
Statistical Learning and Kernel Methods

Bernhard Sch�olkopf

Microsoft Research Limited,
1 Guildhall Street, Cambridge CB2 3NH, UK

bsc@microsoft.com
http://research.microsoft.com/�bsc

February 29, 2000

Technical Report
MSR-TR-2000-23

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Lecture notes for a course to be taught at the Interdisciplinary College 2000,
G�unne, Germany, March 2000.

Abstract

We briey describe the main ideas of statistical learning theory, sup-
port vector machines, and kernel feature spaces.

Contents

1 An Introductory Example 1

2 Learning Pattern Recognition from Examples 4

3 Hyperplane Classi�ers 5

4 Support Vector Classi�ers 8

5 Support Vector Regression 11

6 Further Developments 14

7 Kernels 15

8 Representing Similarities in Linear Spaces 18

9 Examples of Kernels 21

10 Representating Dissimilarities in Linear Spaces 22

1 An Introductory Example

Suppose we are given empirical data

(x1; y1); : : : ; (xm; ym) 2 X � f�1g: (1)

Here, the domain X is some nonempty set that the patterns xi are taken from;
the yi are called labels or targets .

Unless stated otherwise, indices i and j will always be understood to run
over the training set, i.e. i; j = 1; : : : ;m.

Note that we have not made any assumptions on the domain X other than
it being a set. In order to study the problem of learning, we need additional
structure. In learning, we want to be able to generalize to unseen data points.
In the case of pattern recognition, this means that given some new pattern
x 2 X , we want to predict the corresponding y 2 f�1g. By this we mean,
loosely speaking, that we choose y such that (x; y) is in some sense similar to
the training examples. To this end, we need similarity measures in X and in
f�1g. The latter is easy, as two target values can only be identical or di�erent.
For the former, we require a similarity measure

k : X �X ! R;

(x; x0) 7! k(x; x0); (2)

i.e., a function that, given two examples x and x0, returns a real number char-
acterizing their similarity. For reasons that will become clear later, the function
k is called a kernel [13, 1, 8].

A type of similarity measure that is of particular mathematical appeal are
dot products. For instance, given two vectors x;x0 2 RN , the canonical dot
product is de�ned as

(x � x0) :=
NX
i=1

(x)i(x
0)i: (3)

Here, (x)i denotes the i-th entry of x.
The geometrical interpretation of this dot product is that it computes the

cosine of the angle between the vectors x and x0, provided they are normalized
to length 1. Moreover, it allows computation of the length of a vector x asp
(x � x), and of the distance between two vectors as the length of the di�erence

vector. Therefore, being able to compute dot products amounts to being able
to carry out all geometrical constructions that can be formulated in terms of
angles, lenghts and distances.

Note, however, that we have not made the assumption that the patterns live
in a dot product space. In order to be able to use a dot product as a similarity
measure, we therefore �rst need to embed them into some dot product space F ,
which need not be identical to RN . To this end, we use a map

� : X ! F

x 7! x: (4)

1

The space F is called a feature space. To summarize, embedding the data into
F has three bene�ts.

1. It lets us de�ne a similarity measure from the dot product in F ,

k(x; x0) := (x � x0) = (�(x) � �(x0)): (5)

2. It allows us to deal with the patterns geometrically, and thus lets us study
learning algorithm using linear algebra and analytic geometry.

3. The freedom to choose the mapping � will enable us to design a large
variety of learning algorithms. For instance, consider a situation where the
inputs already live in a dot product space. In that case, we could directly
de�ne a similarity measure as the dot product. However, we might still
choose to �rst apply a nonlinear map � to change the representation into
one that is more suitable for a given problem and learning algorithm.

We are now in the position to describe a pattern recognition learning algo-
rithm that is arguably one of the simplest possible. The basic idea is to compute
the means of the two classes in feature space,

c1 =
1

m1

X
fi:yi=+1g

xi; (6)

c2 =
1

m2

X
fi:yi=�1g

xi; (7)

where m1 and m2 are the number of examples with positive and negative labels,
respectively. We then assign a new point x to the class whose mean is closer to
it. This geometrical construction can be formulated in terms of dot products.
Half-way in between c1 and c2 lies the point c := (c1 + c2)=2. We compute the
class of x by checking whether the vector connecting c and x encloses an angle
smaller than �=2 with the vector w := c1 � c2 connecting the class means, in
other words

y = sgn ((x� c) �w)
y = sgn ((x� (c1 + c2)=2) � (c1 � c2))

= sgn ((x � c1)� (x � c2) + b): (8)

Here, we have de�ned the o�set

b :=
1

2

�kc2k2 � kc1k2
�
: (9)

It will prove instructive to rewrite this expression in terms of the patterns
xi in the input domain X . To this end, note that we do not have a dot product
in X , all we have is the similarity measure k (cf. (5)). Therefore, we need to

2

rewrite everything in terms of the kernel k evaluated on input patterns. To this
end, substitute (6) and (7) into (8) to get the decision function

y = sgn

0
@ 1

m1

X
fi:yi=+1g

(x � xi)� 1

m2

X
fi:yi=�1g

(x � xi) + b

1
A

= sgn

0
@ 1

m1

X
fi:yi=+1g

k(x; xi)� 1

m2

X
fi:yi=�1g

k(x; xi) + b

1
A : (10)

Similarly, the o�set becomes

b :=
1

2

0
@ 1

m2
2

X
f(i;j):yi=yj=�1g

k(xi; xj)� 1

m2
1

X
f(i;j):yi=yj=+1g

k(xi; xj)

1
A : (11)

Let us consider one well-known special case of this type of classi�er. Assume
that the class means have the same distance to the origin (hence b = 0), and
that k can be viewed as a density, i.e. it is positive and has integral 1,Z

X

k(x; x0)dx = 1 for all x0 2 X : (12)

In order to state this assumption, we have to require that we can de�ne an
integral on X .

If the above holds true, then (10) corresponds to the so-called Bayes deci-
sion boundary separating the two classes, subject to the assumption that the
two classes were generated from two probability distributions that are correctly
estimated by the Parzen windows estimators of the two classes,

p1(x) :=
1

m1

X
fi:yi=+1g

k(x; xi) (13)

p2(x) :=
1

m2

X
fi:yi=�1g

k(x; xi): (14)

Given some point x, the label is then simply computed by checking which of the
two, p1(x) or p2(x), is larger, which directly leads to (10). Note that this decision
is the best we can do if we have no prior information about the probabilities of
the two classes.

The classi�er (10) is quite close to the types of learning machines that we
will be interested in. It is linear in the feature space, while in the input domain,
it is represented by a kernel expansion. It is example-based in the sense that
the kernels are centered on the training examples, i.e. one of the two arguments
of the kernels is always a training example. The main point where the more
sophisticated techniques to be discussed later will deviate from (10) is in the
selection of the examples that the kernels are centered on, and in the weight
that is put on the individual kernels in the decision function. Namely, it will no

3

longer be the case that all training examples appear in the kernel expansion,
and the weights of the kernels in the expansion will no longer be uniform. In
the feature space representation, this statement corresponds to saying that we
will study all normal vectors w of decision hyperplanes that can be represented
as linear combinations of the training examples. For instance, we might want
to remove the inuence of patterns that are very far away from the decision
boundary, either since we expect that they will not improve the generalization
error of the decision function, or since we would like to reduce the computational
cost of evaluating the decision function (cf. (10)). The hyperplane will then only
depend on a subset of training examples, called support vectors.

2 Learning Pattern Recognition from Examples

With the above example in mind, let us now consider the problem of pattern
recognition in a more formal setting [27, 28], following the introduction of [19].
In two-class pattern recognition, we seek to estimate a function

f : X ! f�1g (15)

based on input-output training data (1). We assume that the data were gen-
erated independently from some unknown (but �xed) probability distribution
P (x; y). Our goal is to learn a function that will correctly classify unseen exam-
ples (x; y), i.e. we want f(x) = y for examples (x; y) that were also generated
from P (x; y).

If we put no restriction on the class of functions that we choose our esti-
mate f from, however, even a function which does well on the training data,
e.g. by satisfying f(xi) = yi for all i = 1; : : : ;m, need not generalize well to
unseen examples. To see this, note that for each function f and any test set
(�x1; �y1); : : : ; (�x �m; �y �m) 2 RN �f�1g; satisfying f�x1; : : : ; �x �mg\fx1; : : : ; xmg = fg,
there exists another function f� such that f�(xi) = f(xi) for all i = 1; : : : ;m,
yet f�(�xi) 6= f(�xi) for all i = 1; : : : ; �m. As we are only given the training data,
we have no means of selecting which of the two functions (and hence which of
the completely di�erent sets of test label predictions) is preferable. Hence, only
minimizing the training error (or empirical risk),

Remp[f] =
1

m

mX
i=1

1

2
jf(xi)� yij; (16)

does not imply a small test error (called risk), averaged over test examples
drawn from the underlying distribution P (x; y),

R[f] =

Z
1

2
jf(x)� yj dP (x; y): (17)

Statistical learning theory [31, 27, 28, 29], or VC (Vapnik-Chervonenkis) theory,
shows that it is imperative to restrict the class of functions that f is chosen

4

from to one which has a capacity that is suitable for the amount of available
training data. VC theory provides bounds on the test error. The minimization
of these bounds, which depend on both the empirical risk and the capacity of
the function class, leads to the principle of structural risk minimization [27].
The best-known capacity concept of VC theory is the VC dimension, de�ned as
the largest number h of points that can be separated in all possible ways using
functions of the given class. An example of a VC bound is the following: if
h < m is the VC dimension of the class of functions that the learning machine
can implement, then for all functions of that class, with a probability of at least
1� �, the bound

R(�) � Remp(�) + �

�
h

m
;
log(�)

m

�
(18)

holds, where the con�dence term � is de�ned as

�

�
h

m
;
log(�)

m

�
=

s
h
�
log 2m

h
+ 1
�� log(�=4)

m
: (19)

Tighter bounds can be formulated in terms of other concepts, such as the an-
nealed VC entropy or the Growth function. These are usually considered to be
harder to evaluate, but they play a fundamental role in the conceptual part of
VC theory [28]. Alternative capacity concepts that can be used to formulate
bounds include the fat shattering dimension [2].

The bound (18) deserves some further explanatory remarks. Suppose we
wanted to learn a \dependency" where P (x; y) = P (x) � P (y), i.e. where the
pattern x contains no information about the label y, with uniform P (y). Given a
training sample of �xed size, we can then surely come up with a learning machine
which achieves zero training error (provided we have no examples contradicting
each other). However, in order to reproduce the random labellings, this machine
will necessarily require a large VC dimension h. Thus, the con�dence term
(19), increasing monotonically with h, will be large, and the bound (18) will
not support possible hopes that due to the small training error, we should
expect a small test error. This makes it understandable how (18) can hold
independent of assumptions about the underlying distribution P (x; y): it always
holds (provided that h < m), but it does not always make a nontrivial prediction
| a bound on an error rate becomes void if it is larger than the maximum error
rate. In order to get nontrivial predictions from (18), the function space must
be restricted such that the capacity (e.g. VC dimension) is small enough (in
relation to the available amount of data).

3 Hyperplane Classi�ers

In the present section, we shall describe a hyperplane learning algorithm that
can be performed in a dot product space (such as the feature space that we
introduced previously). As described in the previous section, to design learning

5

algorithms, one needs to come up with a class of functions whose capacity can
be computed.

[32] and [30] considered the class of hyperplanes

(w � x) + b = 0 w 2 R
N ; b 2 R; (20)

corresponding to decision functions

f(x) = sgn ((w � x) + b); (21)

and proposed a learning algorithm for separable problems, termed the Gen-
eralized Portrait, for constructing f from empirical data. It is based on two
facts. First, among all hyperplanes separating the data, there exists a unique
one yielding the maximum margin of separation between the classes,

max
w;b

minfkx� xik : x 2 R
N ; (w � x) + b = 0; i = 1; : : : ;mg: (22)

Second, the capacity decreases with increasing margin.
To construct this Optimal Hyperplane (cf. Figure 1), one solves the following

optimization problem:

minimize �(w) =
1

2
kwk2 (23)

subject to yi � ((w � xi) + b) � 1; i = 1; : : : ;m: (24)

This constrained optimization problem is dealt with by introducing Lagrange
multipliers �i � 0 and a Lagrangian

L(w; b;�) =
1

2
kwk2 �

mX
i=1

�i (yi � ((xi �w) + b)� 1) : (25)

The Lagrangian L has to be minimized with respect to the primal variables w
and b and maximized with respect to the dual variables �i (i.e. a saddle point
has to be found). Let us try to get some intuition for this. If a constraint (24)
is violated, then yi � ((w � xi) + b)� 1 < 0, in which case L can be increased by
increasing the corresponding �i. At the same time, w and b will have to change
such that L decreases. To prevent ��i (yi � ((w � xi) + b)� 1) from becoming
arbitrarily large, the change in w and b will ensure that, provided the problem is
separable, the constraint will eventually be satis�ed. Similarly, one can under-
stand that for all constraints which are not precisely met as equalities, i.e. for
which yi � ((w �xi)+ b)�1 > 0, the corresponding �i must be 0: this is the value
of �i that maximizes L. The latter is the statement of the Karush-Kuhn-Tucker
complementarity conditions of optimization theory [6].

The condition that at the saddle point, the derivatives of L with respect to
the primal variables must vanish,

@

@b
L(w; b;�) = 0;

@

@w
L(w; b;�) = 0; (26)

6

.
w

{x | (w x) + b = 0}.

{x | (w x) + b = −1}.
{x | (w x) + b = +1}.

x2
x1

Note:

(w x1) + b = +1
(w x2) + b = −1

=> (w (x1−x2)) = 2

=> (x1−x2) =
w

||w||()

.

.

.

. 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1: A binary classi�cation toy problem: separate balls from diamonds.
The optimal hyperplane is orthogonal to the shortest line connecting the convex
hulls of the two classes (dotted), and intersects it half-way between the two
classes. The problem being separable, there exists a weight vector w and a
threshold b such that yi � ((w � xi) + b) > 0 (i = 1; : : : ;m). Rescaling w and b
such that the point(s) closest to the hyperplane satisfy j(w � xi) + bj = 1, we
obtain a canonical form (w; b) of the hyperplane, satisfying yi � ((w �xi)+b) � 1.
Note that in this case, the margin, measured perpendicularly to the hyperplane,
equals 2=kwk. This can be seen by considering two points x1;x2 on opposite
sides of the margin, i.e. (w �x1) + b = 1; (w �x2) + b = �1, and projecting them
onto the hyperplane normal vector w=kwk.

leads to
mX
i=1

�iyi = 0 (27)

and

w =

mX
i=1

�iyixi: (28)

The solution vector thus has an expansion in terms of a subset of the training
patterns, namely those patterns whose �i is non-zero, called Support Vectors.
By the Karush-Kuhn-Tucker complementarity conditions

�i � [yi((xi �w) + b)� 1] = 0; i = 1; : : : ;m; (29)

the Support Vectors lie on the margin (cf. Figure 1). All remaining examples of
the training set are irrelevant: their constraint (24) does not play a role in the
optimization, and they do not appear in the expansion (28). This nicely captures
our intuition of the problem: as the hyperplane (cf. Figure 1) is completely

7

determined by the patterns closest to it, the solution should not depend on the
other examples.

By substituting (27) and (28) into L, one eliminates the primal variables and
arrives at the Wolfe dual of the optimization problem [e.g. 6]: �nd multipliers
�i which

maximize W (�) =

mX
i=1

�i � 1

2

mX
i;j=1

�i�jyiyj(xi � xj) (30)

subject to �i � 0; i = 1; : : : ;m; and

mX
i=1

�iyi = 0: (31)

The hyperplane decision function can thus be written as

f(x) = sgn

mX
i=1

yi�i � (x � xi) + b

!
(32)

where b is computed using (29).
The structure of the optimization problem closely resembles those that typ-

ically arise in Lagrange's formulation of mechanics. Also there, often only a
subset of the constraints become active. For instance, if we keep a ball in a box,
then it will typically roll into one of the corners. The constraints corresponding
to the walls which are not touched by the ball are irrelevant, the walls could
just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a me-
chanical interpretation of optimal margin hyperplanes [9]: If we assume that
each support vector xi exerts a perpendicular force of size �i and sign yi on
a solid plane sheet lying along the hyperplane, then the solution satis�es the
requirements of mechanical stability. The constraint (27) states that the forces
on the sheet sum to zero; and (28) implies that the torques also sum to zero,
via

P
i xi � yi�i �w=kwk = w�w=kwk = 0.

There are theoretical arguments supporting the good generalization perfor-
mance of the optimal hyperplane ([31, 27, 35, 4]). In addition, it is computation-
ally attractive, since it can be constructed by solving a quadratic programming
problem.

4 Support Vector Classi�ers

We now have all the tools to describe support vector machines [28, 19, 26].
Everything in the last section was formulated in a dot product space. We think
of this space as the feature space F described in Section 1. To express the
formulas in terms of the input patterns living in X , we thus need to employ (5),
which expresses the dot product of bold face feature vectors x;x0 in terms of
the kernel k evaluated on input patterns x; x0,

k(x; x0) = (x � x0): (33)

8

feature spaceinput space

Φ

◆

◆
◆

◆
❍

❍
❍

❍
❍

❍

Figure 2: The idea of SV machines: map the training data into a higher-
dimensional feature space via �, and construct a separating hyperplane with
maximum margin there. This yields a nonlinear decision boundary in input
space. By the use of a kernel function (2), it is possible to compute the separat-
ing hyperplane without explicitly carrying out the map into the feature space.

This can be done since all feature vectors only occured in dot products. The
weight vector (cf. (28)) then becomes an expansion in feature space, and will
thus typically no more correspond to the image of a single vector from input
space. We thus obtain decision functions of the more general form (cf. (32))

f(x) = sgn

mX
i=1

yi�i � (�(x) ��(xi)) + b

!

= sgn

mX
i=1

yi�i � k(x; xi) + b

!
; (34)

and the following quadratic program (cf. (30)):

maximize W (�) =

mX
i=1

�i � 1

2

mX
i;j=1

�i�jyiyjk(xi; xj) (35)

subject to �i � 0; i = 1; : : : ;m; and
mX
i=1

�iyi = 0: (36)

In practice, a separating hyperplane may not exist, e.g. if a high noise level
causes a large overlap of the classes. To allow for the possibility of examples
violating (24), one introduces slack variables [10, 28, 22]

�i � 0; i = 1; : : : ;m (37)

in order to relax the constraints to

yi � ((w � xi) + b) � 1� �i; i = 1; : : : ;m: (38)

A classi�er which generalizes well is then found by controlling both the classi�er
capacity (via kwk) and the sum of the slacks

P
i �i. The latter is done as it can

9

Figure 3: Example of a Support Vector classi�er found by using a radial basis
function kernel k(x; x0) = exp(�kx�x0k2). Both coordinate axes range from -1
to +1. Circles and disks are two classes of training examples; the middle line is
the decision surface; the outer lines precisely meet the constraint (24). Note that
the Support Vectors found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classi�cation
task. Grey values code the modulus of the argument

Pm

i=1 yi�i � k(x; xi) + b of
the decision function (34).)

be shown to provide an upper bound on the number of training errors which
leads to a convex optimization problem.

One possible realization of a soft margin classi�er is minimizing the objective
function

�(w; �) =
1

2
kwk2 + C

mX
i=1

�i (39)

subject to the constraints (37) and (38), for some value of the constant C > 0
determining the trade-o�. Here and below, we use boldface greek letters as
a shorthand for corresponding vectors � = (�1; : : : ; �m). Incorporating kernels,
and rewriting it in terms of Lagrange multipliers, this again leads to the problem
of maximizing (35), subject to the constraints

0 � �i � C; i = 1; : : : ;m; and

mX
i=1

�iyi = 0: (40)

The only di�erence from the separable case is the upper bound C on the La-
grange multipliers �i. This way, the inuence of the individual patterns (which

10

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

Figure 4: In SV regression, a tube with radius " is �tted to the data. The
trade-o� between model complexity and points lying outside of the tube (with
positive slack variables �) is determined by minimizing (46).

could be outliers) gets limited. As above, the solution takes the form (34). The
threshold b can be computed by exploiting the fact that for all SVs xi with
�i < C, the slack variable �i is zero (this again follows from the Karush-Kuhn-
Tucker complementarity conditions), and hence

mX
j=1

yj�j � k(xi; xj) + b = yi: (41)

Another possible realization of a soft margin variant of the optimal hyper-
plane uses the �-parametrization [22]. In it, the paramter C is replaced by a
parameter � 2 [0; 1] which can be shown to lower and upper bound the number
of examples that will be SVs and that will come to lie on the wrong side of the
hyperplane, respectively. It uses a primal objective function with the error term
1
�m

P
i �i � �, and separation constraints

yi � ((w � xi) + b) � �� �i; i = 1; : : : ;m: (42)

The margin parameter � is a variable of the optimization problem. The dual
can be shown to consist of maximizing the quadratic part of (35), subject to
0 � �i � 1=(�m),

P
i �iyi = 0 and the additional constraint

P
i �i = 1.

5 Support Vector Regression

The concept of the margin is speci�c to pattern recognition. To generalize
the SV algorithm to regression estimation [28], an analogue of the margin is
constructed in the space of the target values y (note that in regression, we have
y 2 R) by using Vapnik's "-insensitive loss function (Figure 4)

jy � f(x)j" := maxf0; jy � f(x)j � "g: (43)

11

To estimate a linear regression

f(x) = (w � x) + b (44)

with precision ", one minimizes

1

2
kwk2 + C

mX
i=1

jyi � f(xi)j": (45)

Written as a constrained optimization problem, this reads:

minimize �(w; �; ��) =
1

2
kwk2 + C

mX
i=1

(�i + ��i) (46)

subject to ((w � xi) + b)� yi � "+ �i (47)

yi � ((w � xi) + b) � "+ ��i (48)

�i; �
�
i � 0 (49)

for all i = 1; : : : ;m. Note that according to (47) and (48), any error smaller than
" does not require a nonzero �i or �

�
i , and hence does not enter the objective

function (46).
Generalization to kernel-based regression estimation is carried out in com-

plete analogy to the case of pattern recognition. Introducing Lagrange multi-
pliers, one thus arrives at the following optimization problem: for C > 0; " � 0
chosen a priori,

maximize W (�;��) = �"
mX
i=1

(��i + �i) +

mX
i=1

(��i � �i)yi

�1

2

mX
i;j=1

(��i � �i)(�
�
j � �j)k(xi; xj) (50)

subject to 0 � �i; �
�
i � C; i = 1; : : : ;m; and

mX
i=1

(�i � ��i) = 0:(51)

The regression estimate takes the form

f(x) =

mX
i=1

(��i � �i)k(xi; x) + b; (52)

where b is computed using the fact that (47) becomes an equality with �i = 0 if
0 < �i < C, and (48) becomes an equality with ��i = 0 if 0 < ��i < C.

Several extensions of this algorithm are possible. From an abstract point
of view, we just need some target function which depends on the vector (w; �)
(cf. (46)). There are multiple degrees of freedom for constructing it, including
some freedom how to penalize, or regularize, di�erent parts of the vector, and
some freedom how to use the kernel trick. For instance, more general loss

12

Σ

. . .

output σ (Σ υi k (x,xi))

weightsυ1 υ2 υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product (Φ(x).Φ(xi)) = k (x,xi)(.) (.) (.)

Φ(x1) Φ(x2)

 σ ()

Figure 5: Architecture of SV machines. The input x and the Support Vectors xi
are nonlinearly mapped (by �) into a feature space F , where dot products are
computed. By the use of the kernel k, these two layers are in practice computed
in one single step. The results are linearly combined by weights �i, found by
solving a quadratic program (in pattern recognition, �i = yi�i; in regression
estimation, �i = ��i ��i). The linear combination is fed into the function � (in
pattern recognition, �(x) = sgn (x+ b); in regression estimation, �(x) = x+ b).

functions can be used for �, leading to problems that can still be solved e�ciently
[24]. Moreover, norms other than the 2-norm k:k can be used to regularize the
solution. Yet another example is that polynomial kernels can be incorporated
which consist of multiple layers, such that the �rst layer only computes products
within certain speci�ed subsets of the entries of w [17].

Finally, the algorithm can be modi�ed such that " need not be speci�ed a
priori. Instead, one speci�es an upper bound 0 � � � 1 on the fraction of
points allowed to lie outside the tube (asymptotically, the number of SVs) and
the corresponding " is computed automatically. This is achieved by using as
primal objective function

1

2
kwk2 + C

�m"+

mX
i=1

jyi � f(xi)j"
!

(53)

instead of (45), and treating " � 0 as a parameter that we minimize over [22].

13

6 Further Developments

Having described the basics of SV machines, we now summarize some empirical
�ndings and theoretical developments which were to follow.

By the use of kernels, the optimal margin classi�er was turned into a classi�er
which became a serious competitor of high-performance classi�ers. Surprisingly,
it was noticed that when di�erent kernel functions are used in SV machines, they
empirically lead to very similar classi�cation accuracies and SV sets [18]. In this
sense, the SV set seems to characterize (or compress) the given task in a manner
which up to a certain degree is independent of the type of kernel (i.e. the type
of classi�er) used.

Initial work at AT&T Bell Labs focused on OCR (optical character recog-
nition), a problem where the two main issues are classi�cation accuracy and
classi�cation speed. Consequently, some e�ort went into the improvement of
SV machines on these issues, leading to the Virtual SV method for incorporat-
ing prior knowledge about transformation invariances by transforming SVs, and
the Reduced Set method for speeding up classi�cation. This way, SV machines
became competitive with the best available classi�ers on both OCR and object
recognition tasks [7, 9, 17].

Another initial weakness of SV machines, less apparent in OCR applications
which are characterized by low noise levels, was that the size of the quadratic
programming problem scaled with the number of Support Vectors. This was
due to the fact that in (35), the quadratic part contained at least all SVs |
the common practice was to extract the SVs by going through the training data
in chunks while regularly testing for the possibility that some of the patterns
that were initially not identi�ed as SVs turn out to become SVs at a later stage
(note that without chunking, the size of the matrix would be m�m, where m
is the number of all training examples). What happens if we have a high-noise
problem? In this case, many of the slack variables �i will become nonzero, and
all the corresponding examples will become SVs. For this case, a decomposition
algorithm was proposed [14], which is based on the observation that not only
can we leave out the non-SV examples (i.e. the xi with �i = 0) from the current
chunk, but also some of the SVs, especially those that hit the upper boundary
(i.e. �i = C). In fact, one can use chunks which do not even contain all SVs,
and maximize over the corresponding sub-problems. SMO [15, 25, 20] explores
an extreme case, where the sub-problems are chosen so small that one can
solve them analytically. Several public domain SV packages and optimizers are
listed on the web page http://www.kernel-machines.org. For more details on
the optimization problem, see [19].

On the theoretical side, the least understood part of the SV algorithm ini-
tially was the precise role of the kernel, and how a certain kernel choice would
inuence the generalization ability. In that respect, the connection to regular-
ization theory provided some insight. For kernel-based function expansions, one
can show that given a regularization operator P mapping the functions of the
learning machine into some dot product space, the problem of minimizing the

14

regularized risk

Rreg [f] = Remp[f] +
�

2
kPfk2 (54)

(with a regularization parameter � � 0) can be written as a constrained opti-
mization problem. For particular choices of the loss function, it further reduces
to a SV type quadratic programming problem. The latter thus is not speci�c to
SV machines, but is common to a much wider class of approaches. What gets
lost in the general case, however, is the fact that the solution can usually be ex-
pressed in terms of a small number of SVs. This speci�c feature of SV machines
is due to the fact that the type of regularization and the class of functions that
the estimate is chosen from are intimately related [11, 23]: the SV algorithm is
equivalent to minimizing the regularized risk on the set of functions

f(x) =
X
i

�ik(xi; x) + b; (55)

provided that k and P are interrelated by

k(xi; xj) = ((Pk)(xi; :) � (Pk)(xj ; :)) : (56)

To this end, k is chosen as a Green's function of P �P , for in that case, the right
hand side of (56) equals

(k(xi; :) � (P �Pk)(xj ; :)) = (k(xi; :) � �xj (:)) = k(xi; xj): (57)

For instance, a Gaussian RBF kernel thus corresponds to regularization with a
functional containing a speci�c di�erential operator.

In SV machines, the kernel thus plays a dual role: �rstly, it determines the
class of functions (55) that the solution is taken from; secondly, via (56), the
kernel determines the type of regularization that is used.

We conclude this section by noticing that the kernel method for computing
dot products in feature spaces is not restricted to SV machines. Indeed, it has
been pointed out that it can be used to develop nonlinear generalizations of any
algorithm that can be cast in terms of dot products, such as principal component
analysis [21], and a number of developments have followed this example.

7 Kernels

We now take a closer look at the issue of the similarity measure, or kernel, k.
In this section, we think of X as a subset of the vector space RN , (N 2 N),

endowed with the canonical dot product (3).

7.1 Product Features

Suppose we are given patterns x 2 RN where most information is contained in
the d-th order products (monomials) of entries [x]j of x,

[x]j1 � : : : � [x]jd ; (58)

15

where j1; : : : ; jd 2 f1; : : : ; Ng. In that case, we might prefer to extract these
product features, and work in the feature space F of all products of d entries.
In visual recognition problems, where images are often represented as vectors,
this would amount to extracting features which are products of individual pixels.

For instance, in R2 , we can collect all monomial feature extractors of degree
2 in the nonlinear map

� : R2 ! F = R
3 (59)

([x]1; [x]2) 7! ([x]21; [x]
2
2; [x]1[x]2): (60)

This approach works �ne for small toy examples, but it fails for realistically
sized problems: for N -dimensional input patterns, there exist

NF =
(N + d� 1)!

d!(N � 1)!
(61)

di�erent monomials (58), comprising a feature space F of dimensionality NF .
For instance, already 16� 16 pixel input images and a monomial degree d = 5
yield a dimensionality of 1010.

In certain cases described below, there exists, however, a way of computing
dot products in these high-dimensional feature spaces without explicitely map-
ping into them: by means of kernels nonlinear in the input space RN . Thus, if
the subsequent processing can be carried out using dot products exclusively, we
are able to deal with the high dimensionality.

The following section describes how dot products in polynomial feature
spaces can be computed e�ciently.

7.2 Polynomial Feature Spaces Induced by Kernels

In order to compute dot products of the form (�(x) � �(x0)), we employ kernel
representations of the form

k(x; x0) = (�(x) � �(x0)); (62)

which allow us to compute the value of the dot product in F without having to
carry out the map �. This method was used by [8] to extend the Generalized
Portrait hyperplane classi�er of [31] to nonlinear Support Vector machines. In
[1], F is termed the linearization space, and used in the context of the potential
function classi�cation method to express the dot product between elements of
F in terms of elements of the input space.

What does k look like for the case of polynomial features? We start by
giving an example [28] for N = d = 2. For the map

C2 : ([x]1; [x]2) 7! ([x]21; [x]
2
2; [x]1[x]2; [x]2[x]1); (63)

dot products in F take the form

(C2(x) � C2(x
0)) = [x]21[x

0]21 + [x]22[x
0]22 + 2[x]1[x]2[x

0]1[x
0]2 = (x � x0)2; (64)

16

i.e. the desired kernel k is simply the square of the dot product in input space.
The same works for arbitrary N; d 2 N [8]: as a straightforward generalization
of a result proved in the context of polynomial approximation [16, Lemma 2.1],
we have:

Proposition 1 De�ne Cd to map x 2 R
N to the vector Cd(x) whose entries

are all possible d-th degree ordered products of the entries of x. Then the corre-
sponding kernel computing the dot product of vectors mapped by Cd is

k(x; x0) = (Cd(x) � Cd(x
0)) = (x � x0)d: (65)

Proof. We directly compute

(Cd(x) � Cd(x
0)) =

NX
j1;:::;jd=1

[x]j1 � : : : � [x]jd � [x0]j1 � : : : � [x0]jd (66)

=

0
@ NX

j=1

[x]j � [x0]j

1
A

d

= (x � x0)d: (67)

Instead of ordered products, we can use unordered ones to obtain a map
�d which yields the same value of the dot product. To this end, we have to
compensate for the multiple occurence of certain monomials in Cd by scaling
the respective entries of �d with the square roots of their numbers of occurence.
Then, by this de�nition of �d, and (65),

(�d(x) � �d(x
0)) = (Cd(x) � Cd(x

0)) = (x � x0)d: (68)

For instance, if n of the ji in (58) are equal, and the remaining ones are di�erent,
then the coe�cient in the corresponding component of �d is

p
(d� n+ 1)! [for

the general case, cf. 23]. For �2, this simply means that [28]

�2(x) = ([x]21; [x]
2
2;
p
2 [x]1[x]2): (69)

If x represents an image with the entries being pixel values, we can use
the kernel (x � x0)d to work in the space spanned by products of any d pixels |
provided that we are able to do our work solely in terms of dot products, without
any explicit usage of a mapped pattern �d(x). Using kernels of the form (65), we
take into account higher-order statistics without the combinatorial explosion (cf.
(61)) of time and memory complexity which goes along already with moderately
high N and d.

To conclude this section, note that it is possible to modify (65) such that it
maps into the space of all monomials up to degree d, de�ning [28]

k(x; x0) = ((x � x0) + 1)d: (70)

17

8 Representing Similarities in Linear Spaces

In what follows, we will look at things the other way round, and start with the
kernel. Given some kernel function, can we construct a feature space such that
the kernel computes the dot product in that feature space? This question has
been brought to the attention of the machine learning community by [1, 8, 28].
In functional analysis, the same problem has been studied under the heading of
Hilbert space representations of kernels. A good monograph on the functional
analytic theory of kernels is [5]; indeed, a large part of the material in the present
section is based on that work.

There is one more aspect in which this section di�ers from the previous one:
the latter dealt with vectorial data. The results in the current section, in con-
trast, hold for data drawn from domains which need no additional structure
other than them being nonempty sets X . This generalizes kernel learning algo-
rithms to a large number of situations where a vectorial representation is not
readily available [17, 12, 34].

We start with some basic de�nitions and results.

De�nition 2 (Gram matrix) Given a kernel k and patterns x1; : : : ; xm 2 X ,
the m�m matrix

K := (k(xi; xj))ij (71)

is called the Gram matrix (or kernel matrix) of k with respect to x1; : : : ; xm.

De�nition 3 (Positive matrix) An m�m matrix Kij satisfyingX
i;j

ci�cjKij � 0 (72)

for all ci 2 C is called positive.1

De�nition 4 ((Positive de�nite) kernel) Let X be a nonempty set. A func-
tion k : X � X ! C which for all m 2 N; xi 2 X gives rise to a positive Gram
matrix is called a positive de�nite kernel. Often, we shall refer to it simply as
a kernel.

The term kernel stems from the �rst use of this type of function in the study
of integral operators. A function k which gives rise to an operator T via

(Tf)(x) =

Z
X

k(x; x0)f(x0) dx0 (73)

is called the kernel of T . One might argue that the term positive de�nite kernel
is slightly misleading. In matrix theory, the term de�nite is usually used to
denote the case where equality in (72) only occurs if c1 = : : : = cm = 0. Simply
using the term positive kernel, on the other hand, could be confused with a
kernel whose values are positive. In the literature, a number of di�erent terms

1The bar in �cj denotes complex conjugation.

18

are used for positive de�nite kernels, such as reproducing kernel, Mercer kernel,
or support vector kernel.

The de�nitions for (positive de�nite) kernels and positive matrices di�er only
in the fact that in the former case, we are free to choose the points on which
the kernel is evaluated.

Positive de�nitness implies positivity on the diagonal,

k(x1; x1) � 0 for all x1 2 X ; (74)

(use m = 1 in (72)), and symmetry, i.e.

k(xi; xj) = k(xj ; xi): (75)

Note that in the complex-valued case, our de�nition of symmetry includes com-
plex conjugation, depicted by the bar. The de�nition of symmetry of matrices
is analogous, i.e. Kij = �Kji.

Obviously, real-valued kernels, which are what we will mainly be concerned
with, are contained in the above de�nition as a special case, since we did not
require that the kernel take values in C n R. However, it is not su�cient to
require that (72) hold for real coe�cients ci. If we want to get away with real
coe�cients only, we additionally have to require that the kernel be symmetric,

k(xi; xj) = k(xj ; xi): (76)

It can be shown that whenever k is a (complex-valued) positive de�nite kernel,
its real part is a (real-valued) positive de�nite kernel.

Kernels can be regarded as generalized dot products. Indeed, any dot prod-
uct can be shown to be a kernel; however, linearity does not carry over from
dot products to general kernels. Another property of dot products, the Cauchy-
Schwarz inequality, does have a natural generalization to kernels:

Proposition 5 If k is a positive de�nite kernel, and x1; x2 2 X , then

jk(x1; x2)j2 � k(x1; x1) � k(x2; x2): (77)

Proof. For sake of brevity, we give a non-elementary proof using some basic
facts of linear algebra. The 2 � 2 Gram matrix with entries Kij = k(xi; xj) is
positive. Hence both its eigenvalues are nonnegative, and so is their product,
K's determinant, i.e.

0 � K11K22 �K12K21 = K11K22 �K12
�K12 = K11K22 � jK12j2: (78)

Substituting k(xi; xj) for Kij , we get the desired inequality.

We are now in a position to construct the feature space associated with a
kernel k.

19

We de�ne a map from X into the space of functions mapping X into C ,
denoted as C X , via

� : X ! C
X

x 7! k(:; x): (79)

Here, �(x) = k(:; x) denotes the function that assigns the value k(x0; x) to
x0 2 X .

We have thus turned each pattern into a function on the domain X . In a
sense, a pattern is now represented by its similarity to all other points in the
input domain X . This seems a very rich representation, but it will turn out that
the kernel allows the computation of the dot product in that representation.

We shall now construct a dot product space containing the images of the
input patterns under �. To this end, we �rst need to endow it with the linear
structure of a vector space. This is done by forming linear combinations of the
form

f(:) =

mX
i=1

�ik(:; xi): (80)

Here, m 2 N, �i 2 C and xi 2 X are arbitrary.
Next, we de�ne a dot product between f and another function

g(:) =

m0X
j=1

�jk(:; x
0
j) (81)

(m0 2 N, �j 2 C and x0j 2 X) as

hf; gi :=
mX
i=1

m0X
j=1

��i�jk(xi; x
0
j): (82)

To see that this is well-de�ned, although it explicitly contains the expansion
coe�cients (which need not be unique), note that

hf; gi =
m0X
j=1

�jf(x0j); (83)

using k(x0j ; xi) = k(xi; x0j). The latter, however, does not depend on the partic-
ular expansion of f . Similarly, for g, note that

hf; gi =
mX
i=1

��ig(xi): (84)

The last two equations also show that h:; :i is antilinear in the �rst argument
and linear in the second one. It is symmetric, as hf; gi = hg; fi. Moreover, given
functions f1; : : : ; fn, and coe�cients 1; : : : ; n 2 C , we have

nX
i;j=1

�ijhfi; fji =
*X

i

ifi;
X
i

ifi

+
� 0; (85)

20

hence h:; :i is actually a positive de�nite kernel on our function space.
For the last step in proving that it even is a dot product, we will use the

following interesting property of �, which follows directly from the de�nition:
for all functions (80), we have

hk(:; x); fi = f(x) (86)

| k is the representer of evaluation. In particular,

hk(:; x); k(:; x0)i = k(x; x0): (87)

By virtue of these properties, positive kernels k are also called reproducing ker-
nels [3, 5, 33, 17].

By (86) and Proposition 5, we have

jf(x)j2 = jhk(:; x); fij2 � k(x; x) � hf; fi: (88)

Therefore, hf; fi = 0 directly implies f = 0, which is the last property that was
left to prove in order to establish that h:; :i is a dot product.

One can complete the space of functions (80) in the norm corresponding to
the dot product, i.e. add the limit points of sequences that are convergent in
that norm, and thus gets a Hilbert space H , usually called a reproducing kernel
Hilbert space.2

The case of real-valued kernels is included in the above; in that case, H can
be chosen as a real Hilbert space.

9 Examples of Kernels

Besides (65), [8] and [28] suggest the usage of Gaussian radial basis function
kernels [1]

k(x; x0) = exp

�
�kx� x0k2

2 �2

�
(89)

and sigmoid kernels
k(x; x0) = tanh(�(x � x0) + �): (90)

Note that all these kernels have the convenient property of unitary invari-
ance, i.e. k(x; x0) = k(Ux;Ux0) if U> = U�1 (if we consider complex numbers,
then U� instead of U> has to be used).

The radial basis function kernel additionally is translation invariant. More-
over, as it satis�es k(x; x) = 1 for all x 2 X , each mapped example has unit
length, k�(x)k = 1. In addition, as k(x; x0) > 0 for all x; x0 2 X , all points lie
inside the same orthant in feature space. To see this, recall that for unit lenght
vectors, the dot product (3) equals the cosine of the enclosed angle. Hence

cos(\(�(x);�(x0))) = (�(x) ��(x0)) = k(x; x0) > 0; (91)

2A Hilbert space H is de�ned as a complete dot product space. Completeness means that

all sequences in H which are convergent in the norm corresponding to the dot product will

actually have their limits in H, too.

21

which amounts to saying that the enclosed angle between any two mapped
examples is smaller than �=2.

The examples given so far apply to the case of vectorial data. Let us at least
give one example where X is not a vector space.

Example 6 (Similarity of probabilistic events) If A is a �-algebra, and
P a probability measure on A, then

k(A;B) = P (A \ B)� P (A)P (B) (92)

is a positive de�nite kernel.

Further examples include kernels for string matching, as proposed by [34, 12].

10 Representating Dissimilarities in Linear Spaces

We now move on to a larger class of kernels. It is interesting in several regards.
First, it will turn out that some kernel algorithms work with this larger class
of kernels, rather than only with positive de�nite kernels. Second, their rela-
tionship to positive de�nite kernels is a rather interesting one, and a number
of connections between the two classes provide understanding of kernels in gen-
eral. Third, they are intimately related to a question which is a variation on the
central aspect of positive de�nite kernels: the latter can be thought of as dot
products in feature spaces; the former, on the other hand, can be embedded as
distance measures arising from norms in feature spaces.

The following de�nition di�ers only in the additional constraint on the sum
of the ci from De�nition 3.

De�nition 7 (Conditionally positive matrix) A symmetric m�m matrix
Kij (m � 2) satisfying

mX
i;j=1

ci�cjKij � 0 (93)

for all ci 2 C with
mX
i=1

ci = 0 (94)

is called conditionally positive.

De�nition 8 (Conditionally positive de�nite kernel) Let X be a nonemp-
ty set. A function k : X � X ! C which for all m � 2; xi 2 X gives rise to
a conditionally positive Gram matrix is called a conditionally positive de�nite
kernel.

The de�nitions for the real-valued case look exactly the same. Note that
symmetry is required, also in the complex case. Due to the additional constraint
on the coe�cients ci, it does not follow automatically anymore.

22

It is trivially true that whenever k is positive de�nite, it is also conditionally
positive de�nite. However, the latter is strictly weaker: if k is conditionally
positive de�nite, and b 2 C , then k+ b is also conditionally positive de�nite. To
see this, simply apply the de�nition to get, for

P
i ci = 0,

X
i;j

ci�cj(k(xi; xj) + b) =
X
i;j

ci�cjk(xi; xj) + b

�����
X
i

ci

�����
2

=
X
i;j

ci�cjk(xi; xj) � 0:

(95)
A standard example of a conditionally positive de�nite kernel which is not

positive de�nite is
k(x; x0) = �kx� x0k2; (96)

where x; x0 2 X , and X is a dot product space.
To see this, simply compute, for some pattern set x1; : : : ; xm,X

i;j

cicjk(xi; xj) = �
X
i;j

cicjkxi � xjk2 (97)

= �
X
i;j

cicj
�kxik2 + kxjk2 � 2(xi � xj)

�
= �

X
i

ci
X
j

cjkxjk2 �
X
j

cj
X
i

cikxik2 + 2
X
i;j

cicj(xi � xj)

= 2
X
i;j

cicj(xi � xj) � 0; (98)

where the last line follows from (94) and the fact that k(x; x0) = (x � x0) is a
positive de�nite kernel. Note that without (94), (97) can also be negative (e.g.,
put c1 = : : : = cm = 1), hence the kernel is not a positive de�nite one.

Without proof, we add that in fact,

k(x; x0) = �kx� x0k� (99)

is conditionally positive de�nite for 0 < � � 2.
Let us consider the kernel (96), which can be considered the canonical con-

ditionally positive kernel on a dot product space, and see how it is related to
the dot product. Clearly, the distance induced by the norm is invariant under
translations, i.e.

kx� x0k = k(x� x0)� (x0 � x0)k (100)

for all x; x0; x0 2 X . In other words, even complete knowledge of kx � x0k for
all x; x0 2 X would not completely determine the underlying dot product, the
reason being that the dot product is not invariant under translations. Therefore,
one needs to �x an origin x0 when going from the distance measure to the dot
product. To this end, we need to write the dot product of x�x0 and x0�x0 in
terms of distances:

((x� x0) � (x0 � x0)) = (x � x0) + kx0k2 + (x � x0) + (x0 � x0)
=

1

2

��kx� x0k2 + kx� x0k2 + kx0 � x0k2� (101)
23

By construction, this will always result in a positive de�nite kernel: the dot
product is a positive de�nite kernel, and we have only translated the inputs.
We have thus established the connection between (96) and a class of positive
de�nite kernels corresponding to the dot product in di�erent coordinate systems,
related to each other by translations. In fact, a similar connection holds for a
wide class of kernels:

Proposition 9 Let x0 2 X , and let k be a symmetric kernel on X �X , satis-
fying k(x0; x0) � 0. Then

~k(x; x0) := k(x; x0)� k(x; x0)� k(x0; x
0) (102)

is positive de�nite if and only if k is conditionally positive de�nite.

This result can be generalized to k(x0; x0) < 0. In this case, we simply need
to add k(x0; x0) on the right hand side of (102). This is necessary, for otherwise,
we would have ~k(x0; x0) < 0, contradicting (74). Without proof, we state that
it is also su�cient.

Using this result, one can prove another interesting connection between the
two classes of kernels:

Proposition 10 A kernel k is conditionally positive de�nite if and only if
exp(tk) is positive de�nite for all t > 0.

Positive de�nite kernels of the form exp(tk) (t > 0) have the interesting
property that their n-th root (n 2 N) is again a positive de�nite kernel. Such
kernels are called in�nitely divisible. One can show that, disregarding some
technicalities, the logarithm of an in�nitely divisible positive de�nite kernel
mapping into R+0 is a conditionally positive de�nite kernel.

Conditionally positive de�nite kernels are a natural choice whenever we are
dealing with a translation invariant problem, such as the support vector ma-
chine: maximization of the margin of separarion between two classes of data is
independent of the origin's position. This can be seen from the dual optimiza-
tion problem (36): the constraint

Pm

i=1 �iyi = 0 projects out the same subspace
as (94) in the de�nition of conditionally positive matrices [17, 23].

We have seen that positive de�nite kernels and conditionally positive de�nite
kernels are closely related to each other. The former can be represented as dot
products in Hilbert spaces. The latter, it turns out, essentially correspond to
distance measures associated with norms in Hilbert spaces:

Proposition 11 Let k be a real-valued conditionally positive de�nite kernel on
X , satisfying k(x; x) = 0 for all x 2 X . Then there exists a Hilbert space H of
real-valued functions on X , and a mapping � : X ! H, such that

k(x; x0) = �k�(x)��(x0)k2: (103)

There exist generalizations to the case where k(x; x) 6= 0 and where k maps into
C . In these cases, the representation looks slightly more complicated.

24

The signi�cance of this proposition is that using conditionally positive def-
inite kernels, we can thus generalize all algorithms based on distances to cor-
responding algorithms operating in feature spaces. This is an analogue of the
kernel trick for distances rather than dot products, i.e. dissimilarities rather
than similarities.

Acknowledgements. Thanks to A. Smola and R. Williamson for discussions,
and to C. Watkins for pointing out, in his NIPS'99 SVM workshop talk, that
distances and dot products di�er in the way they deal with the origin.

References

[1] M. A. Aizerman, E. M. Braverman, and L. I. Rozono�er. Theoretical foundations
of the potential function method in pattern recognition learning. Automation and
Remote Control, 25:821{837, 1964.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale{sensitive Dimen-
sions, Uniform Convergence, and Learnability. Journal of the ACM, 44(4):615{
631, 1997.

[3] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337{
404, 1950.

[4] P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machines and other pattern classi�ers. In B. Sch�olkopf, C. J. C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods | Support Vector Learning, pages
43{54, Cambridge, MA, 1999. MIT Press.

[5] C. Berg, J.P.R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups.
Springer-Verlag, New York, 1984.

[6] D. P. Bertsekas. Nonlinear Programming. Athena Scienti�c, Belmont, MA, 1995.

[7] V. Blanz, B. Sch�olkopf, H. B�ultho�, C. Burges, V. Vapnik, and T. Vetter. Com-
parison of view-based object recognition algorithms using realistic 3D models. In
C. von der Malsburg, W. von Seelen, J. C. Vorbr�uggen, and B. Sendho�, editors,
Arti�cial Neural Networks | ICANN'96, pages 251 { 256, Berlin, 1996. Springer
Lecture Notes in Computer Science, Vol. 1112.

[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classi�ers. In D. Haussler, editor, Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144{152, Pittsburgh, PA,
July 1992. ACM Press.

[9] C. J. C. Burges and B. Sch�olkopf. Improving the accuracy and speed of support
vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems 9, pages 375{381, Cambridge,
MA, 1997. MIT Press.

[10] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273 {
297, 1995.

[11] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7(2):219{269, 1995.

[12] D. Haussler. Convolutional kernels on discrete structures. Technical Report

25

UCSC-CRL-99-10, Computer Science Department, University of California at
Santa Cruz, 1999.

[13] J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415{446,
1909.

[14] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for sup-
port vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, edi-
tors, Neural Networks for Signal Processing VII | Proceedings of the 1997 IEEE
Workshop, pages 276 { 285, New York, 1997. IEEE.

[15] J. Platt. Fast training of support vector machines using sequential minimal op-
timization. In B. Sch�olkopf, C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods | Support Vector Learning, pages 185{208, Cambridge, MA,
1999. MIT Press.

[16] T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19:201{
209, 1975.

[17] B. Sch�olkopf. Support Vector Learning. R. Oldenbourg Verlag, M�unchen, 1997.
Doktorarbeit, TU Berlin.

[18] B. Sch�olkopf, C. Burges, and V. Vapnik. Extracting support data for a given task.
In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International
Conference on Knowledge Discovery & Data Mining, Menlo Park, 1995. AAAI
Press.

[19] B. Sch�olkopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Methods |
Support Vector Learning. MIT Press, Cambridge, MA, 1999.

[20] B. Sch�olkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Esti-
mating the support of a high-dimensional distribution. TR MSR 99 - 87, Microsoft
Research, Redmond, WA, 1999.

[21] B. Sch�olkopf, A. Smola, and K.-R. M�uller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299{1319, 1998.

[22] B. Sch�olkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12:1083 { 1121, 2000.

[23] A. Smola, B. Sch�olkopf, and K.-R. M�uller. The connection between regularization
operators and support vector kernels. Neural Networks, 11:637{649, 1998.

[24] A. J. Smola and B. Sch�olkopf. On a kernel{based method for pattern recognition,
regression, approximation and operator inversion. Algorithmica, 22:211{231, 1998.

[25] A. J. Smola and B. Sch�olkopf. A tutorial on support vector regression. Neuro-
COLT Technical Report NC-TR-98-030, Royal Holloway College, University of
London, UK, 1998.

[26] A.J. Smola, P.L. Bartlett, B. Sch�olkopf, and D. Schuurmans. Advances in Large
Margin Classi�ers. MIT Press, Cambridge, MA, 2000.

[27] V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian].
Nauka, Moscow, 1979. (English translation: Springer Verlag, New York, 1982).

[28] V. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y., 1995.

[29] V. Vapnik. Statistical Learning Theory. Wiley, N.Y., 1998.

[30] V. Vapnik and A. Chervonenkis. A note on one class of perceptrons. Automation
and Remote Control, 25, 1964.

26

[31] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in Russian].
Nauka, Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis,
Theorie der Zeichenerkennung, Akademie{Verlag, Berlin, 1979).

[32] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24, 1963.

[33] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

[34] C. Watkins. Dynamic alignment kernels. In A.J. Smola, P.L. Bartlett,
B. Sch�olkopf, and D. Schuurmans, editors, Advances in Large Margin Classi�ers,
pages 39 { 50, Cambridge, MA, 2000. MIT Press.

[35] R. C. Williamson, A. J. Smola, and B. Sch�olkopf. Generalization performance of
regularization networks and support vector machines via entropy numbers of com-
pact operators. Technical Report 19, NeuroCOLT, http://www.neurocolt.com,
1998. Accepted for publication in IEEE Transactions on Information Theory.

27

