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Goals

* Detect events 1n music signals. Specifically
the beginning of notes.

* Multiple usage:
— Proper segmentation of music signals
— Extraction of important features

— Segmented compression



This can be generalized to any
time series

Detection of transients 1n different signals:

Electrocardiogram (EKG)
Seismograph data
Stock-market results



Definition of transients

l,_,' transient



In general, multi-step approach 1s
used




Pre-Processing
Multi-band separation

» Separate signals in multiple bands and
combine each band decision to get final
decision



Pre-Processing
Signal modelisation

* Model signal as a stationary signal (ex. sum
of slowly varying cosines)

* Measure residual signal from diff. between
model and original.

— Burst 1n energy should indicate transient as our
model 1s inadequate at that moment



Signal Reduction
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Signal reduction

» Transform the signal into a detection
function

— Extract relevant features
— Reduce the complexity of the signal



Signal Reduction

* Two broad categories
— Reduction based on signal features

e Temporal features
» Spectral features

— Reduction based on probabilistic model
» Two competing models

* Surprising moment approach



Temporal features

* Approach based on energy
* Measure the derivative of the energy

* Measure the derivative of the log of the
energy (1.€. relative change 1n energy)

d(logf) 1dE
dt E dT




Spectral features

« Rapid changes 1n the envelope usually lead
to energy being present across the spectrum
— Take the short term FFT of the signal

— Take the spectral energy with a bigger weight
on high frequencies
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Spectral Features

« Alternatively, look for the evolution of the
energy per band

— Rapid rise in energy should be due to transient
— Example:

¥

SD(ny = > {H (|Xk(n)| — [Xe(n — 1))}’
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H(z) = (z + |z])/2.



Spectral Features

 Previous methods where based on the
amplitude

» Alternatively, we can look at the phase



Spectral Features

 If the signal 1s a stationary sine wave, phase
changes across FFT windows should remain
the same:

pr(n) —pr(n — 1y~ pp(n — 1) — pi(n — 2).

e Take the second derivative and check for
variations: Avw(n) = wrn) — 20x(n— 1) + piln — 2) ~ 0.
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Time Frequency Representations

Fourier analysis contains perfect spectral
information, but time of different events 1s
lost (STFFT solves this a bit by windowing)

TFR contain both some spectral and time
information

Transform the signal with wavelets, 1n this
case Haar wavelets.

Can give better time resolution



Probabilistic models

* Assume the probability of a given sample 1s
dependant on past samples

* Then measure the “surprise” of obtaining
the actual sample.

— A high surprise value indicates current frame 1s
very different from our model
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Probabilistic models

* Can be applied to multiple samples
(frames).
— Split the frame in two, and use a joint

distribution estimate to measure conditional
probability ( and then measure “surprise”)

p(x,,x)
p(x,)

px, | x) =



Independent component analysis
models

 Assume that the frame x 1s the linear
combination of s independently distributed
random variables: x=As where A 1s a matrix

* We can then measure the probability of x:

 (and then measure “surprise™)

N
—lozp(x)= — Z; lozp;(s;) + lozdet A

ta=]



Probabilistic models

« Unfortunately, they need training on the
data to estimate the parameters
(computationally expensive)

* Based on certain model assumptions, we
can derive methods based on spectral
computations

— Probabilistic models therefore can be seen as a
superset of our other models



Peak Picking

* Once we have reduced the signal, we need
to trig based on decision function

» Search for peaks in detection function

Original signal
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Thresholding

* Absolute thresholding d(n)>cte

— Not very flexible, not robust on dynamic
signals

» Relative thresholding: take into account
values of local d(n)

S(n)=8+ A\ Z wyd?(n + ) (\:’I:_n) =6 + Amedian {|d(n— M) ,...,|[dn+M)|}.

t=—N\J

— Takes 1nto account relative amplitude of d(n)



Comparison

e 5 different reduction methods on 1065 different
signals

¥ i1

— High Frequency Content k_Z_L”’* Kumy”
=t )
— Spectral Difference SD(n) = A:Z_ {H (|Xx(n)| — [Xe(n = )Y
1 N
— Phase Deviation G =D 1Ak

k=1

— Wavelet regularity modulus (Haar)

Si(xXz) = logpixy) — logp(x)

— ICA Negative Log-likelihood



Comparison

» Peak picking was done with relative
threshold based on the median of d(n).

— Parameters of thresholding function where
chosen manually for each reduction methods

— Only static threshold constant was changed for
comparison



Comparison

* 4 groups of signals, all at 44.1 kHz
* Onset labeling done manually on all signals

— Somewhat imprecise

* Successful detection 1s <50ms



Types of signals

* Pitched non percussive e« Pitched percussive




Types of signal

* Non pitched * Pop music
percussive




Comparison of detection
functions
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Comparison of detection
functions

Pop signal

High frequency content
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* Percussion signals
easier to spot



% of true positives
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Overall Results

* Optimal point for each method (distance)

— Log-likelihood:
— HFC:

— Spectral diff.

— Phase dev.

— Wavelets

90.6%, 4.7%
90%, 7%
83%,4.1%
81.8%0,5.6%
79.9%,8.3



Overall Results

* Log-likelihood gives best overall results
 HFC also give good Positive/Negative ratio
* Wavelets are not that good



Type of Onset Results

PITCHED PERCUSSIVE - 480 ONSETS

PITCHED NON-PERCUSSIVE -93 ONSETS

METHOD ™% FP%
High frequency content 81.7 14.7
Spectral difference 87.1 8.6
Phase deviation 95.7 4.3
Wavelet reg. modulus 0925 10.1
Neg. log-likelihood 6.8 3.2

NON-PITCHED PERCUSSIVE -212 ONSETS

METHOD TP% FP%
High frequency content 96,7 (L0
Spectral difference 81.6 5.5
Phase deviation 80.7 5.5
Wavelet reg. modulus 88.7 2.2
Neg. log-likelihood 92.9 1.7

METHOD TP % FP%
High frequency content M1 0.4
Spectral difference 4.9 1.6
Phase deviation 05.6 0.3
Wavelet reg. modulus 02.7 0.1
Neg. log-likelihood 02.4 3.1
COMPLEX MIX - 271 ONSETS
METHOD TP % FP %
High frequency content §54.5 10.8
Spectral difference 80.4 10.4
Phase deviation 80.1 24.7
Wavelet reg. modulus 81.9 27.7
Neg. log-likelihood 86.0 10.8




Type of Onset Results

Phase based methods perform poorly on non-
pitched sounds but outperform HFC on pitched
non percussive

— No harmonics present vs no aggressive attack
HFC performs better on percussive sounds

— More abrupt onsets with percussive instruments lead to
more high frequency contents at onsets

Complex signals have a lower success rate
— Phase based methods suffer from richness of music



Conclusions

There 1s no best method. Computation cost and
type of signal must be taken into account

For percussive signals, temporal methods suffice

HFC a good complexity/precision compromise

— But if purely non-percussive, phase based approached
might be better

If computation costs are not a problem,
probabilistic approach is recommended

Advantage of wavelets 1s very precise time
localization vs spectral, phase based approach






