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Introduction

Introduction

x1 x2 x3 x4

Sets of data points assumed to be independent and identically
distributed (i.i.d) so far

i.i.d is a poor assumption for sequential data

measurements of time series (rainfall), daily values of a
currency exchange rate, acoustic features in speech recognition
sequence of nucleotide base pairs along a strand of DNA,
sequence of characters in an English sentence
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Markov Models

Markov model

Markov model:

p(x1, . . . , xN) =
N∏

n=1

p(xn|x1, . . . , xn−1) (13.1)

Each of the conditional distributions is independent of all
previous observations except N most recent
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Markov Models

The first-order Markov chain

Homogeneous Markov chain

x1 x2 x3 x4

Joint distribution for a sequence of N observations

p(x1, . . . , xN) = p(x1)
N∏

n=2

p(xn|xn−1) (13.2)

From the d-separation property

p(xn|x1, . . . , xn−1) = p(xn|xn−1) (13.3)
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Markov Models

A higher-order Markov chain

The second-order Markov chain

x1 x2 x3 x4

The joint distribution

p(x1, . . . , xN) = p(x1)p(x2|x1)
N∏

n=3

p(xn|xn−1, xn−2) (13.4)

A higher-order Markov chain

Observations are discrete variables having K states

first-order: K − 1 parameters for each K states
→ K (K − 1) parameters

Mth order: KM−1(K − 1) parameters
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Hidden Markov Models

Hidden Markov models (HMM)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

zn latent variables (discrete)

xn observed variables

The joint distribution of the state space model

p(x1, . . . , xN , z1, . . . , zN) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn)

(13.6)
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Hidden Markov Models

Hidden Markov models (HMM)

Transition probability

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
zn−1,jznk

jk

Ajk ≡ p(znk = 1|zn−1,j = 1),

0 ≤ Ajk ≤ 1 and
P

k Ajk = 1

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33

Emission probability

p(xn|zn, φ) =
K∏

k=1

p(xn|φk)znk
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Hidden Markov Models

HMM applications

Speech recognition

Natural language modelling

Analysis of biological sequences (e.g. proteins and DNA)

On-line handwriting recognition; Example: Handwritten digits

Left-to-right architecture
On-line data: each digit represented by the trajectory of the
pen as a function of time

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33
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Hidden Markov Models

Maximum likelihood for the HMM

Maximum likelihood for the HMM

We have observed a data set

X = {x1, . . . , xN},

so we can determine the parameters of an HMM

θ = {π,A, φ}

by using maximum likelihood.

The likelihood function is

p(X|θ) =
∑
Z

p(X,Z|θ) (13.11)
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Hidden Markov Models

Maximum likelihood for the HMM

Maximizing the likelihood function

Expectation maximization algorithm (EM)

Initial selection for the model parameters: θold

E step:

Posterior distribution of the latent variables p(Z|X, θold)

Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ) (13.12)
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Hidden Markov Models

Maximum likelihood for the HMM

Maximizing the likelihood function: EM

E step:

Q(θ, θold) =
K∑

k=1

γ(z1k) ln πk +
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk) ln Ajk

+
N∑

n=1

K∑
k=1

γ(znk) ln p(xn|φk) (13.17)

The marginal posterior distribution of a latent variable γ and
the joint posterior distribution of two successive latent
variables ξ

γ(zn) = p(zn|X, θold) (13.13)

ξ(zn−1, zn) = p(zn−1, zn|X, θold) (13.14)
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Hidden Markov Models

Maximum likelihood for the HMM

Maximizing the likelihood function: EM

M step:

Maximize Q(θ, θold) with respect to parameters θ = {π,A, φ},
treat γ(zn) and ξ(zn−1, zn) as constant. By using Lagrange
multipliers

πk =
γ(z1k)∑K
j=1 γ(z1j)

(13.18)

Ajk =

∑N
n=2 ξ(zn−1,j , znk)∑K

l=1

∑N
n=2 ξ(zn−1,j , znl)

(13.19)
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Hidden Markov Models

Maximum likelihood for the HMM

Maximizing the likelihood function: EM

M step:

Parameters φk independent
→ for Gaussian emission densities p(x|φk) = N (x|µk ,Σk)

µk =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

(13.20)

Σk =

∑N
n=1 γ(znk)(xn − µk)(xn − µk)T∑N

n=1 γ(znk)
(13.21)
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Hidden Markov Models

The forward-backward algorithm

Back to the problem...

We have observed a data set X = {x1, . . . , xN},
so we can determine the parameters of an HMM θ = {π,A, φ}
by maximizing the likelihood function p(X|θ) =

∑
Z p(X,Z|θ).

We used EM to maximize Q(θ, θold) and resulted to
coefficients πk(γ), Ajk(ξ), µk(γ) and Σk(γ).

How to evaluate γ and ξ?
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Hidden Markov Models

The forward-backward algorithm

The forward-backward algorithm

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Two-stage message passing algorithm

Several variants, we focus on alpha-beta algorithm
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Hidden Markov Models

The forward-backward algorithm

Evaluate γ(zn)

Using Bayes’ theorem

γ(zn) = p(zn|X) =
p(X|zn)p(zn)

p(X)
(13.32)

=
p(x1, . . . , xn, zn)p(xn+1, . . . , xN |zn)

p(X)

=
α(zn)β(zn)

p(X)
(13.33)

where we have defined

α(zn) = p(x1, . . . , xn, zn) (13.34)

β(zn) = p(xn+1, . . . , xN |zn) (13.35)
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Hidden Markov Models

The forward-backward algorithm

Evaluate γ(zn): forward-backward

Forward recursion for α(zn)

k = 1

k = 2

k = 3

n − 1 n

α(zn−1,1)

α(zn−1,2)

α(zn−1,3)

α(zn,1)
A11

A21

A31

p(xn|zn,1)

α(zn) = p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1) (13.36)

α(z1) = p(x1, z1) = p(z1)p(x1|z1) =
K∏

k=1

{πkp(x1|φk)}z1k (13.37)
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Hidden Markov Models

The forward-backward algorithm

Evaluate γ(zn): forward-backward

Backward recursion for β(zn)

k = 1

k = 2

k = 3

n n + 1

β(zn,1) β(zn+1,1)

β(zn+1,2)

β(zn+1,3)

A11

A12

A13

p(xn|zn+1,1)

p(xn|zn+1,2)

p(xn|zn+1,3)

β(zn) =
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn) (13.38)

β(zN) = 1
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Hidden Markov Models

The forward-backward algorithm

Evaluate ξ(zn−1, zn)

Using Bayes’ theorem

ξ(zn−1, zn) = p(zn−1, zn|X)

=
p(X|zn−1, zn)p(zn−1, zn)

p(X)

=
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)
(13.43)
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Hidden Markov Models

The sum-product algorithm for the HMM

The sum-product algorithm for the HMM

Solve the problem of finding local marginals for the hidden
variables γ and ξ

Can be used instead of forward-backward algorithm

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Results in

γ(zn) =
α(zn)β(zn)

p(X)
(13.54)

ξ(zn−1, zn) =
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)
(13.43)
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Hidden Markov Models

Scaling factors

Scaling factors

Used to solve forward-backward algorithm

α(zn) = p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1) (13.36)

Probabilities p(xn|zn) and p(zn|zn−1) are often significantly
less than unity
→ values α(nn) go to zero exponentially quickly

We introduce re-scaled versions

α̂(zn) =
α(zn)

p(x1, . . . , xn)
(13.55)

β̂(zn) =
β(zn)

p(xn+1, . . . , xN |x1, . . . , xn)
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Hidden Markov Models

The Viterbi algorithm

The Viterbi algorithm

Finding the most probable sequence of latent states is not the
same as that of finding the set of states that are individually
the most probable.

The latter problem has been solved already
The max-sum algorithm (Viterbi algorithm) can be used to
solve the former problem

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1
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Hidden Markov Models

Extensions of the hidden Markov model

Extensions of the hidden Markov model

zn−1 zn zn+1

xn−1 xn xn+1

Autoregressive HMM

zn−1 zn zn+1

xn−1 xn xn+1

un−1 un un+1

Input-output HMM

z(1)
n−1 z(1)

n z(1)
n+1

z(2)
n−1 z(2)

n
z(2)

n+1

xn−1 xn xn+1

Factorial HMM
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Linear Dynamical Systems

Linear Dynamical Systems

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

A linear-Gaussian model

The general form of algorithms for the LDS are the same as
for the HMM

Continuous latent variables

Both observed xn and latent zn variables Gaussian

Joint distribution over all variables, marginals and conditionals
are Gaussian

⇒ The sequence of individually most probable latent variable
values is the same as the most probable latent sequence (no
Viterbi considerations)
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Linear Dynamical Systems

Linear Dynamical Systems

Transition and emission probabilities

p(zn|zn−1) = N (zn|Azn−1, Γ) (13.75)

p(xn|zn) = N (xn|Czn,Σ) (13.76)

The initial latent variable

p(z1) = N (z1|µ0,V0) (13.77)

The parameters θ = {A, Γ,C,Σ, µ0,V0} determined using
maximum likelihood through EM
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Linear Dynamical Systems

Inference in LDS

Inference in LDS

1 Find the marginal distributions for the latent variables
conditional on the observation sequence

2 Given the parameters θ = {A, Γ,C,Σ, µ0,V0}, predict the
next latent state zn+1 and next observation xn+1

Sum-product algorithm
Kalman filter (forward-recursion, α message)
Kalman smoother (backward-recursion, β message)

Application of the Kalman filter: tracking

• True positions of the object

• Noisy measurements of the
positions

x Means of the inferred
positions
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Linear Dynamical Systems

Learning in LDS

Learning in LDS

Determine θ = {A, Γ,C,Σ, µ0,V0} using maximum likelihood
(again)

Expectation maximization

E step:

Q(θ, θold) = EZ|θold [ln p(X,Z|θ)] (13.109)

M step: Maximize with respect to the components of θ
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Linear Dynamical Systems

Extensions of LDS

Extensions of LDS

The marginal distribution of the observed variables is Gaussian

⇒ use Gaussian mixture as the initial distribution for z1

Make Gaussian approximation by linearizing around the mean
of the predicted distribution

Extended Kalman filter

Combining the HMM with a set of linear dynamical systems

Switching state space model
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Linear Dynamical Systems

Particle filters

Particle filters

Sampling methods

Needed for dynamical systems which do not have a
linear-Gaussian

Sampling-importance-resampling formalism
⇒ a sequential Monte Carlo as the particle filter

Particle filter algorithm:
At time step n

obtained a set of samples and weights
observe xn+1

evaluate samples and weights for time step n + 1
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Summary

Summary

Markov model

Discrete observed variables;
each depends on N previous
observations

x1 x2 x3 x4

Hidden Markov model

Discrete latent variables

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Linear dynamical systems

Continuous latent variables

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2
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