für Elise by Beethoven) is always around the same group, which is basically the same
as the group which can be seen in the GMM-EM or FCM results. Interesting though
is that the mountainking (In the hall of the mountainking by Grieg) is mapped to the
same unit as elise. The two and a half minutes of mountainking are represented by 6
6-second sequences. The first 3 are very quiet, then gradually the loudness rises and
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Figure 4.11: The SOM trained with the pieces of music represented based on the k-
means approach. The blue highlighted map units are the units which represent the 4
pieces of music that are analyzed in detail. The labels are identifiers to which the full
title and interpret or author can be found in Appendix B.



4. Clustering 56

reaches its maximum in the 6th sequence, which is significantly louder than all others.
While the first 5 sequences are well comparable to elise, the 6th sequence is perceptually
very different. The reason why mountainking and elise are mapped together lies in the
ranking method used, which is very robust in respect to outliers.

The unit representing korn usually also represents pr-revenge, pr-deathcell, limp-
nobodyloves, pr-binge, and other songs by Papa Roaches and Limp Bizkit, which match
rather well. A song which does not seem to match too well is rem-endoftheworld (Its
the end of the World by REM ). The songs of REM in general seem to be much less
aggressive then those of Papa Roaches or Limp Bizkit, however, the specific song Its
the end of the world, is more aggressive then the usual REM songs.

The unit representing rockdj (Rock DJ by Robbie Williams) usually also represents
macarena (Macarena by Los Del Rio), cocojambo (Coco Jambo by Mr. President),
bongobong (Bongo Bong by Mau Chao), singalongsong (Sing along song by Tim Tim)
and limp-n2gether (N2gether now by Limp Bizkit), which match well.

The unit representing yesterday-b (Yesterday by the Beatles) usually also represents
wonderfulworld (What a wonderful world by Louis Armstrong), sml-adia (Adia by Sarah
McLachlan), and newyork (New York, New York by Frank Sinatra), which match well
too.

4.3.5. Median

So far the approaches assumed that the sequences of a piece of music might have
perceptually significant differences. Alternatively, it is possible to assume that the
differences between the sequences of a song are perceptually insignificant and that only
the parts they have in common are significant. To obtain a common representation of
several sequences the mean of all characteristics can be calculated. However, the mean
is sensitive to outliers and thus the median seems to be more appropriate, especially
considering that less then 1/3 of all available sequences are used to represent a piece of
music. For example, In the hall of the mountainking by Grieg is represented by 5 rather
quite and one very powerful sequence. The one powerful sequence would dominate the
mean, while it has practically no influence on the median.

For the experiments with the music collection the median is calculated from the
1200-dimensional MFS values, and then represented in the 80-dimensional eigenspace.
The median of Für Elise, Freak on a Leash, Yesterday, and Rock DJ can be seen in
Figure 4.12. Comparing it to Figure 4.2 reveals the effects of calculating the median.

The median of Für Elise summarizes the sequences very well. The median indicates
that there are activities in the range of 3-10 bark and with a modulation frequency of
up to 5Hz. However, the values of these activities are very low. The single sequences
of Für Elise have many more details, for example, the first sequence has a minor peek
around bark 5 and 5Hz modulation frequency.

The median of Yesterday is a good summary as well. There are several activities in
lower and some in the upper critical-bands and there is no significant vertical line that
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Figure 4.12: The medians of the 4 pieces of music calculated from their sequences (cf.
Figure 4.2). The medians are projected and reconstructed from the 80-dimensional
eigenspace.

would indicate a strong reoccurring beat.
Some of the sequences of Rock DJ seem to have very different patterns. However,

detailed analysis shows that they all have something in common, and this is revealed
by the median. Similar characteristics apply to Freak on the Leash.

Although this analysis might suggest that the median is a good solution this is only
partially the case. Many pieces of music might be confined to one genre, even if this
genre might be between two other genres, however, especially modern music tends to
combine different MFS patterns. On the other hand the dynamic usually does not
completely change.

Another advantage of using the median is that the random initializations (GMM-
EM, FCM, k-means) are no longer needed and thus the results are very stable and
different runs will yield the same results, unlike the previous approaches.

The results using the median can be seen in Figure 4.13. Although this approach is
much simpler than the others and can be computed significantly faster, the quality is
comparable.

The map unit in the lower left, which represents elise (Für Elise by Beethoven)
contains similar classical music such as air (Air from the orchestrasuite #3 by Bach),
adagio (Adagio from a clarinet concert by Mozart), kidscene (Fremde Länder und Men-
schen by Schuhmann), and mond (Mondscheinsonate by Beethoven). It is interesting to
see that just as with the k-means approach the mountainking (In the hall of the moun-
tainking by Grieg) is mapped together with elise. The unit is surrounded by classical
music such as merry (The Merry Peasant by Schuhmann), jurassicpark (Jurrasic Park
by Chuck Berry), branden (Brandenburgisches Konzert #2 by Bach), forelle (Trout -
Quintet - Themes and Variations by Schubert), and walzer (Walzer op. 39 No. 15 by
Brahms).

It is interesting to compare the differences between these units looking at Figure
4.14. The unit representing elise (14,1) has the lowest MFS values of all map units.
The unit above (13,1) has double as high values and the unit to its right (14,2) has
higher activities in the upper critical-bands.

The unit in the center left area of the map which represents korn-freak (Freak on a
Leash by Korn) also represents fbs-praise (Praise you by Fat Boy Slim), limp-99 (9teen
90nine by Limp Bizkit), and rem-endoftheworld (Its the end of the world by REM ). The
songs which have been mapped together with korn-freak such as limp-nobodyloves (No
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Figure 4.13: The SOM trained with the pieces of music represented based on the median
approach. The blue highlighted map units are the units which represent the 4 pieces of
music that are analyzed in detail. The labels are identifiers to which the full title and
interpret or author can be found in Appendix B.
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Figure 4.14: The model vectors of the SOM in Figure 4.13. The color coding is scaled to
the minimum and maximum of each model vector, the values to the left of each image
indicate the relative range of the values, with the highest value in the collection set to
64 and the lowest to 0.

body loves me by Limp Bizkit) or pr-revenge (Revenge by Papa Roaches) are mapped
to the neighboring units.

The model vector (cf. Figure 4.14) of the unit representing korn-freak (6,2) does
have some of the characteristics of korn-freak, however, the vertical line at the high mod-
ulation frequency is not as strong while the fuzzy activiations in the lower modulation
frequencies are too strong.

The unit located at the upper center and representing rockdj (Rock DJ by Rob-
bie Williams) also represents the songs bfmc-fashion and bmfc-others (Fashion Styley
and Other EMCEEs by Boomfunk MCs). In the neighborhood are popular songs like
macarena (Macarena by Los Del Rio), mambofive (Mambo No 5 by Lou Bega), and
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cocojambo (Coco Jambo by Mr. President).
The model vector of the unit (1,5) to which rockdj is mapped (cf. Figure 4.14) does

not perfectly reflect the properties of the median of rockdj (cf. Figure 4.12). However,
the unit represents the main characteristics which are the strong bass below 2Hz and
the double as fast beats above 3Hz and around 7Hz, which both use all frequencies.

The unit located around the center of the map and which represents yesterday-b
(Yesterday by the Beatles) also represents songs like friend (You’ve got a friend by
Carole King), herzilein (Herzilein by Wildecker Herzbuam), rhcp-porcelain (Porcelain
by Red Hot Chilli Peppers), and sml-adia (Adia by Sarah McLachlan). Which are all
rather slow songs.

The model vector of this unit (10,6) shows no significant vertical lines, instead there
are fuzzy activities in the lower modulation ranges in all critical-bands.

The model vectors of the map shown in Figure 4.13 can be seen in Figure 4.14.
Generally, the music with lower fluctuation strength is in the lower left and the highest
values are around the upper right. Strong beat patterns can be seen especially in the
upper left, around the upper right including the area to the lower right.

Note that is also possible to obtain a representation of the MFS for each model vector
also with the other presented methods. When using GMM-EM and FCM the model
vectors are linear combinations of MFS vectors and thus can be reconstructed easily.
When using the k-means approach with the ranking it is not possible to reconstruct
exact MFS representations from the model vectors, but it is possible to calculate the
MFS of a model vector from the mean of the MFS vectors of the pieces of music
mapped to it. The MFS of model vectors to which no pieces of music are mapped can
be interpolated from surrounding map units.

4.4. Summary

In this chapter the features extracted in Chapter 3 have been evaluated using the
SOM and proven to be a suitable to represent the perceived similarities. Furthermore,
different methods to represent the pieces of music based on their sequences have been
presented and their performance on the music collection evaluated. Starting with the
relatively complex GMM-EM where numerical problems constrained the dimensions
of the eigenspace and the number of clusters, which represent the sequences lead to
promising yet improvable results. Addressing these problems FCM was used and led
to improved results. Alternatively, a heuristically motivated approach based on k-
means was evaluated, with comparable results. The good results support the intuitive
assumption that one song does not only have one typical beat pattern and instead is
a mixture of several different MFS patterns. However, using the median has lead to
surprisingly good results as well, furthermore, it is by far the simplest method, hence
the median will be used as a basis for the next chapter.



5. Visualization and User Interface

In the previous Chapter SOMs labeled with the song identifiers were used to evaluate
the music collection. Basically these maps could be used as user interfaces. Similar
songs are located close together on the map and are identified by a string short enough
to fit the width of a map unit. While these maps surely are a bigger help then a simple
alphabetical list there are two major deficiencies.

The first is the lacking support trying to understand the cluster structure. Looking,
for example, at Figure 4.13 it is rather difficult to recognize clusters on the first sight.
Only after carefully studying the whole map it appears, for example, that there is a
cluster of classical music in the lower left corner. Thus some visual support to identify
clusters would be desirable.

The second deficiency derives from the assumption that the music collection and
the contained pieces of music are unknown to the user, thus any information on artists
or titles are not very useful for the user. To a user a map labeled with unknown music
titles, interprets or authors might not be much more useful than randomly generated
text. By far more interesting for the user would be some text, which explains what
type of music is mapped to a map unit.

In the following sections methods are described which aim at creating a more in-
tuitive user interface. In Section 5.1 the problem of visualizing cluster structure is
addressed followed by Section 5.2 where important map areas are summarized and la-
beled. Both sections use the map presented in Figure 4.13 to illustrate the different
possibilities. To enable the reader to explore Islands of Music a small demonstration
has been made available on the internet and is briefly presented in Section 5.3. The
chapter is summarized in Section 5.4.

5.1. Islands

A useful visualization system should offer the user a good summary of the relevant
information. To be effective the distinguishing features (e.g. position, form, and color)
in the visual dimensions should be detectable effortlessly and quickly by the human
visual system in the preattentive processing phase [Hea96]. In general the efficiency of
a visualization will depend on the domain, culture, and personal preferences of the users.
The results of the previous chapters can be visualized in several different manners, only
a few will be discussed in this section.

This thesis has been titled Islands of Music because the metaphor of islands is used
to visualize music collections. The metaphor is based on islands, which represent groups
of similar data items (pieces of music). These islands are surrounded by the sea, which
corresponds to areas on the map where mainly outliers or data items, which do not
belong to specific clusters, can be found. The islands can have arbitrary shapes, and

61
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there might be land passages between islands, which indicate that there are connections
between the clusters. Within an island there might be sub-clusters. Mountains and hills
represent these. A mountain peek corresponds to the center of a cluster and an island
might have several mountains or hills.

More accurately a simple approximation of the probability density function is visu-
alized using a color scale which ranges from dark blue (deep sea) to light blue (shallow
water) to yellow (beach) to dark green (forest) to light green (hills) to gray (rocks) and
finally white (snow). The exact color scale represented by HSV (see e.g. [HB97]) values
can be found in Appendix A.2.3. The sea level has been set to 1/3 of the total color
range, thus map units with a probability of less then 1/3 are under water. The sea level
could be adjusted by the user in real time, the involved calculations are neglectable.
The visible effects might aid understanding the islands and the corresponding clusters
better.

The density function is estimated using the technique presented in the context of
the k-means algorithm (Section 4.3.4). Each piece of music votes for the clusters (map
units), which represents it best. The first closest model vector of a corresponding unit
gets n points, the second n − 1, the third n − 2, and so forth. Thus units, which are
close to several pieces of music, will get many points. While clusters, which are not
close to any pieces, will hardly have any points. A map unit which is close to many
pieces of music is very likely to be close to the center of a cluster, whereas a unit, which
does not represent any pieces of music well, is likely to be an intermediate unit between
clusters.

In Section 4.3.4 n = 3 was used. Thus the closest cluster got 3 points, the second
2, and the third 1. The results using n = 3 on the map presented in Figure 4.13 can
be seen in Figure 5.1. Notice how clusters such as the classical music in the lower left
corner or, for example, the rather isolated island in the upper right corner on which
mainly songs by Bomfunk MCs are located, immediately become apparent.

The influence of the parameter n can be seen in Figure 5.2. Since this parameter is
applied at the very end of the whole process and can quickly be calculated the user can
adjust this value in real time when exploring the map, and gain information not only
from the structure of islands at a specific parameter setting, but also through analyzing
differences between different settings.

The smallest possible value for n is one. When only the closest map unit gets
a point this method corresponds to a crisp hit response, which is commonly used in
SOM visualizations, for example, in the SOM Toolbox the corresponding function is
som_hits. Notice how the islands seem very isolated and scattered on the map. The
most significant clusters are visible using n = 1, for example, the classical cluster on
the lower left, or the Bomfunk MCs at the upper right. Also other dominant clusters
are visible, for example, the island slightly to the lower left of the classical Bomfunk
MCs islands represents mainly songs by Red Hot Chili Peppers.

Usually one could expect that the second best matching unit is located right next
to the first best matching. Thus dividing the hit response of a data item 2/3 for the
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Figure 5.1: The pieces of music ploted on top of the islands visualization.
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best matching and 1/3 for the second best matching would lead to the same results
with some fuzziness. The often non-spherical shape of the clusters (islands) becomes
more apparent and seemingly separated clusters might get connected. For example, the
cluster of the classical music at the lower left corner becomes connected with the cluster
slightly to the upper right when comparing n = 1 with n = 2 Figure 5.2. Together these
two clusters form a bigger cluster which contains mostly typical classical music, where
the slower and more quite pieces are located around the mountain on the lower left of
the island and the more powerful classical music is located towards the upper right of
the island.

Note that it is not always the case that the first and second best matching units lay
next to each other. In fact some quality measures to compare trained SOMs have been
developed upon this criteria [KL96, Kiv96]. However, it is rather unlikely that the two
units are separated completely on the map and mostly they will both be located in the
same map area.

Using n = 3 connects more islands and lets them grow bigger. For n = 4 the differ-
ences to n = 3 are not very obvious, however, the islands are slightly more connected
and the higher n gets, the more islands will become connected until finally only one big
island remains with its peak around the center of the map.

This visualization has been implemented using interpolating units. Between each
row and column units have been inserted and around the whole map as well. These
interpolating units do not have a corresponding model vector and are only assigned
interpolated values of the approximated density function. The units inserted around the
map are inserted so that the islands are bounded by the map area. The values of these
boarder units are set to 1/10 of their immediate neighbor within the map, and thus are
always under water. All density and interpolated density values are then interpolated
by Matlab r© using the pcolor function in combination with shading interp to create
the islands of Figure 5.2. If desired it would be possible to use fractal algorithms or
textures to create more naturally looking islands.

5.1.1. Alternatives

There are several alternatives to the previously proposed method of visualizing islands.
The alternatives can be divided into two main categories. There are alternative ways of
calculating the estimation of the probability density function, which is the fundament
of the islands, and there are alternative methods of visualizing the clusters of a SOM.

Probability Density Function

There are different techniques to calculate an estimation of the probability density func-
tion. The most obvious alternative is the Generative Topographic Mapping (GTM)
[BSW96]. The GTM is similar to the SOM regarding the results which can be ob-
tained using it, however, the GTM is embedded in a statistical framework and uses
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(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 4 (e) n = 100

Figure 5.2: Islands of Music applied to the map presented in Figure 4.13 with different
parameters.

a constrained Gaussian mixture model and expectation maximization to estimate the
probability distribution of the data in the 2-dimensional latent space. Similarly the
S-Map algorithm [KO97], which combines the softmax activations of the GTM and the
learning algorithm of the SOM, could be used.

However, the SOM was chosen because it has proven itself to be a very robust al-
gorithm that scales well with large amounts of data in numerous applications [Koh01].
Since the aim of this thesis is to develop a system which can handle huge music col-
lections the SOM was chosen, which is computationally much lighter then the GTM or
S-Map algorithm and less sensitive to the initialization. Since the quality of the results
that can be obtained by the SOM, GTM and S-Map have shown to be comparable (see
e.g. [RPP00, VK01]) the SOM has been selected.

Once the SOM is trained there are different possibilities to obtain an estimation of
the probability density function. Alternatives include methods such as reduced kernel
density estimators [Häm95] or much simpler approaches based on the inverse squared
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(a) The interpolated
median values of the
distance matrix.

(b) Color coded k-means
with 6 clusters.

Figure 5.3: Alternative visualizations of the SOM presented in Figure 4.13. These
figures were created using the SOM Toolbox.

distances of all data items to all units [AHV99]. Recently another approach to calculate
the probability density from a given SOM was presented [KL01] based on the local error
function of the SOM [RS88] and using Monte Carlo sampling. However, for large maps
the computational cost by far exceeds that of the training algorithm itself. However,
the proposed ranking method is intuitive, fast to compute and yields good results and
thus was preferred.

Visualizations

There are several alternatives to visualize the cluster structure of a SOM. The most com-
mon ones are based on the distance matrix, which holds the distances between neigh-
boring units. A well-known representative of these methods is the U-matrix [US90],
which visualizes all the distances between the model vectors of adjacent units. These
distances can be visualized color coded as proposed in [US90] or, for example, with
connecting lines between the units [MR97]. Similar methods include, for example, vi-
sualizing only the median of all distances between a unit and its neighbors [KMJ95].
The median of the distance matrix of the SOM presented in Figure 4.13 can be seen
in Figure 5.3(a). Notice how it is hardly possible to recognize the cluster structure.
Figure 4.14 indicates why the commonly used distance matrix fails to reveal the cluster
structure. The distances between the model vectors around the lower left are small
because the range of values is small. For example, the values of the unit (14,1) are in
the range of about 0-3 and the neighbors have very similar ranges. On the other hand
the distances at the upper right of the map are huge because the range of the values
is much bigger. For example, the range of the values of unit (4,10) is 0-100 and its
neighbors are relatively similar.

Other possibilities include clustering of the SOM using algorithms such as k-means
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or the hierarchical single-linkage [VA00]. Figure 5.3(b) depicts the results of clustering
the model vectors of the map presented in Figure 4.13 with the k-means algorithm.
Each cluster is assigned a color that is defined by the clusters centroid and the location
of the corresponding best matching unit on the map. Each unit on the map is assigned
a color so that neighboring units have similar colors [KVK99]. Figure 5.3(b) nicely
reveals the properties of the model vectors. Especially, the almost linear tendency of
the increasing range of the maximum values of the model vectors from the lower left to
the upper right is clearly reflected in the k-means clusters.

5.2. Labeling

The islands themselves might not be a very satisfying user interface. Although clusters
can be identified, without further information it is not possible to understand what
determines the cluster. It is desirable to have a summary for each cluster describing its
main characteristics and thus explaining why the map is structured the way it is.

The island visualization can easily be combined with any labeling method. For
example, the islands can be labeled with the song identifiers (cf. Figure 5.1). On the
other hand these identifiers, when assuming that the songs are unknown to the user,
do not help the user understand the clusters.

There are several methods of labeling SOMs such as the LabelSOM technique
[Rau99] or the technique used for the WebSOM project [LK99]. Both techniques have
been developed especially for the domain of text archives, however, they can be ap-
plied in a more general context. The LabelSOM technique uses the mean value and
the variance of an attribute within a cluster to decide if it is a good description or not.
The WebSOM technique compares the mean values of the attributes within a cluster
with those of other clusters and finds descriptors, which characterize some outstanding
property of a cluster in relation to the rest of the collection. Other techniques include
inductive machine learning algorithms, which extract fuzzy rules to describe the clusters
[Ult91, UK95, DWB00].

All these techniques have in common that they find descriptions based on the di-
mensions and their meanings. For example, in the domain of text archive analysis it
is common to use the vector space model [SM83], where the text documents are repre-
sented in a high-dimensional space, with each dimension assigned to some word. The
labeling techniques try to find the most descriptive dimensions (i.e. words) and use
these to describe the map.

This cannot be applied directly to the music collection and the methods introduced
in this thesis since the single dimensions of the 1200-dimensional modified fluctuation
strength vectors are rather meaningless. For example, the MFS value at the modulation
of 2.4Hz and bark 4 would not be very useful describing a specific type of music.
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5.2.1. Aggregated Attributes

Since the single dimensions are not very informative aggregated attributes can be formed
from these and can be used to summarize characteristics of the clusters. There are
several possibilities to form aggregated attributes, for example, using the sum, mean,
or median of all or only a subset of the dimensions. Furthermore, it is possible to
compare different subsets to each other. In the following 4 aggregated attributes, which
point out some of the possibilities, are presented. If the user understands the MFS it is
possible that the user directly creates the aggregated attributes depending on personal
preferences.

The presented aggregated attributes are Maximum Fluctuation Strength, Bass, Non-
Aggressive, and Low Frequencies Dominant. The names have been chosen to indicate
what they describe.

The Maximum Fluctuation Strength (cf. Figure 5.4(a)) is defined as the highest
value in the MFS. Pieces of music, which are dominated by strong beats, usually have
very high values. Whereas, for example, classical piano pieces like Für Elise have very
low values.

The Bass (cf. Figure 5.4(b)) is calculated as the sum of the MFS values in the
lowest two critical-bands (bark 1 and 2) and a modulation frequency higher then 1Hz.
Thus describes the energy of the bass beats with at least 60bpm.

To compute the Non-Aggressive attribute (cf. Figure 5.4(c)) each of the MFS model
vectors is normalized by its maximum value so that its highest value equals 1. This
corresponds to what can be seen in Figure 4.14 where each model vectors is scaled to
make best use of the color scale. From the normalized MFS the sum of the values in
the critical-bands from bark 3 to bark 20 with a modulation frequency below 0.5Hz
(30bpm) is calculated. From Figure 4.14 it can be seen that especially model vectors,
which do not have strong vertical lines, have high relative values in that range.

The Low Frequencies Dominant attribute (cf. Figure 5.4(d)) is calculated as the
ratio between the energy contained in the critical-bands from bark 1 to 5 and the
critical-bands from bark 15 to 20. This attribute indicates if a piece of music has most
of the MFS energy in the lower or in the upper frequency spectrum.

Figure 5.4 shows the so-called component planes, which are visualized in the same
way as the islands of music. Mountains represent high values, water represents very
low values, of the corresponding aggregated attribute (i.e. component).

It is easily possible to construct arbitrary other aggregated attributes and visualize
them in the same way. The component plane visualization can also be used to analyze
the correlation between different attributes [VA99].

5.2.2. Rhythm

Other interesting aspects of the MFS include the vertical lines that correspond to beats
at specific frequencies. To extract information on these a similar method as used previ-
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(a) Maximum Fluctua-
tion Strength

(b) Bass (c) Non-Aggressive

(d) Low Frequencies
Dominant

Figure 5.4: The component planes of the aggreagated attributes.

ously (page 31) can be used to find significant beats. First the sum over all critical-bands
for each modulation frequency of the MFS are calculated and normalized by the max-
imum value so that the highest value equals one. The results for the map presented
in Figure 4.13 can be seen in Figure 5.5. High peeks correspond to significant beats
and are found using the following rules. (1) All peeks below 43% of the maximum are
ignored. (2) All other peeks need to be at least 12% higher then the closest preceding
and the closest succeeding minima. (3) Finally from the remaining peeks only those
are selected which are higher then any other remaining peek within the modulation
frequency range of 1Hz.

5.2.3. Results

For each label a summary consisting of aggregated attributes and information on the
rhythm can be given. These descriptions could be placed directly on the map of is-



5. Visualization and User Interface 70

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

(8,1)

(9,1)

(10,1)

(11,1)

(12,1)

(13,1)

(14,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(7,2)

(8,2)

(9,2)

(10,2)

(11,2)

(12,2)

(13,2)

(14,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(7,3)

(8,3)

(9,3)

(10,3)

(11,3)

(12,3)

(13,3)

(14,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(7,4)

(8,4)

(9,4)

(10,4)

(11,4)

(12,4)

(13,4)

(14,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(7,5)

(8,5)

(9,5)

(10,5)

(11,5)

(12,5)

(13,5)

(14,5)

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(7,6)

(8,6)

(9,6)

(10,6)

(11,6)

(12,6)

(13,6)

(14,6)

(1,7)

(2,7)

(3,7)

(4,7)

(5,7)

(6,7)

(7,7)

(8,7)

(9,7)

(10,7)

(11,7)

(12,7)

(13,7)

(14,7)

(1,8)

(2,8)

(3,8)

(4,8)

(5,8)

(6,8)

(7,8)

(8,8)

(9,8)

(10,8)

(11,8)

(12,8)

(13,8)

(14,8)

(1,9)

(2,9)

(3,9)

(4,9)

(5,9)

(6,9)

(7,9)

(8,9)

(9,9)

(10,9)

(11,9)

(12,9)

(13,9)

(14,9)

(1,10)

(2,10)

(3,10)

(4,10)

(5,10)

(6,10)

(7,10)

(8,10)

(9,10)

(10,10)

(11,10)

(12,10)

(13,10)

(14,10)

Figure 5.5: The sum of the MFS in the critical-bands versus the modulation frequency.

lands, however, describing each map unit would lead to 140 (10x14) descriptions and
thus would need to be summarized again. Instead it would be desirable to only label
significant areas on the map, for example, mountains or hills. In Figure 5.6 all peeks
have been labeled which are above the sea level.

The exact values of the component planes might not be very interesting for the
user. Furthermore, it might only be interesting to summarize unusual characteristics
of a mountain compared to the rest of the collection. Thus instead of using the exact
values these were coded using ++, +, -, and --. The ++ is used only if the value is at
least 7/8 of the highest value in the collection, + only if the value is at least 5/8 of the
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highest, - for not more than 3/8, and -- for values below 1/8. Values between 3/8 and
5/8 are ignored since they are not considered to be outstanding.

The summary about rhythm is limited to the frequency of the significant beats given
in bpm. If the MFS value of a beat is 50% of the highest a “!” is added to emphasize
it.

The automatically generated summaries of the characteristic map areas are not
comparable to what a human could produce, however, they help understand the struc-
ture of the map. For example, the classical music cluster in the lower left of the map
is labeled with maxflux–, bass–, low-freq-dom++,192bpm slightly above the lower left
corner and slightly to the right of the lower left corner are the labels maxflux–, bass–,
non-aggressive++, low-freq-dom-. From these labels the user can conclude that the
music in this area does not contain much bass (bass–) and generally has no strong
beats (maxflux–). The low-freq-dom++ label describes the characteristics of piano mu-
sic. For example, Für Elise mostly uses the lower half of the critical-bands. Note that
the 192bpm reflect the quickly but quietly played tones in most of the piano pieces.
Obviously this is a deficiency of the technique used to extract this information, which
uses relative and not absolute values.

On the other side of the map, the upper right corner, the labels summarize the char-
acteristics of music such as the songs by Bomfunk MC’s. These songs have strong beats
(maxflux+) and a strong bass (bass+). They cannot be described as non-aggressive
(non-aggressive–) and the labels (111bpm!, 242bpm!, 515bpm) indicate that these songs
have very fast beats.

5.3. HTML Interface

To enable the reader to explore and to listen to Islands of Music a small demonstration
has been made available on the internet1. For this demonstration only a subset of 77
songs from the music collection was used and a 7x7 SOM was trained.

The user has the choice to view several images of the maps, the component planes,
and details on the model vectors. The images are presented so that the user can easily
link these and thus can easily understand the multi-dimensional information [BMMS91].

The following maps can be viewed. (1) The basic 7x7 SOM with the units labeled
with the song identifiers, (2) the map of islands with the units labeled with song identi-
fiers, (3) the plain map of islands, (4) the map of islands with white balls representing
the pieces of music, and (5) the map of islands where the mountains and hills are labeled
as presented in the previous section.

The map with white balls is a HTML image map where the white balls are linked
to the respective MP3 files. Furthermore, holding the mouse over one of the balls will
display the tooltip2, which contains information on author, interpret, and title. The

1http://student.ifs.tuwien.ac.at/~elias/music

2Tested with Internet Explorer 5.5 and Netscape Navigator 4.08.
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Figure 5.6: The SOM presented in Figure 4.13 using the island visualization with voting
parameter 3 and labels which describe the clusters based on the rhythmic and other
aggregated attributes.
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white balls are placed so that they do not overlap each other, this is implemented by
randomly placing them using a normal distribution with a small variance, and then
rearranging them until there are no more overlaps. Alternatively, Sammon’s mapping
could be used or a local PCA could be implemented similar to technique presented by
Kaski in the context of analyzing the SOM cluster structure [KNK98]. This map is
the main interface to the unknown music collection, which the user intends to explore,
with the possibility to directly listen to the songs on the map. It would be desirable
to add features like the possibility to mark certain map areas or pieces of music, and
this might be implemented in the near future. All maps can be viewed with the voting
parameter set to 1, 2, or 3. A better interface would be a sliding bar that covers all
possibilities (on a 7x7 map the highest possible voting parameter is 49).

The images of the component planes are the same size as the islands of music images
to enable the user to link them more easily. All 4 presented aggregated attributes can
be viewed.

The information on the model vectors of the map units are intended for more ad-
vanced users with basic understandings of the underlying concept. The scaled, unscaled
MFS as well as the MFS rhythms are available.

Figure 5.7 shows a screenshot of the web page where the frame on the left contains
direct links to the different visualizations that are displayed in the main frame on the
right hand side. The current frame shows the interface with the white balls and the
cursor over Für Elise.

5.4. Summary

In this chapter a new method to visualize the clusters of the SOM was presented. This
method uses islands to symbolize clusters. Within clusters sub-clusters are visualized
using mountains or hills depending on their size. Although the proposed method is
related to the probability density function it is heuristically motivated and lacks any
statistical background. However, the experiments have shown that the method is very
robust and outperforms common methods depending on the used dataset.

Furthermore, possibilities to label the map with descriptions, which summarize the
properties of the mapped data, were presented. The presented labels are generated
directly from the MFS data and point-out a wide range of possibilities.

And finally a HTML demonstration was briefly presented which is available on the
internet and implements the user interface described in this thesis.
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Figure 5.7: Screenshot of the web page implemented to demonstrate the Islands of
Music.



6. Conclusion

This final chapter summarizes the work presented in this thesis. In addition, opportu-
nities for future research are pointed out and briefly discussed.

6.1. Summary

In this thesis models and techniques from the fields of signal processing, psychoacous-
tics, image processing, and data mining were combined to develop a system which
automatically builds a graphical user interface to music archives, given only the raw
music collection with no further information, such as the genres to which the pieces of
music belong.

The most challenging part is to compute the perceived similarity of two pieces of
music. Even though currently no final solution to this can be offered, a novel and
straightforward approach based on psychoacoustic models is presented and evaluated
using a collection of 359 pieces of music. Despite being far from perfect, this approach
yields encouraging results.

A neural network algorithm, namely the self-organizing map, is applied to organize
the pieces of music so that similar pieces are located close together on a 2-dimensional
map display. A novel visualization technique is applied to obtain the map of islands,
where the islands represent clusters in the data. To support navigation in unknown
music collections, methods to label landmarks, such as mountains or hills, with descrip-
tions of the rhythmic and other properties of the music located in the respective area,
are presented.

The Islands of Music have not yet reached a level, which would suggest their com-
mercial usage, however, they demonstrate the possibility of such a system and serve
well as a tool for further research. Any part of the system can be modified or replaced
and the resulting effects can easily be evaluated using the graphical user interface.

6.2. Future Work

Much research is being conducted in the area of content-based music analysis with
new results being published frequently. Incorporating these results into the presented
system would increase the quality of the Islands of Music.

Based on the approach presented in this thesis there are some immediate possibilities
that might yield improvements. One major problem is the loudness of the pieces of
music. Most pieces in the presented collection are from different sources with significant
differences regarding the recorded loudness. The loudness has direct impact on the
perceived beats and thus strong influence on the whole system. Methods to normalize
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the loudness would increase the quality.
Another interesting aspect is the sequencing. Each piece of music is divided into

6-second sequences and only a small subset of these sequences is further analyzed to
reduce the computational load. Using more sequences or even overlapping them would
result in more accurate representations of the pieces of music.

Furthermore, the optimal length of the sequences is not yet decided. When cal-
culating the amplitude modulation (Section 3.3.1) less then half of the obtained FFT
coefficients are used, in particular those which correspond to the modulation frequen-
cies below 10Hz. Thus it would be possible to reduce the length of the sequences to 3
seconds without modifying any other parts of the system. The advantage of a shorter
sequence is that it is less likely that it contains more than one specific style.

The applied image processing filters, which emphasize important aspects in the
fluctuation strength images, need to be evaluated more thoroughly as well. Alternative
parameter settings as well as alternative filters should be considered.

In this thesis several methods to represent a piece of music based on the representa-
tion of its sequences were discussed. The finally chosen method, the median, does not
coincide with intuitive assumptions, however the alternatives presented were not able
to produce significantly better results. A thorough analysis is necessary and perhaps
a method, which combines the advantages of the median with the advantages of the
other methods presented, could be developed.

Depending on the dataset alternative ways to label the mountains and hills on
the islands could be developed which better help in understanding the genres they
represent. It is unlikely that such improved labels can be derived directly from the
presented modified fluctuation strength (MFS) data thus the incorporation of different
content-based approaches to analyze music is desirable.



A. Source Code and Constants

This appendix includes the Matlab r© source code and the constant matrixes referenced
in previous chapters. For the context and description please see the corresponding
chapters.

A.1. Source Code

The internal Matlab r© functions are very efficient, while all others, if not compiled,
are interpreted by Matlab r© during execution time. This significantly slows down es-
pecially functions with loops. All source code presented here was optimized in regard
to the execution time, thus avoiding loops where possible and instead using built in
Matlab r© functions.

A.1.1. Batch SOM

This implementation is similar to the som_batch_train function in the SOM Tool-
box1 [Ves00a, VHAP00]. However it is a very reduced version which is optimized for
high-dimensional data. From the code below, some additional functionality such as
visualization, convergence information, and options regarding neighborhood type, map
grid type, and initialization have been removed to emphasize the relevant parts.

function M = som_training(D,x,y,radius)

% D ....... matrix, dataset, rows are items, columns are dimensions

% x, y .... scalar, map size

% radius .. vector, neighborhood radius (sigma) for each iteration

% M ....... matrix, model vectors

m = x * y; % number of (map) units

[n d] = size(D); % number of dataitems and their dimension

M = rand(m,d)+repmat(mean(D),m,1)-0.5; % random init with small values

% unit coordinates in rect 2-dim output (latent) space

Cxy = [reshape(repmat(1:x,y,1),1,m); repmat(y:-1:1,1,x)]’;

% Ud(i,j): distance between the units i and j in the latent space

Ud = zeros(m,m);

for i = 1:(m-1),

Ud(i,i+1:m) = sum((Cxy(i+1:m,:)-repmat(Cxy(i,:),m-i,1))’.^2);

end

Ud = Ud + Ud’; % symmetric

% optimize training loop

radius = radius.^2;

D2=2*D’;

1http://www.cis.hut.fi/projects/somtoolbox
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for t = 1:length(radius) % training loop

% quantisation error Q, winner W (unit with smallest distance to data item)

[Q W] = min(repmat(sum(M.^2,2),1,n)-M*D2);

% partition P(i,j)=1 if unit i is activated by dataitem j else P(i,j)=0

P = sparse(W,1:n,ones(n,1),m,n);

N = exp(-Ud/(2*radius(t))); % gaussian neighborhood function

S = N*(P*D); % weighted sum of mapped vectors

A = N*sum(P,2); % activation normalization factor

% update only units with activation > 0

nonzero = find(A > 0);

M(nonzero,:) = S(nonzero,:) ./ repmat(A(nonzero),1,d);

end % training loop

% END of function SOM_TRAINING

A.1.2. Fuzzy C-Means

This fuzzy c-means (FCM) implementation has been optimized for high-dimensional
data. For simplicity this function implements a random initialization, although the
experiments were carried out using a k-means initialization.

Note that it would easily be possible to define a stoping criteria based on the change
in the error function, which has been omitted for simplicity.

function [C,U] = fcm(D,c,iter,b)

% D ..... matrix, dataset, rows are items, columns are dimensions

% c ..... scalar, number of clusters

% iter .. scalar, number of iterations

% b ..... scalar, FCM parameter

% C ..... matrix, cluster centers

% U ..... matrix, memberships

[vecs dims] = size(D);

% random initialization

U = rand(c, vecs);

U = U./repmat(sum(U),c,1);

% optimize training loop

D2 = 2*D’;

const = repmat(sum(D’.^2,1),c,1);

for i=1:iter, % training loop

U2 = U.^b;

C = U2*D./repmat(sum(U2,2),1,dims); % new centers

distance = repmat(sum(C.^2,2),1,vecs) - C*D2 + const;

U = sqrt(distance).^(2/(1-b));

U = U./repmat(sum(U),c,1);

end

% END of function FCM

A.1.3. K-Means

The k-means algorithm is very similar to the batch SOM. It is not necessary to calculate
the exact distances, it is only necessary to know which cluster is clostest to each data
item. Unlike the SOM k-means does not train the neighborhood of a cluster thus,
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a cluster is only set to the average of the data items closest to it. This Matlab r©

implementation has been optimized for high dimensional data.

function C = kmeans(D,iter,c)

% D ..... matrix, dataset, rows are items, columns are dimensions

% iter .. scalar, number of iterations

% c ..... scalar, number of clusters

% C ..... matrix, cluster centers

[n d] = size(D);

% random initialization

perm = randperm(n);

C = D(perm(1:c),:);

D2=2*D’; % optimize training loop

for t = 1:iter % training loop

% quantisation error Q, winner W (unit with smallest distance to data item)

[Q W] = min(repmat(sum(C.^2,2),1,n)-C*D2);

% partition P(i,j)=1 if unit i is activated by dataitem j else P(i,j)=0

P = sparse(W,1:n,ones(n,1),c,n);

S = P*D; % sum of mapped vectors

A = sum(P,2); % activation normalization factor

% update only units with activation > 0

nonzero = find(A > 0);

C(nonzero,:) = S(nonzero,:) ./ repmat(A(nonzero),1,d);

end % training loop

% END of function KMEANS

A.2. Constants

The matrixes are in Matlab r© syntax. The first index is the row index, the second index
is the column index.

A.2.1. Equal Loudness Contours

These values are based on the equal loudness contour diagram in [ZF99]. The ma-
trix contains the decibel values for the i-th contour level for the j-th critical-band in
Celc(i, j). The contour levels, starting at the first level, correspond to 3, 20, 40, 60, 80,
and 100 phon.

C_elc(:,1:10) = [ ...

24 14 11 8 6 5 4 3 3 2;

37 27 24 22 21 20 20 20 20 20;

51 43 41 41 41 40 40 40 40 40;

70 63 61 61 60 60 60 60 60 60;

88 83 81 81 80 80 80 80 80 80;

105 102 101 101 100 100 100 100 100 100];

C_elc(:,11:20) = [ ...

2 2 0 -1 -3 -5 -4 -2 1 3;

20 20 19 17 15 13 13 15 19 21;

40 39 38 36 34 33 33 34 36 39;

60 59 56 54 53 52 53 54 57 59;
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80 79 76 74 71 70 70 72 76 78;

100 99 97 95 93 90 90 92 96 98];

A.2.2. Modified Fluctuation Strength

These matrixes are basically Gaussian filters. Note that edges are not treated in the
usual way.

function S = spread_matrix(n,w) % n x n matrix, with weights w

S = eye(n); % identity matrix

for i = 1:length(w),

S(1:end-i,1+i:end) = S(1:end-i,1+i:end)+w(i)*eye(n-i);

S(1+i:end,1:end-i) = S(1+i:end,1:end-i)+w(i)*eye(n-i);

end

S = S./repmat(sum(S,2),1,n); % normalize to sum = 1

Critial-Band Spread
n = 20; % number of critical-bands

w = [0.5 0.25 0.1 0.05]; % symmetrical weighting factors (excl. 1)

S_i = spread_matrix(n,w);

Modulation Frequency Spread
n = 60; % number of modulation frequencies

w = [0.5 0.25 0.1 0.05]; % symmetrical weighting factors (excl. 1)

S_n = spread_matrix(n,w);

A.2.3. Color Scale

These values are the HSV values used to create the islands metapher. The Matlab r©

colormap function expects a matrix consisting of 64 rows with 3 columns, which rep-
resents 64 colors and their red, green and blue components.

% HUE

h=[...

ones(1,22)*2/3,... % water (22)

60/360,60/360,... % beach (2)

ones(1,20)*1/3,... % forest (20)

ones(1,12)*1/3,... % gras (12)

ones(1,8)]’; % mountain (8)

% SATURATION

s=[...

ones(1,22),... % water (22)

0.7,0.7,... % beach (2)

ones(1,20),... % forest (20)

linspace(1,0.5,12),... % gras (12)

zeros(1,8)]’; % mountain (8)

% VALUE

v=[...

linspace(0.5,1,22),... % water (22)

1,1,... % beach (2)

linspace(0.4,0.6,20),... % forest (20)
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linspace(0.6,0.7,12),... % gras (12)

linspace(0.7,1,8)]’; % mountain (8)

colormap(hsv2rgb([h,s,v]))



B. Music Collection

In this appendix the pieces of music are listed which have been used in the expriments
presented in this thesis. A large part of the collection is the same as used in [Frü01],
some pieces of music were added which have been copied directly from music albums.
One of the main problems with the collection is the not normalized loudness. A human
listener would wish to adjust the volumn when listening to the classical pieces of music
in the collection. Some pieces are recorded too quiet, some too loud. The same applies
for all other genres, a normalization would be desirable, however loudness normalization
is a very complex topic and thus in this thesis no further attempts were made other than
normalizing the sound pressure amplitudes or the specific loudness, which both have not
lead to the desired effects. Since the loudness has a major impact on the impression of
music [ZF99] future experiments should focus on collections with normalized loudness.

Note that the qualility of the music (e.g. sampling rate) does not play a major role
for the presented method, as long as the main beat characteristics are not influenced.

The collection includes 359 pieces of music out of several different genres. The total
length is 23 hours. The shortest piece is 49 seconds and the longest is about 9.5 minutes
long. The average duration is about 3.8 minutes.
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Table B.1: Music Collection.
Identifier Title Interpret or Author

adagio Adagio aus Klarinettenkonzert Mozart
addict Addict K’s Choice
adiemus Adiemus Adiemus
africa Africa Toto
aintnosunshine Ain’t no Sunshine Lighthouse Family
air Air aus Orchestersuite #3 Bach
alice Living Next Door To Alice Smokie
allegromolto Allegro Molto Brahms
allforlove All For Love Brain Adams, Rod Steward, Sting
alltoyou All To You The Rounder Girls
allymcbeal Searching My Soul Vonda Shepard
americanpie American Pie Don McLean
angels Angels Robbie Williams
anything Anything goes Tony Bennett
anywhereis Anywhere Is Enya
aroundtheworld Around the world ATC
aufderhoeh Auf der Höh Landler (Ziehharmonika)
austria I am from Austria Rainhard Fendrich
avemaria Ave Maria Schubert
babycomback Baby come back The Equals
backforgood Back for good Take That
badboy Bad Boy Gloria Estefan
bahnfrei Bahn frei - Polka schnell
beautyandbeast Schöne und das Biest Titelsong
bebopalula Bebopalula Gene Vincent
beethoven 5th Symphony 1st Movement Beethoven
believe Believe Cher
bfmc-1234 1,2,3,4 Bomfunk MCs
bfmc-fashion Fashion Styley Bomfunk MCs
bfmc-flygirls B-Boys and Flygirls Bomfunk MCs
bfmc-freestyler Freestyler Bomfunk MCs
bfmc-instereo In Stereo Bomfunk MCs
bfmc-others Other EMCEEs Bomfunk MCs
bfmc-rock Rock, rocking the Spot Bomfunk MCs
bfmc-rocking Rocking, just to make ya move Bomfunk MCs
bfmc-skylimit Sky’s the limit Bomfunk MCs
bfmc-stirupthebass Stir up the bass Bomfunk MCs
bfmc-uprocking Uprocking Beats Bomfunk MCs
bigworld Big Big World Emilia
blueberry Blueberry Hill Fats Domino
bongobong Bongo Bong Manu Chao
boogiewoogie Boogie Woogie Bugle Boy Bette Midler
br-anesthesia Anesthesia Bad Religion
br-computer I love my computer Bad Religion
br-fiction Stranger than fiction Bad Religion
br-generator Generator Bad Religion
br-infected Infected Bad Religion
br-jesus American Jesus Bad Religion
br-lovesongs Lovesongs New Model Army
br-punkrock Punk Rock Song Bad Religion
br-skyscraper Skyscraper Bad Religion
br-slumber Slumber Bad Religion
br-you You Bad Religion
branden Brandenburgische Konzert #2 Andante Bach
breakfree I Want To Break Free Queen
breathaway Take My Breath Away Berlin
breathless Breathless The Corrs
bundeshymne Bundeshymne Mozart
cabaret Cabaret Liza Minelli
californiadream California Dreaming Mamas and the Papas
cheektocheek Cheek to cheek Ella Fitzgerald
cocojambo Coco Jambo Mr President
conga Conga Gloria Estefan
crashboombang Crash Boom Bang Roxette
d3-kryptonite Kryptonite 3 doors down
d3-loser Loser 3 doors down
d3-needyou So I need you 3 doors down
dancingqueen Dancing Queen ABBA
dayinparadise Another Day In Paradise Phil Collins
deepisyourlove How Deep Is Your Love Take That
diamonds Diamonds are a girls best friend Marilyn Monroe
dingdong Ding Dong EAV
distance From a Distance Bette Midler
donau Donauwalzer
donttalkanymore We Don’t Talk Anymore Cliff Richard
drive Drive The Cars
drummerboy Little drummer boy Bing Crosby, David Bowie
dschinghiskhan Dschinghis Khan Dschinghis Khan
duellingviolins Duelling violins Feet of Flames
duhast Du Hast Rammstein (Matrix)
eifel65-blue Blue Eifel 65
elise Für Elise Beethoven
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Identifier Title Interpret or Author

elvira Andante Klavierkonzert #21 Elvira Madigan Mozart
eternalflame Eternal Flame Bangles
everlastinglove Everlasting Love Gloria Estefan
fatherandson Father And Son Cat Stevens
fbs-acid Acid 8000 Fat Boy Slim
fbs-brighton Youre not from Brighton Fat Boy Slim
fbs-island Love islands Fat Boy Slim
fbs-kalifornia Kalifornia Fat Boy Slim
fbs-praise Praise you Fat Boy Slim
fbs-righthere Right here right now Fat Boy Slim
fbs-rockafella Rockafella Skank Fat Boy Slim
fbs-soul-surfing Soul Surfing Fat Boy Slim
feeling You’ve lost that lovin’ feeling Rightous Brothers
feellovetonight Can You Feel The Love Tonight Elton John
feliznavidad Feliz Navidad Jose Feliciano
firsttime The First Time Robin Beck
flute Flötenkonzert in G minor - andante Buffardin
forelle Trout - Quintet - Themen und Variationen Schubert
foreveryoung Forever young Rod Stewart
fortuna O Fortuna Imperatrix Mundi Carl Orff
friend You’ve Got A Friend Carole King
fromnewyorktola From New York to L.A. Stephanie McKay
frozen Frozen Madonna
fuerstenfeld Fürstenfeld STS
fuguedminor Toccata and Fugue in D Minor Bach
funeral Begräbnismarsch (Piano Sonate #2) Chopin
future End Credits Back To The Future II
ga-anneclaire Anne Claire Guano Apes
ga-close Too close to leave Guano Apes
ga-doedelup Dödel Up Guano Apes
ga-gogan Gogan Guano Apes
ga-heaven Heaven Guano Apes
ga-innocent Innocent Greed Guano Apes
ga-iwantit I want it Guano Apes
ga-japan Big in Japan Guano Apes
ga-lie Living in a lie Guano Apes
ga-mine Mine all mine Guano Apes
ga-moneymilk Money and Milk Guano Apes
ga-nospeech No Speech Guano Apes
ga-time Aint got time Guano Apes
geldumagstmi Gel Du Magst Mi Ludwig Hirsch
girls Girls Girls Girls Sailor
giubba Vesti La Giubba (3 Tenors) Domingo
goldeneye GoldenEye Tina Turner
goodbye Time To Say Goodbye Brightman, Bocelli
goodgolly Good golly miss molly Little Richard
goodmornblues Good morning blues Frank Muschalle
gowest Go West Pet Shop Boys
griechischwein Griechischer Wein Udo Jürgens
grossvater Grossvater STS
heavensdoor Knockin On Heaven’s Door Randy Crawford
help Help! Beatles
herzilein Herzilein Wildecker Herzbuam
holdon Hold On Wilson Phillips
icanfly I Believe I Can Fly R Kelly
icouldfly Wish I Could Fly Roxette
ididitagain Oops I Did It Again Britney Spears
ifonly If Only Rod Stewart
ifyoubelieve If You Believe Sasha
ihavenothing I Have Nothing Whitney Houston
imf Mission Impossible Adam Clayton, Larry Mullen
indy The Raiders March John Williams
ironic Ironic Alanis Morissette
itsinhiskiss It’s in his kiss Vonda Shepard
jailhouserock Jailhouse Rock Elvis
joeschau Jö schau Georg Danzer
johnnyb Johnny b. goode Chuck Berry
jurassicpark Jurassic Park John Williams
kaktus Mein kleiner gruener Kaktus Comedian Harmonists
kidscene Fremde Länder und Menschen Schumann
kiss Kiss Prince
kissfromarose Kiss From A Rose Seal
korn-freak Freak on a leash Korn
lastchristmas Last Christmas Wham
lastdance Save the last dance for me The Drifters
latinolover Latino Lover Loona
laymedown As I Lay Me Down Sophie B Hawkins
leavingport Leaving Port James Horner
lemontree Lemon Tree Fools Garden
letsgetloud Let’s get loud Jennifer Lopez
life Life
limb-willbeok It’ll be ok Limp Bizkit
limp-99 9 teen 90 nine Limp Bizkit
limp-broke Im broke Limp Bizkit
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limp-clunk Clunk Limp Bizkit
limp-counterfeit Counterfeit Limp Bizkit
limp-faith Faith Limp Bizkit
limp-finger Stink Finger Limp Bizkit
limp-indigo Indigo Flow Limp Bizkit
limp-justlikethis Just like this Limp Bizkit
limp-lesson Lesson learned Limp Bizkit
limp-method Method Man - Break stuff Limp Bizkit
limp-n2gether N 2 gether now Limp Bizkit
limp-nobody Nobody like you Limp Bizkit
limp-nobodyloves Nobody Loves me Limp Bizkit
limp-nookie Nookie Limp Bizkit
limp-nosex No sex Limp Bizkit
limp-pollution Pollution Limp Bizkit
limp-rearranged Re-arranged Limp Bizkit
limp-show Show me what you got Limp Bizkit
limp-sour Sour Limp Bizkit
limp-stalemate Stalemate Limp Bizkit
limp-stuck Stuck Limp Bizkit
limp-trust Trust Limp Bizkit
limp-wandering Dont go off wandering Limp Bizkit
lorddance Lord of the dance Lord of the Dance
lovedwoman Have You Ever Really Loved A Woman Bryan Adams
lovemetender Love Me Tender Elvis
lovesombodysomt Everybody loves somebody sometimes Dean Martin
lovsisintheair Love is in the Air John Paul Young
macarena Macarena Los Del Rio
madlydeeply Truly Madly Deeply Savage Garden
mambofive Mambo No 5 Lou Bega
manicmonday Manic Monday Bangles
matilda Matilda Harry Belafonte
mcgee.mps Me and Bobby McGee Kenny Rogers
memory Memory Barbara Streisand
merry The Merry Peasant Schumann
mindfiels Mindfields Prodigy
minuet Minuet Boccherini
missathing I Don’t Want To Miss A Thing Aerosmith
missingyou I’ll Be Missing You Puff Daddy
missyoucrazy Miss You Like Crazy Natalie Cole
mmmbop Mmmbop Hanson
mond Mondscheinsonate Beethoven
moonlightshadow Moonlight Shadow Mike Oldfield
morningbroken Morning Has Broken Cat Stevens
mountainking In der Halle des Bergkönigs Grieg
movingonup Moving On Up M-People
myheartwillgoon My Heart Will Go On Celine Dion
myloveyourlove My Love is Your Love Whitney Houston
myway My Way Frank Sinatra
nachtmusik Eine kleine Nachtmusik Mozart
nahnehnah Nah Neh Nah Vaya Con Dios
newyork New York, New York Frank Sinatra
nma-125mph 125mph New Model Army
nma-51st 51st State New Model Army
nma-allofthis All of this New Model Army
nma-betterthan Better than them New Model Army
nma-bigblue Big blue New Model Army
nma-brave Brave new world New Model Army
nma-dream Western Dream New Model Army
nma-greengrey Green and grey New Model Army
nma-poison Poison Street New Model Army
nma-questions Stupid Questions New Model Army
nma-race Master Race New Model Army
nma-war Here comes the war New Model Army
nocturne Nocturne norwegisch Secret Garden
onedaymore One Day More Les Miserables
onlyyou Only You (and you alone) The Platters
pachelbl Canon Pachelbel
panoptikum Unsquare Dance Dave Brubeck
party Let’s have a party Wanda Jackson
peggysue Peggy Sue Buddy Holly
phantomopera Phantom of the Opera Webber
philadelphia Streets Of Philadelphia Bruce Springsteen
pinkpanther Pink Panther Theme Henry Mancini
piubellacosa Piu Bella Cosa Eros Ramazzotti
poweroflove The Power of Love Huey Lewis
pr-angels Between angels and insects Papa Roaches
pr-binge Binge Papa Roaches
pr-blood Blood Brothers Papa Roaches
pr-broken Broken home Papa Roaches
pr-deadcell Dead cell Papa Roaches
pr-infest Infest Papa Roaches
pr-lastresort Last resort Papa Roaches
pr-neverenough Never enough Papa Roaches
pr-revenge Revenge Papa Roaches
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pr-snakes Snakes Papa Roaches
radetzkymarsch Radetzkymarsch Johann Strauß Vater
radio Radio The Corrs
rainbow Over the Rainbow Judy Garland
ratm-sun People of the Sun Rage against the Machine
readmymindlight If You Could Read My Mind Gordon Lightfoot
readmymindstars If You Could Read My Mind Stars on 54
rem-beyond The great beyond REM
rem-endoftheworld Its the end of the world REM
rem-orange Orange Crush REM
rem-religion Losing my religion REM
rem-stand Stand REM
rem-superman Superman REM
requiem Requiem Mozart
revolution Do you hear the people sing? Les Miserables
rhcp-angles City of Angles Red Hot Chili Peppers
rhcp-californication Californication Red Hot Chili Peppers
rhcp-dirt I like dirt Red Hot Chili Peppers
rhcp-easily Easily Red Hot Chili Peppers
rhcp-emitremmus Emitremmus Red Hot Chili Peppers
rhcp-getontop Get on top Red Hot Chili Peppers
rhcp-otherside Otherside Red Hot Chili Peppers
rhcp-porcelain Porcelain Red Hot Chili Peppers
rhcp-road Road Trippin Red Hot Chili Peppers
rhcp-savior Savior Red Hot Chili Peppers
rhcp-scartissue Scar Tissue Red Hot Chili Peppers
rhcp-universe Parallel Universe Red Hot Chili Peppers
rhcp-velvet This velvet glove Red Hot Chili Peppers
rhcp-world Around the world Red Hot Chili Peppers
risingsun House of the Rising sun Animals
riverdance Riverdance Riverdance
roadtohell The Road To Hell Chris Rea
rockdj Rock DJ Robbie Williams
rockisdead Rock is Dead Marilyn Manson
rocknrollkids Rock’n Roll Kids Paul Harrington, Charlie McGettigan
running Keep on running Spencer Davis Group
sanfrancisco San Francisco Scott McKenzie
saymyname Say my name Destiny’s Child
schindler Schindlers Liste John Williams
schneib schneibb scho obar ins Tal Grenzlandchor Arnoldstein
schwan Schwanensee (Scene) Tchaikovsky
seeyouwhen See You When You Get There Coolio
sexbomb Sexbomb Tom Jones
shakespeare The Beginning of the Partnership Shakespeare in Love OST
she She Elvis Costello
shoopshoopsong Shoop Shoop Song Cher
sing Sing Sing Sing Glenn Miller
singalongsong Sing along song Tim Tim
sl-summertime Summertime Sublime
sl-whatigot What i got Sublime
sml-adia Adia Sarah McLachlan
sml-angel Angel Sarah McLachlan
sml-icecream Ice Cream Sarah McLachlan
sml-remember I will remember you Sarah McLachlan
sport Es lebe der Sport Rainhard Fendrich
starwars Star Wars John Williams
stormsinafrica Storms in Africa Enya
submarine Yellow Submarine Beatles
summercity Summer in the city Lovin’ Spoonful
summerdreaming Summer Dreaming Kate Yanai
sunshineoflife You Are The Sunshine Of My Life Stevie Wonder
supertrouper Super Trouper A-Teens
surfusa Surfin’ USA Beach Boys
takefive Take Five Dave Brubeck
talkaboutlove Let’s Talk About Love Celine Dion
tannenbaum Oh, Tannenbaum
tell William Tell Overture (conclusion) Rossini
tellhim Tell Him Vonda Shepard
thecircleoflife The Circle Of Life Elton John
themangotree Under The Mango Tree Tim Tim
therose The Rose Bette Midler
threetimesalady Three Times A Lady Lionel Richie
tiffany Breakfast At Tiffany’s Deep Blue Something
timeaftertime Time After Time Cyndi Lauper
timewarp Time Warp Rocky Horror Picture Show
togetheragain Together Again Janet Jackson
torn Torn Natalie Imbruglia
tritschtratsch Tritsch Tratsch Polka Strauss
unbreakmyheart Un-Break My Heart Toni Braxton
veronika Veronika, der Lenz ist da Comedian Harmonists
verve-bittersweet Bitter sweet symphony The Verve
verve-butterfly Catching the butterfly The Verve
verve-drugs The drugs dont work The Verve
verve-luckyman Lucky man The Verve
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vivaforever Viva Forever Spice Girls
vm-4seasons Vivaldis four Seasons Venessa Mae
vm-bach Bach Partita #3 in E for solo violin Venessa Mae
vm-brahms Brahms Scherzo in C minor Venessa Mae
vm-classicalgas Classical Gas Venessa Mae
vm-red Red violin Venessa Mae
vm-tequlia Tequlia Mockinbird Venessa Mae
vm-toccata Toccata and fugue in D minor Venessa Mae
Walkinincohn Walking In Memphis Marc Cohn
walkininmemphis Walking In Memphis Cher
walzer Walzer op.39 No15 Brahms
whatsawoman What’s A Woman Vaya Con Dios
whatsup What’s Up 4 Non Blondes
whenyousay When you say nothing at all Ronan Keating
whitechristmas White Christmas Bing Crosby
wildwildwest Wild Wild West Will Smith
wonderfulworld What a Wonderful World Louis Armstrong
wonderland Wonderland Passion Fruit
yesterday Yesterday
yesterday-b Yesterday Beatles
yougotit You Got It
youlearn You Learn Alanis Morissette
zapfenstreich Zapfenstreich-Hornsignale
zarathustra Also sprach Zarathustra Richard Strauss
zillertaler Zillertaler Hochzeitsmarsch Zillertaler Schürzenjäger
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W. von der Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Proceed-
ings of ICANN’96, International Conference on Artificial Neural Net-
works, volume 1112 of Lecture Notes in Computer Science, pages 165–170,
Berlin, 1996. Springer.

[BSW97] C. M. Bishop, M. Svensén, and C. K. I. Williams. Magnification Factors
for SOM and GTM Algorithms. In Proceedings of the Workshop on Self-
Organizing Maps, pages 333–338. Helsinki University of Technology, 1997.

[Chu92] C. K. Chui. An Introduction to Wavelets. Academic Press, San Diego,
CA, USA, 1992.

[CM98] V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory,
and Methods. Adaptive and Learning Systems for Signal Processing, Com-
munications, and Control. Wiley, New York, 1998.

[CPL94] P. Cosi, G. De Poli, and G. Lauzzana. Auditory Modeling and Self-
Organizing Neural Networks for Timbre Classification. Journal of New
Music Research, 23:71–98, 1994.

88



BIBLIOGRAPHY 89

[DH73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis.
Wiley, New York, 1973.

[Dix00] S. E. Dixon. A Lightweight Multi-Agent Musical Beat Tracking Sys-
tem. In PRICAI 2000: Proceedings of the Pacific Rim International
Conference on Artificial Intelligence, pages 778–788, Melbourne, Aus-
tralia, 2000.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
inclompete data via the EM algorithm. Journal of the Royal Statistical
Society, 39(1):1–38, 1977.
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