
Appendix of the paper “Greedy Layer-Wise Training
of Deep Networks”

Yoshua Bengio
Université de Montréal

Montréal, Québec
bengioy@umontreal.ca

Pascal Lamblin
Université de Montréal

Montréal, Québec
lamblinp@iro.umontreal.ca

Dan Popovici
Université de Montréal

Montréal, Québec
popovicd@iro.umontreal.ca

Hugo Larochelle
Université de Montréal

Montréal, Québec
larocheh@iro.umontreal.ca

Algorithm 1 RBMupdate(v0, ε, W, b, c)
This is the RBM update procedure for binomial units. It also works for exponential and truncated
exponential units, and for the linear parameters of a Gaussian unit (using the appropriate sampling
procedure for Q and P ). It can be readily adapted for the variance parameter of Gaussian units, as
discussed in the text.
v0 is a sample from the training distribution for the RBM
ε is a learning rate for the stochastic gradient descent in Contrastive Divergence
W is the RBM weight matrix, of dimension (number of hidden units, number of inputs)
b is the RBM biases vector for hidden units
c is the RBM biases vector for input units

for all hidden units i do
• compute Q(h0i = 1|v0) (for binomial units, sigm(−bi −

∑
j Wijv0j))

• sample h0i from Q(h0i = 1|v0)
end for
for all visible units j do
• compute P (v1j = 1|h0) (for binomial units, sigm(−cj −

∑
i Wijh0i))

• sample v1j from P (v1j = 1|h0)
end for
for all hidden units i do
• compute Q(h1i = 1|v1) (for binomial units, sigm(−bi −

∑
j Wijv1j))

end for
•W ←W − ε(h0v

′

0
−Q(h1. = 1|v1)v

′

1
)

• b← b− ε(h0 −Q(h1. = 1|v1))
• c← c− ε(v0 − v1)



Algorithm 2 TrainUnsupervisedDBN(p̂, ε, L,n,W ,b)
Train a DBN in a purely unsupervised way, with the greedy layer-wise procedure in which each
added layer is trained as an RBM by contrastive divergence.
p̂ is the input training distribution for the network
ε is a learning rate for the stochastic gradient descent in Contrastive Divergence
L is the number of layers to train
n = (n1, . . . , nL) is the number of hidden units in each layer
W i is the weight matrix for level i, for i from 1 to L
bi is the bias vector for level i, for i from 0 to L

• initialize b0 = 0
for ` = 1 to L do
• initialize W i = 0, bi = 0
while not stopping criterion do
• sample g0 = x from p̂
for i = 1 to `− 1 do
• sample gi from Q(gi|gi−1)

end for
• RBMupdate(g`−1, ε, W `, b`, b`−1)

end while
end for

Algorithm 3 PreTrainGreedyAutoEncodingDeepNet(p̂, C, ε, L, n, W, b)
Initialize all layers except the last in a multi-layer neural network, in a purely unsupervised way,
with the greedy layer-wise procedure in which each added layer is trained as an auto-associator
that tries to reconstruct its input.
p̂ is the training distribution for the network
C = − logPθ(u) is a reconstruction error criterion that takes θ and u as input, with θ the parameters
of a predicted probability distribution and u an observed value.
ε is a learning rate for the stochastic gradient descent in reconstruction error
L is the number of layers to train
n = (n0, . . . , nL), with n0 the inputs size and ni the number of hidden units in each layer i ≥ 1.
W i is the weight matrix for level i, for i from 1 to L
bi is the bias vector for level i, for i from 0 to L

• initialize b0 = 0.
• define µ0(x) = x.
for ` = 1 to L do
• initialize b` = 0.
• initialize temporary parameter vector c` = 0.
• initialize W ` by sampling from uniform(−a, a), with a = 1/n`−1.
• define the `-th hidden layer output µ`(x) = sigm(b` + W `µ`−1(x)).
• define the `-th hidden layer reconstruction parameter function, e.g. in the binomial case
θ` = sigm(c` + W `′µ`(x)) is the vector of probabilities for the each bit to take value 1.
while not stopping criterion do

for i = 1 to `− 1 do
• compute µi(x) from µi−1(x).

end for
• compute µ`(x) from µ`−1(x).
• compute reconstruction probability parameters θ` from µ`(x).
• compute the error C in reconstructing µ`−1 from probability with parameters θ`.
• compute ∂C

∂ω
, for ω = (W `, b`, c`)

• update layer parameters: ω ← ω − ε ∂C
∂ωend while

end for



Algorithm 4 TrainSupervisedDBN(p̂, C, εCD, εC , L,n,W ,b,V )
Train a DBN for a supervised learning task, by first performing pre-training of all layers (except
the output weights V ), followed by supervised fine-tuning to minimize a criterion C.
p̂ is the supervised training distribution for the DBN, with (input,target) samples (x, y)
C is a training criterion, a function that takes a network output f(x) and a target y and returns a
scalar differentiable in f(x)
εCD is a learning rate for the stochastic gradient descent with Contrastive Divergence
εC is a learning rate for the stochastic gradient descent on supervised cost C
L is the number of layers
n = (n1, . . . , nL) is the number of hidden units in each layer
W i is the weight matrix for level i, for i from 1 to L
bi is the bias vector for level i, for i from 0 to L V is a weight matrix for the supervised output layer
of the network

• Let p̂x the marginal over the input part of p̂
• TrainUnsupervisedDBN(p̂x, εCD, L, n, W, b)
• DBNSupervisedFineTuning(p̂, C, εC , L,n,W ,b,V )

Algorithm 5 DBNSupervisedFineTuning(p̂, C, εC , L,n,W ,b,V )
After a DBN has been initialized by pre-training, this procedure will optimize all the parameters
with respect to the supervised criterion C, using stochastic gradient descent.
p̂ is the supervised training distribution for the DBN, with (input,target) samples (x, y)
C is a training criterion, a function that takes a network output f(x) and a target y and returns a
scalar differentiable in f(x)
εCD is a learning rate for the stochastic gradient descent with Contrastive Divergence
εC is a learning rate for the stochastic gradient descent on supervised cost C
L is the number of layers
n = (n1, . . . , nL) is the number of hidden units in each layer
W i is the weight matrix for level i, for i from 1 to L
bi is the bias vector for level i, for i from 0 to L V is a weight matrix for the supervised output layer
of the network

• Recursively define mean-field propagation µi(x) = E[gi|gi−1 = µi−1(x)]
where µ0(x) = x, and E[gi|gi−1 = µi−1] is the expected value of gi under the RBM conditional
distribution Q(gi|gi−1), when the values of gi−1 are replaced by the mean-field values µi−1(x).
In the case where gi has binomial units, E[gi

j |g
i−1 = µi−1] = sigm(−bi

j −
∑

k W i
jkµi−1

k (x)).
• Define the network output function f(x) = V (µL(x)′, 1)′

• Iteratively minimize the expected value of C(f(x), y) for pairs (x, y) sampled from p̂ by tuning
parameters W, b, V . This can be done by stochastic gradient descent with learning rate εC , using
an appropriate stopping criterion such as early stopping on a validation set.



Algorithm 6 TrainPartiallySupervisedLayer(p̂, C, εC , εCD, W, b, V )
This procedure should be called as an alternative to the loop that calls RBMupdate in
TrainUnsupervisedDBN, in order to train with partial supervision: perform unsupervised
parameters updates with contrastive divergence, followed by greedy supervised gradient stochastic
updates with respect to C, using temporary output weights V to map the hidden layer outputs to
predictions.
p̂ is the supervised training distribution, with samples (x, y), x being the input of the layer, and y
the target for the network
C is a training criterion, a function that takes a prediction f(x) and a target y and returns a scalar
differentiable in f(x)
εCD is a learning rate for the stochastic gradient descent with Contrastive Divergence
εC is a learning rate for the stochastic gradient descent on supervised cost C
W is the weight matrix for the layer to train
b is the bias vector for that layer
V is a weight matrix that transforms hidden activations into predictions f(x)

• Define the mean-field output of the hidden layer, µ(x) = E[h|x], for example µ(x) =
sigm(−bj −

∑
k Wjkxk) for binomial hidden units.

• Define the layer predictive output function f(x) = V (µ(x)′, 1)′

• Initialize all parameters θ = (W, b, V ) to 0
while not stopping criterion do
• sample (x, y) from p̂
• compute units activation (e.g. −b−Wx)
• using these activations, compute hidden units mean-field output µ(x)
• using these activations, sample h0 from Q(h|x)
• compute predictive output f(x) from µ(x)
• compute predictive cost C from f(x) and y
• compute ∂C

∂θ
by standard back-propagation

• sample v1 from P (v|h0)
• compute Q(h1|v1)
• perform supervised stochastic gradient update θ ← θ − εC

∂C
∂θ

•W ←W − εCD(h0x
′ −Q(h1. = 1|v1)v

′

1
)

• b← b− εCD(h0 −Q(h1. = 1|v1))
• c← c− εCD(v0 − v1)

end while



Algorithm 7 TrainGreedySupervisedDeepNet(p̂, C, ε, L, n, W, b, V )
Greedily train a deep network layer-wise, using a supervised criterion to optimize each layer, as if
it were the hidden layer of a one-hidden-layer neural network.
p̂ is the supervised training distribution, with samples (x, y), x being the input of the layer, and y
the target for the network with (input,target) samples (x, y)
C is a training criterion, a function that takes a network output f(x) and a target y and returns a
scalar differentiable in f(x)
ε is a learning rate for the stochastic gradient descent on supervised cost C
W is the weight matrix for the layer to train
b is the bias vector for that layer
V is a weight matrix that transforms top-layer hidden activations into predictions f(x)

• initialize b0 = 0.
• define µ0(x) = x.
for ` = 1 to L do
• initialize b` = 0.
• initialize temporary parameter vector c` = 0 and temporary matrix V ` = 0.
• initialize W ` by sampling from uniform(−a, a), with a = 1/n`−1.
• define the `-th hidden layer output µ`(x) = sigm(b` + W `µ`−1(x)).
• define the `-th temporary output layer prediction f `(x) = c` + V `µ`(x)
while not stopping criterion do

for i = 1 to `− 1 do
• compute µi(x) from µi−1(x).

end for
• compute µ`(x) from µ`−1(x).
• compute temporary output f `(x) from µ`(x).
• compute the prediction error C from f `(x) and y.
• compute ∂C

∂ω
, for ω = (W `, b`, c`, V `)

• update layer parameters: ω ← ω − ε ∂C
∂ω

end while
end for


