A Tutorial on Onset Detection in Music Signals

J.P. Bello et al.

Goals

- Detect events in music signals. Specifically the beginning of notes.
- Multiple usage:
 - Proper segmentation of music signals
 - Extraction of important features
 - Segmented compression

This can be generalized to any time series

• Detection of transients in different signals:

- Electrocardiogram (EKG)
- Seismograph data
- Stock-market results

Definition of transients

In general, multi-step approach is used

Pre-Processing Multi-band separation

 Separate signals in multiple bands and combine each band decision to get final decision

Pre-Processing Signal modelisation

- Model signal as a stationary signal (ex. sum of slowly varying cosines)
- Measure residual signal from diff. between model and original.
 - Burst in energy should indicate transient as our model is inadequate at that moment

Signal Reduction

Signal reduction

- Transform the signal into a detection function
 - Extract relevant features
 - Reduce the complexity of the signal

Signal Reduction

- Two broad categories
 - Reduction based on signal features
 - Temporal features
 - Spectral features
 - Reduction based on probabilistic model
 - Two competing models
 - Surprising moment approach

Temporal features

- Approach based on energy
- Measure the derivative of the energy
- Measure the derivative of the log of the energy (i.e. relative change in energy)

$$\frac{d(\log E)}{dt} = \frac{1}{E} \frac{dE}{dT}$$

Spectral features

- Rapid changes in the envelope usually lead to energy being present across the spectrum
 - Take the short term FFT of the signal
 - Take the spectral energy with a bigger weight on high frequencies

$$\widetilde{E}(n) = \frac{1}{N} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} W_k |X_k(n)|^2$$

Spectral Features

- Alternatively, look for the evolution of the energy per band
 - Rapid rise in energy should be due to transient
 - Example:

$$SD(n) = \sum_{k=\frac{N}{2}}^{\frac{N}{2}-1} \left\{ H\left(|X_k(n)| - |X_k(n-1)| \right) \right\}^2$$

$$H(x) = (x + |x|)/2,$$

Spectral Features

- Previous methods where based on the amplitude
- Alternatively, we can look at the phase

Spectral Features

• If the signal is a stationary sine wave, phase changes across FFT windows should remain the same:

$$\varphi_k(n) - \varphi_k(n-1) \simeq \varphi_k(n-1) - \varphi_k(n-2).$$

• Take the second derivative and check for variations: $\Delta \varphi_k(n) = \varphi_k(n) - 2\varphi_k(n-1) + \varphi_k(n-2) \simeq 0$.

$$\zeta_p(n) = \frac{1}{N} \sum_{k=1}^{N} |\Delta \varphi_k(n)|$$

Time Frequency Representations

- Fourier analysis contains perfect spectral information, but time of different events is lost (STFFT solves this a bit by windowing)
- TFR contain both some spectral and time information
- Transform the signal with wavelets, in this case Haar wavelets.
- Can give better time resolution

Probabilistic models

- Assume the probability of a given sample is dependant on past samples
- Then measure the "surprise" of obtaining the actual sample.
 - A high surprise value indicates current frame is very different from our model

$$S(n) \equiv S(\mathbf{x}(n)) \stackrel{\text{def}}{=} -\log p(\mathbf{x}(n) \{\mathbf{x}(j) : j < n\})$$

Probabilistic models

- Can be applied to multiple samples (frames).
 - Split the frame in two, and use a joint distribution estimate to measure conditional probability (and then measure "surprise")

$$p(x_{2} | x_{1}) = \frac{p(x_{2}, x_{1})}{p(x_{1})}$$

$$S(x_2) = \log p(x_1) - \log p(x_1, x_2)$$

Independent component analysis models

- Assume that the frame x is the linear combination of s independently distributed random variables: x=As where A is a matrix
- We can then measure the probability of x:
- (and then measure "surprise")

$$-\log p(\mathbf{x}) = -\sum_{i=1}^{N} \log p_i(s_i) + \log \det \mathbf{A}$$

Probabilistic models

- Unfortunately, they need training on the data to estimate the parameters (computationally expensive)
- Based on certain model assumptions, we can derive methods based on spectral computations
 - Probabilistic models therefore can be seen as a superset of our other models

Peak Picking

- Once we have reduced the signal, we need to trig based on decision function
- Search for peaks in detection function

Thresholding

- Absolute thresholding d(n)>cte
 - Not very flexible, not robust on dynamic signals
- Relative thresholding: take into account values of local d(n)

$$\ddot{\delta}(n) = \delta + \lambda \sum_{i=-M}^{M} w_i d^2(n+i) \qquad \ddot{\delta}(n) = \delta + \lambda \operatorname{median} \{ |d(n-M)|, \dots, |d(n+M)| \}.$$

Takes into account relative amplitude of d(n)

Comparison

- 5 different reduction methods on 1065 different signals
 - High Frequency Content

$$\widetilde{E}(n) = \frac{1}{N} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} W_k |X_k(n)|^2$$

Spectral Difference

$$SD(n) = \sum_{k=\frac{N}{2}}^{\frac{N}{2}-1} \{ H(|X_k(n)| - |X_k(n-1)|) \}^2$$

Phase Deviation

$$\zeta_p(n) = \frac{1}{N} \sum_{k=1}^{N} |\Delta \varphi_k(n)|$$

- Wavelet regularity modulus (Haar)
- ICA Negative Log-likelihood

$$S(\mathbf{x}_2) = \log p(\mathbf{x}_1) - \log p(\mathbf{x})$$

Comparison

- Peak picking was done with relative threshold based on the median of d(n).
 - Parameters of thresholding function where chosen manually for each reduction methods
 - Only static threshold constant was changed for comparison

Comparison

- 4 groups of signals, all at 44.1 kHz
- Onset labeling done manually on all signals
 - Somewhat imprecise
 - Successful detection is <50ms

Types of signals

• Pitched non percussive • Pitched percussive

Types of signal

Non pitched percussive

• Pop music

Comparison of detection functions

Comparison of detection functions

 Percussion signals easier to spot

Overall Results

Overall Results

Optimal point for each method (distance)

- Log-likelihood: 90.6%, 4.7%

- HFC: 90%, 7%

- Spectral diff. 83%,4.1%

- Phase dev. 81.8%,5.6%

- Wavelets 79.9%,8.3

Overall Results

- Log-likelihood gives best overall results
- HFC also give good Positive/Negative ratio
- Wavelets are not that good

Type of Onset Results

PITCHED NON-PERCUSSIVE - 93 ONSETS

METHOD	тр %	FP %
High frequency content	81.7	14.7
Spectral difference	87.1	8.6
Phase deviation	95.7	4.3
Wavelet reg. modulus	92.5	10.1
Neg. log-likelihood	96.8	3.2

NON-PITCHED PERCUSSIVE -212 ONSETS

METHOD	TP %	F P %
High frequency content	96.7	0.0
Spectral difference	81.6	5.5
Phase deviation	80.7	5.5
Wavelet reg. modulus	88.7	2.2
Neg. log-likelihood	92.9	1.7

PITCHED PERCUSSIVE -489 ONSETS

METHOD	TP %	FP%
High frequency content	94.1	5.4
Spectral difference	94.9	1.6
Phase deviation	95.5	0.3
Wavelet reg. modulus	92.7	5.1
Neg. log-likelihood	92.4	3.1

COMPLEX MIX-271 ONSETS

METHOD	TP %	FP %
High frequency content	84.5	10.8
Spectral difference	80.4	10.4
Phase deviation	80.1	24.7
Wavelet reg. modulus	81.9	27.7
Neg. log-likelihood	86.0	10.8

Type of Onset Results

- Phase based methods perform poorly on nonpitched sounds but outperform HFC on pitched non percussive
 - No harmonics present vs no aggressive attack
- HFC performs better on percussive sounds
 - More abrupt onsets with percussive instruments lead to more high frequency contents at onsets
- Complex signals have a lower success rate
 - Phase based methods suffer from richness of music

Conclusions

- There is no best method. Computation cost and type of signal must be taken into account
- For percussive signals, temporal methods suffice
- HFC a good complexity/precision compromise
 - But if purely non-percussive, phase based approached might be better
- If computation costs are not a problem, probabilistic approach is recommended
- Advantage of wavelets is very precise time localization vs spectral, phase based approach

