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Overview

• Graphs and probabilities
- Conditional independence
- Directed graphs
- Examples

• Inference
- Belief propagation
- Approximate inference

• Learning
- Maximum likelihood I: fully observable case
- Maximum likelihood II: Expectation Maximum
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• Graphs endowed with a probability distribution
- nodes represent random variables and the edges encode conditional 

independence assumptions

• Graphical model express sets of conditional independence via 
graph structure (and conditional independence is useful)

• Graph structure plus associated parameters define joint probability 
distribution of the set of nodes/variables

Probabilistic Graphical Models

Probability 
theory

Graph
theory

Probabilistic 
graphical
theory
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Graphical Models

• Graphical models come in two main flavors:

1. Directed graphical models (a.k.a Bayes Net, Belief Networks):
- consists of a set of nodes with arrows (directed edges) between some of the nodes
- arrows encode factorized conditional probability distributions

2. Undirected graphical models (a.k.a Markov random fields):
- consists of a set of nodes with undirected edges between some of the nodes
- edges (or more accurately the lack of edges) encode conditional independence.

• Today, we will focus exclusive on directed graphs.
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Probability Review: 
Marginal Independence

Definition: X is marginally independent of Y if for all (i, j)

P (X = xi, Y = yj) = P (X = xi)P (Y = yj)

P (X, Y ) = P (X)P (Y )

This is equivalent to the expression:

P (X | Y ) = P (X) P (Y | X) = P (Y )

Why? Recall from the probability product rule

P (X, Y ) = P (X | Y )P (Y ) = P (Y | X)P (X) = P (X)P (Y )
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Probability Review: 
Conditional Independence

Definition: X is conditionally independent of Y given Z if the probabil-
ity distribution governing X is independent of the value of Y , given the
value of Z: for all (i, j, k)

P (X = xi, Y = yj | Z = zk) = P (X = xi | Z = zk)P (Y = yj | Z = zk)

P (X, Y | Z) = P (X | Z)P (Y | Z)

Or equivalently (by the product rule):

P (X | Y, Z) = P (X | Z) P (Y | X, Z) = P (Y | Z)

Why? Recall from the probability product rule

P (X, Y, Z) = P (X | Y, Z)P (Y | Z)P (Z) = P (X | Z)P (Y | Z)P (Z)

Example: P (Thunder | Rain,Lightning) = P (Thunder | Lightning)
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Directed Graphical Models
• Set of nodes with arrows (directed edges) between some of the nodes

- Nodes represent random variables
- Arrows encode factorized conditional probability distributions

• Consider an arbitrary joint distribution:

• By application of the product rule:

• What if C is conditionally independent from B:

P (A, B, C)

P (A, B, C) = P (A)P (B, C | A)

= P (A)P (B | A)P (C | A, B)

P (A, B, C) = P (A)P (B | A)P (C | A)

A B

C

A B

C

Lightning

Rain

E.g., P (Rain,Lightning | StormCloud) = P (Rain | StormCloud)P (Lightning | StormCloud)

StormCloud
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The General Case
• Consider the arbitrary joint distribution:
• By successive application of the product rule

• Can be represented by a graph in which each node has links from all lower-
numbered nodes (i.e. a fully connected graph)

• Directed acyclic graph: NO DIRECTED CYCLES ⇒ can number nodes so that 
there are no links from higher numbered to lower numbered nodes.

P (X1, . . . , Xd) = P (X1)P (X2 | X1) · · ·P (Xd | X1, . . . , Xd−1)

P (X1, . . . , Xd)

X1 X2

X3

X4

X5

X6

X7
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Directed Acyclic Graphs (DAGs)
• General factorization:

 where Pai denotes the immediate parents of node i,
- i.e. all the nodes with arrows leading to node i. 

• Node Xi is conditionally independent of its non-descendents given its 
immediate parents (missing links imply conditional independence).

• Some terminology:
- Parents of node i = nodes with arrows leading to node i.
- Antecedents = parents, parents of parents, etc.
- Children of node i = nodes with arrows leading from node i.
- Descendents = children, children of children, etc.

X1 X2

X3

X4

X5

X6

X7
P (X1, . . . , Xd) =

d∏

i=1

P (Xi | Pai)

X1 X2

X3

X4

X5

X6

X7
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Importance of Ordering
• Since every joint probability distribution can be decomposed as

• then every joint probability can be represented as a graphical model
- with arbitrary ordering over the variables
- i.e. any decomposition will generate a valid graph

• However not all decompositions are created equal.

• An illustration:

P (X1, . . . , Xd) =
d∏

i=1

P (Xi | Pai)

Engine 
turns over

Fuel gauge

Battery Fuel

Start Battery

Engine 
turns over

Start Fuel gauge

Fuel
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DAG Example (Bayes Net)

Storm 
Clouds

Thunder

Lightning Rain

Wind Surf

CPD for node: Wind Surf

Pa P(WS | Pa) P(~WS | Pa)
L, R 0 1.0

L, ~R 0 1.0
~L, R 0.2 0.8

~L, ~R 0.9 0.1

CPD for node: Lightning

Pa P(L | SC) P(~L | SC)
SC 0.7 0.3

~SC 0 1.0

A conditional probability distribution (CPD) is associated with each node.
- Defines  P(Xi  |  Pai).
- Specifies how the parents interact.

P (SC , L,R, T,WS ) =
d∏

i=1

P (nodei | Pai)

= P (SC )P (L | SC )P (R | SC )P (T | L)P (WS | L,R)
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Example I: Bayes Net (cont.)

Storm 
Clouds

Thunder

Lightning Rain

Wind Surf

CPD for node: Wind Surf

Pa P(WS | Pa) P(~WS | Pa)
L, R 0 1.0

L, ~R 0 1.0
~L, R 0.2 0.8

~L, ~R 0.9 0.1

CPD for node: Lightning

Pa P(L | SC) P(~L | SC)
SC 0.7 0.3

~SC 0 1.0

Let’s count the parameters
- In the full joint distribution: 25 - 1 = 31
- Taking advantage of conditional independences: 11

P (SC , L,R, T,WS ) = P (SC )P (L | SC )P (R | SC )P (T | L)P (WS | L,R)
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Example: Univariate Gaussian
• Consider a univariate Gaussian random variable as a (simple) 

graphical model.

3

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Directed Acyclic Graphs (cont’d)

• General factorization

where       denotes the parents of i

• Missing links imply conditional independencies

• Model specified by graph and by conditional probabilities

• Ancestral simulation can be used to sample from the joint 

distribution

• If a variable with no children is unobserved it can be 
removed from the graph to obtain a marginal distribution

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Importance of Ordering

Battery Fuel
Fuelgauge

Start
Engineturns�over Battery Fuel

FuelgaugeStart
Engineturns�over

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Directed Factorization Property

• A distribution which can be factored according to a 

particular directed graph is said to respect the directed 

factorization property 

• View the graph as a filter

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Examples of Directed Graphs

• Hidden Markov models

• Kalman filters

• Factor analysis

• Probabilistic principal component analysis

• Independent component analysis

• Mixtures of Gaussians

• Probabilistic expert systems

• Sigmoid belief networks

• Hierarchical mixtures of experts

• Etc…

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Example: Univariate Gaussian

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Example: Mixture of Gaussians

• Conditional distributions

• Marginal distribution

X

Graphical model:

p(X = x) = N (x | µ, σ2) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)
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Example II: Mixture of Gaussians
• Now let’s consider a random variable distributed according to a mixture of Gaussians.

• Conditional distributions:

• Marginal distributions:
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Directed Acyclic Graphs (cont’d)

• General factorization

where       denotes the parents of i

• Missing links imply conditional independencies

• Model specified by graph and by conditional probabilities

• Ancestral simulation can be used to sample from the joint 

distribution

• If a variable with no children is unobserved it can be 
removed from the graph to obtain a marginal distribution
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Importance of Ordering

Battery Fuel
Fuelgauge

Start
Engineturns�over Battery Fuel

FuelgaugeStart
Engineturns�over

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Directed Factorization Property

• A distribution which can be factored according to a 

particular directed graph is said to respect the directed 

factorization property 

• View the graph as a filter

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Examples of Directed Graphs

• Hidden Markov models

• Kalman filters

• Factor analysis

• Probabilistic principal component analysis

• Independent component analysis

• Mixtures of Gaussians

• Probabilistic expert systems

• Sigmoid belief networks

• Hierarchical mixtures of experts

• Etc…

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Example: Univariate Gaussian

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Example: Mixture of Gaussians

• Conditional distributions

• Marginal distribution

P (I = i) = wi

p(X = x | I = i) = N (x | µi,σ
2

i ) =
1

σi

√
2π

exp

(

− (x − µi)2

2σ2
i

)

where I is an index over the Gaussian components in the mixture and the mixing proportion,
wi, is the marginal probability that X is generated by mixture component i.

p(X = x) =
∑

i

p(X = x | I = i)P (I = i) =
∑

i

wiN (x | µi,σ
2

i )

Graphical model:

X

I

Graphical model:
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Example III: Naïve Bayes
• Consider the classification problem:

• For a new example Xnew, We want to determine P(Y | Xnew) so that we 
can classify Ynew as argmaxj P(Y = j | Xnew). 

• One way to do this is to use Bayes Rule: 

Bayes Classifier

Training data:

How shall we represent P(X|Y), P(Y)?

How many parameters must we estimate?  

X Y

Training data:

P (Y | X) =
P (X | Y )P (Y )

P (X)
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• Using Bayes rule, to compute P(Y | X) we need to represent P(X | Y) 
and P(Y).
- For even marginally large X, the full joint P(X1,X2,...,Xn | Y) is impractical
- We would require a parameter for each unique combination of X1,..., Xn.

• Naïve Bayes assumption:

• Xi and Xj (i ≠ j) are conditionally independent given Y.

Example III: Naïve Bayes

P (X | Y ) = P (X1, . . . , Xn | Y ) =
∏

i

P (Xi | Y )

X1

Y

Xn...
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Conditioning on Evidence
• Much of the point of Bayes Nets (and Graphical models, more generally) 

is to use data or observed variables to infer the values of hidden (or latent) 
variables.

• We can condition on the observed variables and compute conditional 
distributions over the latent variables.

Engine 
turns over

Battery? Fuel?

Start 
No

Fuel gauge 
empty

Note: hidden variables may have a specific 
interpretations (such as Battery and Fuel), or 
may be introduced to permit a richer class of 
distributions (as in neural network hidden units).
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Markov Properties
• We have said that the conditional independence properties are represented directly 

from the graph.

• The pattern of conditional independence turn out to be extremely important for 
determining how to calculate the conditional distributions over variables of interest.

• We will  now consider three simple independence structures that form the basic 
building blocks of all independence relationships representable by directed 
graphical models.

A

B

C
A

B

C

A

B

C
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Markov Properties I
• Consider the joint distribution, P(A,B,C) specified by the graph:

• Note the missing edge from A to C.

• Node B is “head-to-tail” with respect to the path A-B-C.

• Joint distribution:

A B C

P (A, B, C) = P (A)P (B | A)P (C | A, B)

= P (A)P (B | A)P (C | B)
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Markov Properties I (cont.)
• Suppose we condition on the node B:

• A and C are conditionally independent, given B:

• Note that if B is not observed:

• Informally: observing B “blocks the path” from A to C.

A B C

A ⊥⊥ C | B

A !⊥⊥ C | ∅

P (A,C | B) =
P (A,B,C)

P (B)

=
P (A)P (B | A)P (C | B)

P (B)

=
P (A)P (B | A)

P (B)
P (C | B)

= P (A | B)P (C | B)

[By definition of joint]

[By Bayes rule]

P (A,C) =
∑

B

P (A,C | B)P (B) =
∑

B

P (A | B)P (C | B)P (B)
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Markov Properties II

• Consider the graph:

• Again, note missing edge from A to C.

• Node B is “tail-to-tail” with respect to the path A-B-C.

• Joint distribution:

A

B

C

P (A, B, C) = P (B)P (A | B)P (C | A, B)

= P (B)P (A | B)P (C | B)
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Markov Properties II (cont.)
• Again, let’s condition on node B:

• A and C are conditionally independent, given B: 

•  Again, if B is not observed:

• Informally: observing B “blocks the path” from A to C.

A

B

C

P (A, C | B) = P (A | B)P (C | B)

A ⊥⊥ C | B

P (A, C) =
∑

B

P (A, C | B)P (B) =
∑

B

P (A | B)P (C | B)P (B)

A !⊥⊥ C | ∅
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• Consider the graph:

• Once again, note missing edge from A to C.

• Node B is “head-to-head” with respect to the path A-B-C.

• Joint distribution:

• If B is not observed, we have:

Markov Properties III
A

B

C

P (A,C) =
∑

B

P (A)P (C)P (B | A,C)

= P (A)P (C)
∑

B

P (B | A,C)

= P (A)P (C)

P (A,B,C) = P (A)P (C)P (B | A,C)

A ⊥⊥ C | ∅
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Markov Properties III (cont.)
The Famous: “Explaining Away Effect”

• Suppose, once again, we condition on node B:

•  A and C are not conditionally independent, given B:

•  Informally, an unobserved head-to-head node B “blocks the path” 
from A to C, but once B is observed the path is unblocked.

• Important Note: observation of any descendent of B also “unblocks 
the path.”

A

B

C

A !⊥⊥ C | B

P (A,C | B) = P (A | B,C)P (C | B)

= P (C | B,A)P (A | B)

!= P (A | B)P (C | B)
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Explaining Away:  An Illustration
• Consider the “Burglar Alarm” problem:

Burglar Earthquake

Alarm

Phone 
Call

• You house has a twitchy burglar alarm that is sometimes triggered 
by earthquakes.

• Earth doesn’t care whether your house is currently being burgled
• While on vacation, one of your neighbours call and tells you that 

your home’s burglar alarm is ringing!
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The plot thickens...

• But now suppose you learn that there was a small earthquake in your 
neighbourhood. Whew! Probably not a burglar after all.

• The Earthquake “explains away” the hypothetical burglar.

• So Burglar must not be conditionally independent of Earthquake given 
Alarm (or Phone Call).

Burglar Earthquake

Alarm

Phone 
Call
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d-Separation
• In a general DAG, consider three groups of nodes A, B, C.

• To determine whether A is conditional independent of C given B, 
consider all possible paths from any node in A to any node in C.

• Any such path is blocked if there is a node X which is head-to-tail or 
tail-to-tail with respect to the path and X ∈ B or if the node is head-to-
head and neither the node, nor any of its descendents, is in B.

• Note that a particular node may, for example, be head-to-head with 
respect to one particular path and head-to-tail with respect to a 
different path

• Theorem [Verma & Pearl, 1998]: If, given B, all possible paths from 
A to C are blocked (we say that B d-separates A and C), then A is 
conditionally independent of C, given B.

• Note: Variables may actually be independent even when not d-separated.
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d-Separation Example

Conditional IndependenceA B

C

G H

JI

D

E F

C⊥⊥D ?

C⊥⊥D | A ?

C⊥⊥D | A,B ?

C⊥⊥D | A,B,J ?

C⊥⊥D | A,B,E,J ?
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Inference in a DAG
• Inference: calculate P(X | Y) for some variable or sets of variables 

of interest X and observed variable or set of variables Y.

• If Z are the set of remaining variables in the graph:

• The bad news: exact inference in Bayes Nets (DAGs) is NP-hard!

• But exact inference is still tractable in some cases.

• Let’s look at a special class of networks: trees / forests
- Each node has at most one parent. 

P (X | Y ) =
∑

Z

P (X | Z, Y )P (Z | Y )
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Example: Markov Chain
• Consider the graph: (a Markov Chain)

• What if we want to find P(X1 | XL)?
• Direct evaluation gives:

• For variables having M states, the denominator involves summing over 
ML-1 terms (exponential in the length of the chain).

...
X1 X2 XL-1 XL

P (X1, . . . , XL) = P (X1)P (X2 | X1) . . . P (XL | XL−1)

P (X1 | XL) =

∑
X2

· · ·
∑

XL−1
P (X1 . . . XL)

∑
X1

∑
X2

· · ·
∑

XL−1
P (X1 . . . XL)
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Example: Markov Chain (cont.)
• Using the conditional independence structure we can reorder the 

summations in the denominator to give

which involves on the order of LM2 summations (linear in the length of 
the chain) - similarly for the numerator

• This is known as variable elimination, also can be interpreted as a 
sequence of messages being passed.

∑

X1

∑

X2

· · ·
∑

XL−1

P (X1 . . . XL) =
∑

XL−1

P (XL | XL−1) · · ·
∑

X2

P (X3 | X2)
∑

X1

P (X2 | X1)P (X1)
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Belief Propagation: Decomposing Probabilities

• Suppose we want to compute P(Xi | E) where E is some set of evidence 
variables.
- Evidence variables are those that are observable, offering “evidence” with respect to the 

values of the latent variables.

• Let’s split E into two parts:
i. Ei⁻is the part consisting of assignments to variables in the subtree rooted at Xi.
ii. Ei⁺ is the rest of it. 

Xi

Ei⁺

Ei⁻

P (Xi | E) = P (Xi | E−

i
, E+

i
)P (Xi | E) = P (Xi | E−

i
, E+

i
)

=
P (E−

i
| X, E+

i
)P (X | E+

i
)

P (E−

i
| E+

i
)

[by Bayes rule]

P (Xi | E) = P (Xi | E−

i
, E+

i
)

=
P (E−

i
| X, E+

i
)P (X | E+

i
)

P (E−

i
| E+

i
)

=
P (E−

i
| X)P (X | E+

i
)

P (E−

i
| E+

i
)

[by cond. ind.]

P (Xi | E) = P (Xi | E−

i
, E+

i
)

=
P (E−

i
| X, E+

i
)P (X | E+

i
)

P (E−

i
| E+

i
)

=
P (E−

i
| X)P (X | E+

i
)

P (E−

i
| E+

i
)

= απ(Xi)λ(Xi)

where π(Xi) = P (Xi | E+

i
), λ(Xi) = P (E−

i
| Xi)

and α is a constant independent of Xi.
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Computing λ(Xi) for leaves

• Starting at the leaves of the tree, recursively compute λ(Xi)= P(Ei⁻ | Xi) 
for all Xi.

• If Xi is a leaf:
- If Xi is in E (Xi is observed): λ(Xi) = 1 if Xi matches E, 0 otherwise.
- If Xi is not in E: Ei⁻ is the null set, so λ(Xi) = 1 (constant).

• For simplicity, and without loss of generality, we will assume that all 
variables in E (the evidence set) are leaves in the tree.
- How can we do this? In the case of a tree, conditioning on E d-separates the graph at that 

point.
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• Suppose Xi has one child, Xc.

Computing λ(Xi) for non-leaves I

Xc

Xi

λ(Xi) = P (E−

i | Xi)

=
∑

j

P (E−

i , Xc = j | Xi)

=
∑

j

P (Xc = j | Xi)P (E−

i | Xi, Xc = j)

λ(Xi) = P (E−

i | Xi)

=
∑

j

P (E−

i , Xc = j | Xi)

=
∑

j

P (Xc = j | Xi)P (E−

i | Xi, Xc = j)

=
∑

j

P (Xc = j | Xi)P (E−

i | Xc = j)

=
∑

j

P (Xc = j | Xi)λ(Xc = j)
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• We now have a way to recursively 
compute all the λ(Xi)’s.

• Each node in the network passes a 
little “λ message” to its parent.

• Now suppose Xi has a set of children C.

• Since Xi d-separates each of its subtrees, the contribution of each 
subtree to λ(Xi) is independent. 

where λj(Xi) is the contribution to λ(Xi) of the evidence lying in the 
subtree rooted at one of Xi’s children Xj.

Computing λ(Xi) for non-leaves II

Xj

Xi

X1 ...

λ

λ

λ

λ

λ

λ(Xi) = P (E−

i | Xi) =
∏

Xj∈C

λj(Xi) =
∏

Xj∈C

[

∑

k

P (Xj = k | Xi)λ(Xj)

]
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The other half of the problem

• Remember P(Xi | E) = απ(Xi)λ(Xi). Now that we have all the λ(Xi)’s, 
what about the π(Xi)’s?
- recall: π(Xi) = P(Xi | Ei⁺)

• At the root node Xr, Er⁺ is the null set, so π(Xr) = P(Xr).
- since we also know λ(Xi), we can compute the final P(Xr | E)!

• So for an arbitrary Xi with parent Xp, we can recursively compute π(Xi) 
from π(Xp) and/or P(Xp | E).

• How do we do this?
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Computing π(Xi)

Xp

Xi

π(Xi) = P (Xi | E
+

i
)π(Xi) = P (Xi | E+

i )

=
∑

j

P (Xi, Xp = j | E+

i )

π(Xi) = P (Xi | E+

i )

=
∑

j

P (Xi, Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j, E+

i )P (Xp = j | E+

i )

π(Xi) = P (Xi | E+

i )

=
∑

j

P (Xi, Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j, E+

i )P (Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j)P (Xp = j | E+

i )

π(Xi) = P (Xi | E+

i )

=
∑

j

P (Xi, Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j, E+

i )P (Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j)P (Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j)
P (Xp = j | E)

λi(Xp = j)

π(Xi) = P (Xi | E+
i )

=
∑

j

P (Xi, Xp = j | E+
j )

=
∑

j

P (Xi | Xp = j, E+
i )P (Xp = j | E+

i )

=
∑

j

P (Xi | Xp = j)P (Xp = j | E+
i )

=
∑

j

P (Xi | Xp = j)
P (Xp = j | E)

λi(Xp = j)

=
∑

j

P (Xi | Xp = j)πi(Xp = j)

where πi(Xp) is defined as P (Xp|E)
λi(Xp) .
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Belief Propagation Wrap-up
• Using a top down strategy, we can compute all the π(Xi)’s and, in turn, 

all the P(Xi | E)’s.

• Nodes can be thought of as autonomous processors passing λ and π 
messages to their neighbors.

• What if you a conjunctive distribution, e.g., P(A,B | C) instead of just 
marginal distributions P(A | C) and P(B | C)?
- Use the chain rule: P(A,B | C) = P(A | C)P(B | A, C)
- Each of these latter probabilities can be computed using belief propagation.

λ

λ

λ

λ

λ

ππ

π π

π
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Generalizing Belief Propagation

• Great! For tree structured graphs, we have an inference algorithm with 
time complexity linear in the number of nodes.

• All this is fine, but what if you don’t have a tree structured graph?

• The method we discussed can be generalized to polytrees:
- undirected versions of the graphs are still trees, but nodes can have more than one 

parent.
- do not contain any undirected cycles.
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Dealing with Cycles
• Can deal with undirected cycles in a graph by the junction tree algorithm.

• An arbitrary directed acyclic graph can be transformed via some graph 
theoretic procedure into a tree structure with nodes containing clusters of 
variables (cliques). Belief propagation can be performed on the new tree.

• Note: In the worst case, the junction tree nodes must take on exponentially 
many combinations of values, but can work well in practice.
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Approximate Inference Methods
• For densely connected graphs, exact inference may be intractable.

• There are 3 widely used approximation schemes
- Pretend the graph is a tree: “loopy belief propagation”

- Markov chain Monte Carlo (MCMC): simulate lots of values of the 
variables and use the sample frequencies to approximate probabilities.

- Variational inference: Approximate the graph with a simplified the graph 
(with no cycles) and fit a set of “variational” parameters such that the 
probabilities computed with the simple structure are “close” to those in the 
original graph.
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Learning in DAGs
• Two things could be learned:

- Graph structure
- Parameters governing the conditional probability distribution

• Learning the structure often  involves a search over candidate structures 
and a method to score each structure.
- In practice, it is often difficult to extract the conditional independence 

relationships that make DAGs so appealing in the first place.
- MCMC methods are also used to search over the space of structures.

• We will focus on the problem of learning the parameters.
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Learning the Parameters
• Consider the parameter set θ = (θ1,..., θ) which govern the conditional 

probability distributions P(Xi | Parentsi, θ).

• One way to learn the parameters is to maximize the likelihood (or 
probability) of the evidence (observed variables):

• When there are no latent variables, the situation is much easier:
- If we can condition on all the variables, the graph factors by d-separation and we can 

estimate the parameters for all the P(Xi | Parentsi, θ) independently (Bayes Classifier).

• Otherwise the summation over H (inside the logarithm) may be 
intractable.

θML = arg max
θ

[lnP (V | θ)]

= arg max
θ

[

ln
∑

H

P (V, H | θ)

]
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Expectation-Maximization Algorithm
• E-step (expectation): evaluate the posterior distribution P(H | V, θold) 

using current estimate, θold, of the parameters.

• M-step (maximization): re-estimate θ by maximizing the expected 
complete-data log-likelihood:

• Note that the log and the summation have been exchanged - this will 
often make the summation tractable.

• Iterate E and M steps until convergence.

• Guaranteed to converge to a local optimum with linear convergence 
rate

θnew = arg max
θ

{

∑

H

P (H | V, θold) lnP (V, H | θ)

}
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Understanding EM
variable cachée est l’identité de la Gaussienne qui est associée à l’exemple Y . Si on
connaissait la valeur de cette variable cachée (pour chaque exemple), l’estimation
des paramètres deviendrait triviale (c’est comme si on avait plusieurs problèmes
indépendents d’estimation des paramètres de plusieurs Gaussiennes). Comme Z
n’est pas observée, l’algorithme procède ainsi, de manière itérative:

1. Phase E (estimation):

Q(θ, θt−1) = EZ [
∑

i

log(Pθ(yi, Z))|θt−1, D]

(où D = {y1 . . . yn} et la distribution de Z est conditionnée sur la connais-
sance de D, en utilisant les paramètres θt−1).

2. Phase M (maximisation):

θt ← argmaxθQ(θ, θt−1)

La phase M peut se faire analytiquement quand on peut solutionner l’équation
∂Q(θ,θt−1)

∂θ = 0. On peut montrer que cette algorithme converge vers un maximum
(possiblement local) ou un point selle (improbable).

D’où vient la fonction auxiliaire Q?

On va utiliser Q pour borner la vraisemblance et on va ensuite optimiser θ par
rapport à cette borne. Soit L(θ) la log-vraisemblance obtenue avec les paramètres
θ. Donc

L(θ)− L(θt−1) =
∑

i

log

{∑
j Pθ(Z = j, Y = yi)

Pθt−1(Y = yi)

}

=
∑

i

log

{∑
j Pθ(Z = j, Y = yi)

Pθt−1(Y = yi)

Pθt−1(Z = j|Y = yi)

Pθt−1(Z = j|Y = yi)

}

≥
∑

i

∑

j

Pθt−1(Z = j|Y = yi) log

{ ∑
j Pθ(Z = j, Y = yi)

Pθt−1(Y = yi)Pθt−1(Z = j|Y = yi)

}

=
∑

i

EZ [log(Pθ(Z, yi))|θt−1, D] + constante en θ

où l’on a utilisé l’inégalité de Jensen pour le log (log(E[X]) ≥ E[log X]).

Auxiliary Function:
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Understanding EM (cont.)

variable cachée est l’identité de la Gaussienne qui est associée à l’exemple Y . Si on
connaissait la valeur de cette variable cachée (pour chaque exemple), l’estimation
des paramètres deviendrait triviale (c’est comme si on avait plusieurs problèmes
indépendents d’estimation des paramètres de plusieurs Gaussiennes). Comme Z
n’est pas observée, l’algorithme procède ainsi, de manière itérative:

1. Phase E (estimation):

Q(θ, θt−1) = EZ [
∑

i

log(Pθ(yi, Z))|θt−1, D]

(où D = {y1 . . . yn} et la distribution de Z est conditionnée sur la connais-
sance de D, en utilisant les paramètres θt−1).

2. Phase M (maximisation):

θt ← argmaxθQ(θ, θt−1)

La phase M peut se faire analytiquement quand on peut solutionner l’équation
∂Q(θ,θt−1)

∂θ = 0. On peut montrer que cette algorithme converge vers un maximum
(possiblement local) ou un point selle (improbable).

D’où vient la fonction auxiliaire Q?

On va utiliser Q pour borner la vraisemblance et on va ensuite optimiser θ par
rapport à cette borne. Soit L(θ) la log-vraisemblance obtenue avec les paramètres
θ. Donc

L(θ)− L(θt−1) =
∑

i

log

{∑
j Pθ(Z = j, Y = yi)

Pθt−1(Y = yi)

}

=
∑

i

log

{∑
j Pθ(Z = j, Y = yi)

Pθt−1(Y = yi)

Pθt−1(Z = j|Y = yi)

Pθt−1(Z = j|Y = yi)

}

≥
∑

i

∑

j

Pθt−1(Z = j|Y = yi) log

{
Pθ(Z = j, Y = yi)

Pθt−1(Y = yi)Pθt−1(Z = j|Y = yi)

}

=
∑

i

EZ [log(Pθ(Z, yi))|θt−1, D] + constante en θ

où l’on a utilisé l’inégalité de Jensen pour le log (log(E[X]) ≥ E[log X]).
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• Now let’s consider a random variable distributed according to a mixture of Gaussians.

• Conditional distributions for a D-dimensional X:

• Marginal distributions:

Graphical model:Graphical model:

XN

IN

X1

I1 ...

N examples

Mixture of Multivariate Gaussians

9
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EM Example: Mixtures of Gaussians (cont’d)

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              

with equality if and only if

• Hence               is a rigorous lower bound on the log 

marginal likelihood

P (I = i) = wi

p(X = x | I = i) = N (x | µi,Σi) =
1

(2π)D/2 |Σi|
1/2

exp

(

−
1

2
(x − µi)

T Σ−1

i (x − µi)

)

where I is an index over the multivariate Gaussian components in the mixture
and the mixing proportion, wi, is the marginal probability that X is generated
by mixture component i.

p(X = x) =
∑

i

p(X = x | I = i)P (I = i) =
∑

i

wiN (x | µi,Σ)
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• Calculate P(In | Xn, θ) for each observed example Xn 

E Step: Mixture of Gaussians

Xn = [X1,n, . . . , Xd,n, . . . , XD,n]T

Where θ = {θ1, . . . , θi, . . . , θK}, θi = {wi, µi,Σi} andN (·) is the multivariate
Gaussian probability density function.

P (In = i | Xn, θ) =
P (In = i | wi)P (Xn | In = i, µi,Σi)

P (Xn)

=
P (In = i | wi)P (Xn | In = i, µi,Σi)∑
i P (In = i | wi)P (Xn | In = i, µi,Σi)

=
wiN (Xn | µi,Σi)∑
j wjN (Xn | µj ,Σj)
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• For mixtures of Gaussians:

• We already computed P(In = i | Xn = xn ,θ) in the E step and we can 
decompose the joint P(Xn = xn, In = i | θ’):

• Now we maximize this expression w.r.t θ’ (on to the M step)

M Step: Mixture of Gaussians

θ ← arg max
θ′

{

∑

n

∑

i

P (In = i | Xn = xn, θ) lnP (Xn = xn, In = i | θ′)

}

∑

n

∑

i

P (in | xn, θ) ln p(xn, in | θ′) =
∑

n

∑

i

P (in | xn, θ) ln p(xn | in, θ′)P (in | θ′)

=
∑

n

∑

i

P (in | xn, θ) lnw′

i +
∑

n

∑

i

P (in | xn, θ) lnN (xn | µ′

i,Σ
′

i)
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• Let’s consider updating wi: (subject to the constraint ∑i wi’= 1)

M Step: Mixture of Gaussians (cont.)

∂

∂w′

i

[

∑

n

∑

i

P (in | xn, θ) lnw′

i + λ

(

∑

i

w′

i − 1

)]

= 0

wi ←
1

N

N∑

n=1

P (in | xn, θ)

N∑

n=1

1

w′

i

P (in | xn, θ) + λ = 0
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• Now consider updating the mean vectors μi:

∂

∂µ′

i

[

∑

n

∑

i

P (in | xn, θ) lnN (xn | µ′

i,Σ
′

i)

]

= 0

M Step: Mixture of Gaussians (cont.)

∂

∂µ′

i

[

∑

n

∑

i

P (in | xn, θ)

(

−
1

2
ln(|Σ′

i|) −
1

2
(xn − µi)

T Σ′−1

i
(xn − µi)

)

]

= 0

µi ←

∑N

n=1
P (in | xn, θ)xn

∑N

n=1
P (in | xn, θ)
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• Finally, let’s consider updating the covariance matrices Σi:

M Step: Mixture of Gaussians (cont.)

∂

∂Σ′

i

[

∑

n

∑

i

P (in | xn, θ) lnN (xn | µ′

i,Σ
′

i)

]

= 0

∂

∂Σ′

i

[

∑

n

∑

i

P (in | xn, θ)

(

−
1

2
ln(|Σ′

i|) −
1

2
(xn − µi)

T Σ′−1

i
(xn − µi)

)

]

= 0

This is the new μi

Σi ←

∑N

n=1
P (in | xn, θ)(xn − µi)(xn − µi)T

∑N

n=1
P (in | xn, θ)
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EM Gaussian Mix: Summary
• Given observed X1 to XN and hidden variables I1 to IN (mixture 

component) iterate E and M steps until convergence. 

• E step: for each data point n compute

• M step: Update the parameters of component i (from 1 to K) with

P (in | xn, θ) =
wiN (xn | µi,Σi)

∑K
j=1

wjN (xn | µj ,Σj)

wi ←
1

N

N∑

n=1

P (in | xn, θ)

µi ←

∑N

n=1
P (in | xn, θ)xn

∑N

n=1
P (in | xn, θ)

Σi ←

∑N

n=1
P (in | xn, θ)(xn − µi)(xn − µi)T

∑N

n=1
P (in | xn, θ)
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EM: Clustering with Mixtures of Gaussians

8
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MCMC (cont’d)

• The problem with Gibbs sampling is that successive 
points are highly correlated

• In this example it takes of order             steps to generate 

independent samples (random walk)

X!

X2
L

l
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Overview of Part Two

• Exact inference and the junction tree

• MCMC

• Variational methods and EM

• Example

• General variational inference engine

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Learning in Graphical Models

• Introduce parameters                             which govern the 

conditional distributions                       in a directed graph, 

or clique potentials                      in an undirected graph

• Maximum likelihood: determine          by

• Problem: the summation over H inside the logarithm may 
be intractable

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Expectation-maximization (EM) Algorithm

• E-step: evaluate the posterior distribution                    
using current estimate         for the parameters

• M-step: re-estimate    by maximizing the expected 

complete-data log likelihood

• Note that the log and the summation have been 

exchanged – this will often make the summation tractable

• Iterate E and M steps until convergence
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EM Example: Mixtures of Gaussians
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EM Example: Mixtures of Gaussians (cont’d)
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MCMC (cont’d)

• The problem with Gibbs sampling is that successive 
points are highly correlated

• In this example it takes of order             steps to generate 

independent samples (random walk)

X!

X2
L

l

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Overview of Part Two

• Exact inference and the junction tree

• MCMC

• Variational methods and EM

• Example

• General variational inference engine
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Learning in Graphical Models

• Introduce parameters                             which govern the 

conditional distributions                       in a directed graph, 

or clique potentials                      in an undirected graph

• Maximum likelihood: determine          by

• Problem: the summation over H inside the logarithm may 
be intractable
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Expectation-maximization (EM) Algorithm

• E-step: evaluate the posterior distribution                    
using current estimate         for the parameters

• M-step: re-estimate    by maximizing the expected 

complete-data log likelihood

• Note that the log and the summation have been 

exchanged – this will often make the summation tractable

• Iterate E and M steps until convergence
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EM Example: Mixtures of Gaussians
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EM Example: Mixtures of Gaussians (cont’d)
Clustering with Mixtures of Gaussians (cont.)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              

with equality if and only if

• Hence               is a rigorous lower bound on the log 

marginal likelihood

Clustering with Mixtures of Gaussians (cont.)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              

with equality if and only if

• Hence               is a rigorous lower bound on the log 

marginal likelihood

Clustering with Mixtures of Gaussians (cont.)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              

with equality if and only if

• Hence               is a rigorous lower bound on the log 

marginal likelihood

Clustering with Mixtures of Gaussians (cont.)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              

with equality if and only if

• Hence               is a rigorous lower bound on the log 

marginal likelihood

Clustering with Mixtures of Gaussians (cont.)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              

with equality if and only if

• Hence               is a rigorous lower bound on the log 

marginal likelihood

Clustering with Mixtures of Gaussians (cont.)
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• Consider you have a collection of D unlabeled documents.
• Build an initial naïve Bayes classifier with parameters θ. Use EM to 

find the maximum likelihood estimation of the parameters.

• Naïve Bayes assumption for document clustering: 
- The probability of a document di given class cj is the product of the probabilities of the 

words wdi,k in the document given that class:

- The model parameters are the probabilities of the words wt  given the class cj : θwt | cj 
and the marginal probabilities of the class cj : θcj 

• Repeat until convergence:
- E step: Use the current classifier (θ) to estimate component membership of each unlabled 

document, i.e. the probability that each class generated each document P(cj | di, θ).

- M step: Re-estimate the classifier (θ) given the estimated component membership of each 
document.

EM II: Clustering Documents with Naïve Bayes

P (di | cj , θ) =
∏

k

P (wdi,k | cj , θ)
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• E step:

• M step:

P (yi = cj | di, θ) =
P (cj | θ)P (di | cj , θ)

P (di | θ)

=
P (cj | θ)

∏|di|
k=1

P (wdi,k | cj , θ)
∑C

r=1
P (cr | θ)

∏|di|
k=1

P (wdi,k | cr, θ)

θwt|cj
← P (wt | cj , θ) =

∑|D|
i=1

Num(wt, di)P (yi = cj | di)
∑|V |

s=1

∑|D|
i=1

Num(ws, di)P (yi = cj | di)

θcj
← P (cj | θ) =

∑|D|
i=1

P (yi = cj | di)

|D|

where |D| is the number of documents, C is the number of classes, |di| is the
number of words in document di and wt is the t-th word in the vocabulary of
size |V |.

EM II: Clustering Documents with Naïve Bayes
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Summary
• Directed acyclic graphical models are a great way to deal with 

probability distributions over multiple random variables
- Especially when there are significant conditional independence relationships between the 

variables.
- They help clarify the dependency structure
- The graph structure can be exploited to determine efficient ways to inference.

• In some cases (polytrees), exact inference in a DAG is computationally 
tractable (linear in the number of nodes).

• Learning is harder with hidden variables.
- But we have good algorithms such as EM to (more or less) handle these cases.
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