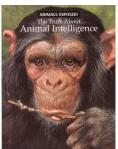
Algorithmes d'apprentissage et intelligence artificielle


Yoshua Bengio

3 septembre 2008

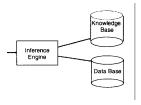
Intelligence Naturelle

- S'adapter à de nouvelles situations pour survivre / se reproduire.
- Nécessite l'acquisition de schémas comportementaux variés (évolution + individu)
- Permettent de généraliser à de nouvelles situations

Intelligence Artificielle

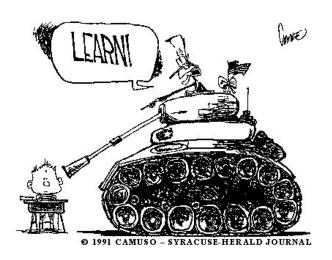
- Plus d'un demi-siècle de recherches, et le but semble encore très loin
- Pourquoi?
- Trop pressés d'obtenir des résultats, plutôt que de comprendre?

Où prendre les connaissances?

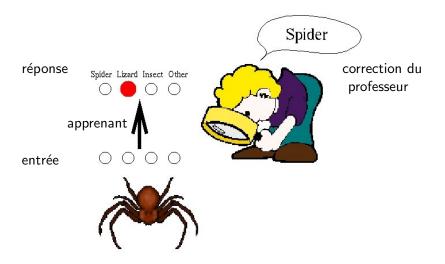

- L'IA doit capter un grand nombre de connaissances sur notre monde.
- L'approche explicite-symbolique :
 Cyc = collection de règles et faits écrits par des humains

Titanesque

Incohérent/Incomplet

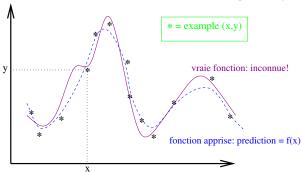


Pas robuste

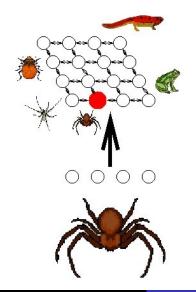

A pprendre les connaissances?

- Animaux et humains : connaissances innées et acquises.
- Apprennent des tâches non prévues par l'évolution.
- Plusieurs méthodes statistiques = apprentissage
- Apprentissage statistique maintenant dans la plupart des applications de l'IA: vision, reconnaissance de la parole, traduction, moteurs de recherche, robotique, bio-informatique, chemo-informatique, intelligence d'affaires...
- Pari de l'existence de stratégies/principes assez généraux.

Apprentissage supervisé



Apprentissage supervisé

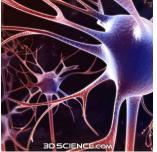

Apprentissage supervisé

- La forme la plus simple d'apprentissage
- Ensemble d'apprentissage : paires (x = entrée, y = sortie désirée)
- ullet Tirées d'un processus **inconnu** ${\mathcal P}$
- Critère d'erreur(y,prédiction)
- On cherche une fonction f qui minimise E[erreur(y, f(x))] sous \mathcal{P}

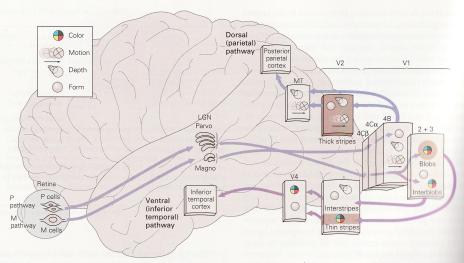

Apprentissage non-supervisé

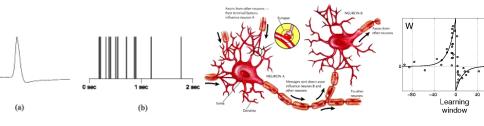
Découvrir des catégories et autres facteurs naturels

Apprentissage non-supervisé


- La plupart des exemples disponibles aux humains et aux machines ne sont pas sémantiquement étiquetés
- Objectif : capter les régularités statistiques dominantes
- = découvrir où la vraie densité se concentre

Apprentissage dans le cerveau


- 10¹¹ neurones et 10¹⁴ synapses (connexions)
- Apprentissage = modification / destruction / création de synapses
- Le cortex est la partie la plus grande et la plus moderne
- Fraction significative des neurones actifs à la fois
- Apprentissage au fur et à mesure ("online")


Système visuel des primates

Système visuel : séquence de transformations/niveaux d'abstraction

Apprentissage dans le cerveau

- • Sortie du neurone = train d'impulsions (~ 1 par 5ms à 100ms) avec aléas apparents
- Neurone accumule signaux d'autres neurones (1000 en moy.)
- Fréquences in/out : non-linéarité monotone bornée du neurone
- L'effet dominant apprentissage : STDP (à la Hebb)

Généraliser

X

Voici un exemple de la lettre Zuf en Klingon :

Voici d'autres exemples :

Lesquels parmi ces caractères Klingons sont des Zuf?

Pas de réponse universelle \Rightarrow problème mal posé!

Généraliser \neq Apprendre par cœur

Facile pour l'ordi d'apprendre par cœur

Pas pour nous!

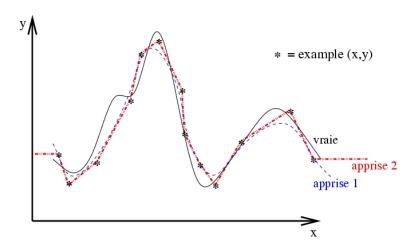
 \Rightarrow Mais nous, nous généralisons naturellement!

Compresser pour généraliser

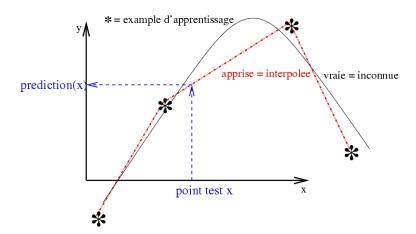
Extraire l'essence des observations ⇒ généraliser

• Principe du Rasoir d'Occam

- Résultats de Kolmogorov/Solomonoff 1964
- Résultats de Vapnik 1972



$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} erreur(x_i, f(x_i)) \neq \min_{f} E[erreur(x_i, f(x_i))]$$


Généraliser en 1D

C'est facile si la fonction n'a pas beaucoup de variations.



Généraliser localement

Ça fonctionne bien avec la bonne représentation : où la notion de voisinage fonctionne.

Situations où généraliser localement échoue

- Distance euclidienne pixel à pixel inappropriée
- Klingons utilisent un espace de représentation plus abstrait