Greedy Layer-Wise Training of Deep Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle

December 5th 2006

Thanks to: Yann Le Cun, Geoffrey Hinton, Olivier Delalleau, Nicolas Le Roux

Summary

- Motivation: AI ⇒ highly-varying functions
 ⇒ non-local + deep architecture
- Principle of greedy layer-wise unsupervised initialization
- Deep Belief Networks
- Deep Multi-layer Neural Networks
- Experimental study: why this principle works
- Extensions of Deep Belief Networks

Grand Goal: Al

- Goal: using ML to reach AI
- Al tasks: visual and auditory perception, language understanding, intelligent control, long-term prediction, understanding of high-level abstractions...
- Remains elusive! (and mostly forgotten?)
- 3 considerations:
 - computational efficiency
 - statistical efficiency
 - human-labor efficiency
- Here: focus on algorithms associated with broad priors (i.e., non-parametric) with the hope of discovering principles applicable to vast array of tasks within AI, with no need of hand-crafted solutions for each particular task.

Grand Goal: Al

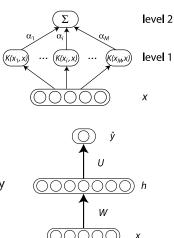
- Goal: using ML to reach AI
- Al tasks: visual and auditory perception, language understanding, intelligent control, long-term prediction, understanding of high-level abstractions...
- Remains elusive! (and mostly forgotten?)
- 3 considerations:
 - computational efficiency
 - statistical efficiency
 - human-labor efficiency
- Here: focus on algorithms associated with broad priors (i.e., non-parametric) with the hope of discovering principles applicable to vast array of tasks within AI, with no need of hand-crafted solutions for each particular task.

Depth of Architectures

Depth = number of **levels** of composition of adaptable elements:

- kernel machines: shallow
- boosting: generally shallow
- multi-layer neural networks: usually shallow, can be deep?
- decision trees: deep but local estimators (curse of dim.)
- parametric graphical models: human-labor intensive

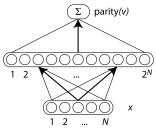
Non-parametric ones can theoretically approximate any continuous function. But **how efficiently?** (computational, statistical)



Inefficiency of Shallow Architectures

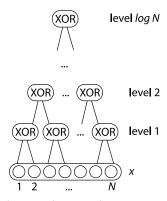
Shallow architectures may need huge number of elements.

Worst-case can be **exponentially bad**. Many theorems and examples from boolean circuits theory (Hastad 1987): multiplier circuits, parity, etc..



Very fat shallow circuit

- \Rightarrow many adjustable elements
- ⇒ many examples needed



Number of levels should increase with complexity, nb inputs, maybe logarithmic.

Curse of Dimensionality

(Bengio et al 2006):

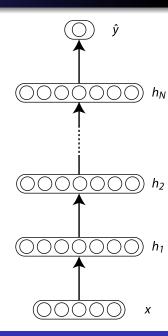
Local kernel machines (= pattern matchers) and decision trees partition the space and may need

exponential nb of units, i.e. of examples

inefficient at representing **highly-varying functions**, which may otherwise have a compact representation.

Optimization of Deep Architectures

- What deep architectures are known? various kinds of multi-layer neural networks with many layers.
- Except for a very special kind of architectures for machine vision (convolutional networks), deep architectures have been neglected in machine learning.
- Why? Training gets stuck in mediocre solutions (Tesauro 92).
- Credit assignment problem?
- No hope?



Greedy Learning of Multiple Levels of Abstractions

 Greedily learning simple things first, higher-level abstractions on top of lower-level ones seems like a good strategy.

Greedy Learning of Multiple Levels of Abstractions

- Greedily learning simple things first, higher-level abstractions on top of lower-level ones seems like a good strategy.
- Implicit prior: restrict to functions that
 - can be represented as a composition of simpler ones such that
 - ② the simpler ones can be learned first (i.e., are also good models of the data).

Greedy Learning of Multiple Levels of Abstractions

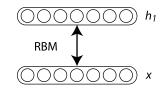
- Greedily learning simple things first, higher-level abstractions on top of lower-level ones seems like a good strategy.
- Implicit prior: restrict to functions that
 - 1 can be represented as a composition of simpler ones such that
 - the simpler ones can be learned first (i.e., are also good models of the data).
- Coherent with psychological literature (Piaget 1952).
 We learn baby math before arithmetic before algebra before differential equations . . .
- Also some evidence from neurobiology: (Guillery 2005) "Is postnatal neocortical maturation hierarchical?".

Hinton et al (2006) just introduced a deep network model that provides more evidence that this direction is worthwhile:

• beats state-of-the-art statistical learning in experiments on a large machine learning benchmark task (MNIST)

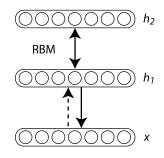
Hinton et al (2006) just introduced a deep network model that provides more evidence that this direction is worthwhile:

- beats state-of-the-art statistical learning in experiments on a large machine learning benchmark task (MNIST)
- Each layer tries to model distribution of its input (unsupervised training as Restricted Boltzmann Machine)
- H = hidden causes, P(h|v) = representation of v.



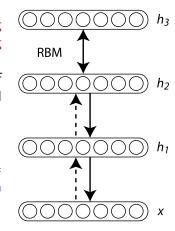
Hinton et al (2006) just introduced a deep network model that provides more evidence that this direction is worthwhile:

- beats state-of-the-art statistical learning in experiments on a large machine learning benchmark task (MNIST)
- Each layer tries to model distribution of its input (unsupervised training as Restricted Boltzmann Machine)
- H = hidden causes, P(h|v) = representation of v.
- Unsupervised greedy layer-wise training = **initialization**, replaces traditional random initialization of multi-layer networks



Hinton et al (2006) just introduced a deep network model that provides more evidence that this direction is worthwhile:

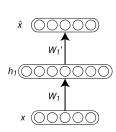
- beats state-of-the-art statistical learning in experiments on a large machine learning benchmark task (MNIST)
- Each layer tries to model distribution of its input (unsupervised training as Restricted Boltzmann Machine)
- H = hidden causes, P(h|v) = representation of v.
- Unsupervised greedy layer-wise training = **initialization**, replaces traditional random initialization of multi-layer networks



- The principle of greedy layer-wise initialization proposed by Hinton can be generalized to other algorithms.
- Initialize each layer of a deep multi-layer feedforward neural net as an autoassociator for the output of previous layer.
- Find W which minimizes cross-entropy loss in predicting x from $\hat{x} = \text{sigm}(W' \text{sigm}(Wx))$.
- Feed its hidden activations as input to next layer.
- Small weights (weight decay or stochastic gradient) prevent autoassociator from learning the identity.

• The principle of greedy layer-wise initialization proposed by Hinton can be generalized to other algorithms.

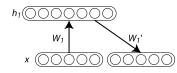
- Initialize each layer of a deep multi-layer feedforward neural net as an autoassociator for the output of previous layer.
- Find W which minimizes cross-entropy loss in predicting x from $\hat{x} = \text{sigm}(W' \text{sigm}(Wx))$.



- Feed its hidden activations as input to next layer.
- Small weights (weight decay or stochastic gradient) prevent autoassociator from learning the identity.

• The principle of greedy layer-wise initialization proposed by Hinton can be generalized to other algorithms.

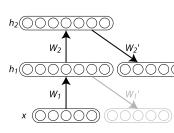
- Initialize each layer of a deep multi-layer feedforward neural net as an autoassociator for the output of previous layer.
- Find W which minimizes cross-entropy loss in predicting x from $\hat{x} = \text{sigm}(W' \text{sigm}(Wx))$.



- Feed its hidden activations as input to next layer.
- Small weights (weight decay or stochastic gradient) prevent autoassociator from learning the identity.

 The principle of greedy layer-wise initialization proposed by Hinton can be generalized to other algorithms.

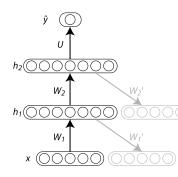
- Initialize each layer of a deep multi-layer feedforward neural net as an autoassociator for the output of previous layer.
- Find W which minimizes cross-entropy loss in predicting x from $\hat{x} = \text{sigm}(W' \text{sigm}(Wx))$.



- Feed its hidden activations as input to next layer.
- Small weights (weight decay or stochastic gradient) prevent autoassociator from learning the identity.

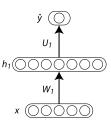
• The principle of greedy layer-wise initialization proposed by Hinton can be generalized to other algorithms.

- Initialize each layer of a deep multi-layer feedforward neural net as an autoassociator for the output of previous layer.
- Find W which minimizes cross-entropy loss in predicting x from $\hat{x} = \text{sigm}(W' \text{sigm}(Wx))$.

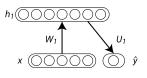


- Feed its hidden activations as input to next layer.
- Small weights (weight decay or stochastic gradient) prevent autoassociator from learning the identity.

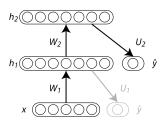
- Each layer is trained as the hidden layer of a supervised 2-layer neural net.
- After training the 2-layer neural net, discard output layer;
- Propagate data through new hidden layer, train another layer, etc.



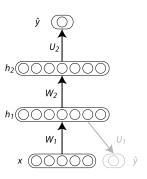
- Each layer is trained as the hidden layer of a supervised 2-layer neural net.
- After training the 2-layer neural net, discard output layer;
- Propagate data through new hidden layer, train another layer, etc.



- Each layer is trained as the hidden layer of a supervised 2-layer neural net.
- After training the 2-layer neural net, discard output layer;
- Propagate data through new hidden layer, train another layer, etc.



- Each layer is trained as the hidden layer of a supervised 2-layer neural net.
- After training the 2-layer neural net, discard output layer;
- Propagate data through new hidden layer, train another layer, etc.



Experiments on Greedy Layer-Wise Initialization

	train.	test.
Deep Belief Net, unsupervised pre-training	0%	1.2%
Deep net, autoassociator pre-training	0%	1.4%
Deep net, supervised pre-training	0%	2.0%
Deep net, no pre-training	.004%	2.4%
Shallow net, no pre-training	.004%	1.9%

Classification error on MNIST digits benchmark training, validation, and test sets, with the best hyper-parameters according to validation error.

Deep nets with 3 to 5 hidden layers. Selects around 500 hidden units per layer.

Experiments on Greedy Layer-Wise Initialization

	train.	test.
Deep Belief Net, unsupervised pre-training	0%	1.2%
Deep net, autoassociator pre-training	0%	1.4%
Deep net, supervised pre-training	0%	2.0%
Deep net, no pre-training	.004%	2.4%
Shallow net, no pre-training	.004%	1.9%

Classification error on MNIST digits benchmark training, validation, and test sets, with the best hyper-parameters according to validation error.

Deep nets with 3 to 5 hidden layers. Selects around 500 hidden units per layer.

Supervised greedy is **too greedy**.

Greedy unsupervised initialization works great.

Is it Really an Optimization Problem?

Why 0 train error even with deep net / no-pretraining?

Is it Really an Optimization Problem?

Why 0 train error even with deep net / no-pretraining?

Classification error on MNIST with 20 hidden units on top layer:

	train.	test.
Deep net, autoassociator pre-training	0%	1.6%
Deep net, supervised pre-training	0%	1.9%
Deep net, no pre-training	.59%	2.2%
Shallow net, no pre-training	3.6%	5.0%

Is it Really an Optimization Problem?

Why 0 train error even with deep net / no-pretraining?

Classification error on MNIST with 20 hidden units on top layer:

	train.	test.
Deep net, autoassociator pre-training	0%	1.6%
Deep net, supervised pre-training	0%	1.9%
Deep net, no pre-training	.59%	2.2%
Shallow net, no pre-training	3.6%	5.0%

Because

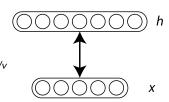
- last fat hidden layer did all the work
- using a poor representation (output of all previous layers)

Yes it is really an **optimization** problem **and** a **representation** problem

Restricted Boltzmann Machines

Bi-partite Boltzmann machine:

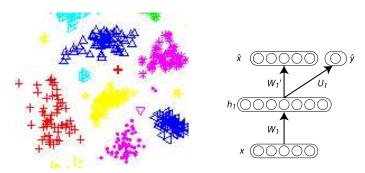
$$P(V = v, H = h) \propto e^{-\mathcal{E}(v,h)} = e^{v'b+h'c+h'Wv}$$



- Conditionals P(v|h) and P(h|v) easy to derive, and factorize.
- Contrastive divergence provides good estimator of log-likelihood gradient.
- Originally for binary variables; we extend it easily to continuous variables by slightly changing energy function and range of values (see poster).

MNIST: nice clusters in the distribution

 \Rightarrow input distribution structure reveals the target class.



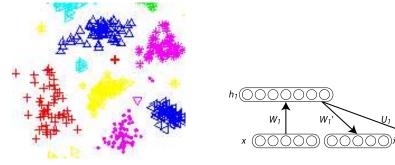
MNIST: nice clusters in the distribution

⇒ input distribution structure reveals the target class.

Otherwise? Simple solution:

combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.



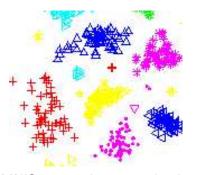
MNIST: nice clusters in the distribution

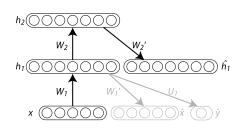
 \Rightarrow input distribution structure reveals the target class.

Otherwise? Simple solution:

combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.





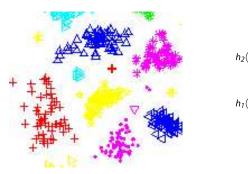
MNIST: nice clusters in the distribution

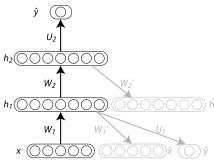
 \Rightarrow input distribution structure reveals the target class.

Otherwise? Simple solution:

combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.





MNIST: nice clusters in the distribution

 \Rightarrow input distribution structure reveals the target class.

Otherwise? Simple solution:

combine supervised & unsupervised layer-wise greedy initialization.

Just add the two stochastic gradient updates.

More experimental results

	Abalone MSE	Cotton class. error
1. Deep Network, no pre-training	4.2	43.0%
2. Logistic regression		45.0%
3. DBN, Bin inputs, unsup	4.47	45.0%
4. DBN, Bin inputs, partially sup	4.28	43.7%
5. DBN, Gauss inputs, unsup	4.19	35.8%
6. DBN, Gauss inputs, partially sup	4.18	31.4%

MSE on Abalone task and classification error on Cotton task, showing improvement with Gaussian vs binomial units and partial supervision

For Al ⇒ must learn highly-varying functions efficiently
 ⇒ deep architectures (statistical efficiency)

- For Al ⇒ must learn highly-varying functions efficiently
 ⇒ deep architectures (statistical efficiency)
- Deep architectures not trainable? computational efficiency?
 new methods appear to break through the obstacle

- For Al ⇒ must learn highly-varying functions efficiently
 ⇒ deep architectures (statistical efficiency)
- Deep architectures not trainable? computational efficiency?
 new methods appear to break through the obstacle
- Basic principle: greedy layer-wise unsupervised (or adding unsupervised and supervised criteria)

- For Al ⇒ must learn highly-varying functions efficiently
 ⇒ deep architectures (statistical efficiency)
- Deep architectures not trainable? computational efficiency?
 new methods appear to break through the obstacle
- Basic principle: greedy layer-wise unsupervised (or adding unsupervised and supervised criteria)
- Principle works about as well with symmetric autoassociators in feedforward neural net

- For Al ⇒ must learn highly-varying functions efficiently
 ⇒ deep architectures (statistical efficiency)
- Deep architectures not trainable? computational efficiency?
 new methods appear to break through the obstacle
- Basic principle: greedy layer-wise unsupervised (or adding unsupervised and supervised criteria)
- Principle works about as well with symmetric autoassociators in feedforward neural net
- The unsupervised part is important: regularizes and makes sure to propagate most information about input, purely supervised is too greedy.

- For Al ⇒ must learn highly-varying functions efficiently
 ⇒ deep architectures (statistical efficiency)
- Deep architectures not trainable? computational efficiency?
 new methods appear to break through the obstacle
- Basic principle: greedy layer-wise unsupervised (or adding unsupervised and supervised criteria)
- Principle works about as well with symmetric autoassociators in feedforward neural net
- The unsupervised part is important: regularizes and makes sure to propagate most information about input, purely supervised is too greedy.
- Easy extensions of Deep Belief Nets: continuous-valued units / partially supervised initialization when input density is not revealing of target