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Current research on deep architectures

A few labs are currently researching deep neural network training:

Geoffrey Hinton’s lab at U.Toronto

Yann LeCun’s lab at NYU

Our LISA lab at U.Montreal

. . . many others to come! (we hope)

I will talk about my latest work
(with Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol):
Extracting and Composing Robust Features with Denoising Autoencoders
→ upcoming ICML 2008
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The problem

Building good predictors on complex domains
means learning complicated functions.

These are best represented by multiple levels of non-linear operations
i.e. deep architectures.

Learning the parameters of deep architectures proved to be
challenging!
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Training deep architectures: attempted solutions

Solution 1: initialize at random, and do gradient
descent (Rumelhart et al., 1986).
→ disappointing performance. Stuck in poor solutions.

Solution 2: Deep Belief Nets (Hinton et al., 2006): initialize by
stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
→ impressive performance.

Key seems to be good unsupervised layer-by-layer
initialization. . .

Solution 3: initialize by stacking autoencoders, fine-tune with
gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
→ Simple generic procedure, no sampling required.
Performance almost as good as Solution 2

. . . but not quite. Can we do better?
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Can we do better?

Open question: what would make a good unsupervised criterion for
finding good initial intermediate representations?

Inspiration: our ability to“fill-in-the-blanks” in sensory input.
missing pixels, small occlusions, image from sound, . . .

Good fill-in-the-blanks performance ↔ distribution is well captured.

→ old notion of associative memory (motivated Hopfield
models (Hopfield, 1982))

What we propose:
unsupervised initialization by explicit fill-in-the-blanks training.
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The denoising autoencoder

xx

Clean input x ∈ [0, 1]d is partially destroyed,
yielding corrupted input: x̃ ∼ qD(x̃|x).

x̃ is mapped to hidden representation y = fθ(x̃).

From y we reconstruct a z = gθ′(y).

Train parameters to minimize the cross-entropy“reconstruction error”
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The denoising autoencoder

fθ

xxx̃

qD

y

z

LH(x, z)
gθ′

Clean input x ∈ [0, 1]d is partially destroyed,
yielding corrupted input: x̃ ∼ qD(x̃|x).

x̃ is mapped to hidden representation y = fθ(x̃).

From y we reconstruct a z = gθ′(y).
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The input corruption process qD(x̃|x)

qD

xxx̃

Choose a fixed proportion ν of components of x at random.

Reset their values to 0.

Can be viewed as replacing a component considered missing by a
default value.

Other corruption processes could be considered.
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Form of parameterized mappings

We use standard sigmoid network layers:

y = fθ(x̃) = sigmoid( W︸︷︷︸
d′×d

x̃ + b︸︷︷︸
d′×1

)

gθ′(y) = sigmoid( W′︸︷︷︸
d×d′

y + b′︸︷︷︸
d×1

).

Denoising using autoencoders was actually introduced much earlier (LeCun,

1987; Gallinari et al., 1987), as an alternative to Hopfield networks (Hopfield,

1982).
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Learning deep networks
Layer-wise initialization

fθ

xxx̃

qD

y

z

LH(x, z)
gθ′

1 Learn first mapping fθ by training as a denoising autoencoder.

2 Remove scaffolding. Use fθ directly on input yielding higher level
representation.

3 Learn next level mapping f
(2)
θ by training denoising autoencoder on

current level representation.

4 Iterate to initialize subsequent layers.
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Learning deep networks
Supervised fine-tuning

Initial deep mapping was learnt in
an unsupervised way.

→ initialization for a supervised
task.

Output layer gets added.

Global fine tuning by gradient
descent on supervised criterion.

fθ

x

f
(2)
θ

f
(3)
θ
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Learning deep networks
Supervised fine-tuning

Initial deep mapping was learnt in
an unsupervised way.

→ initialization for a supervised
task.

Output layer gets added.

Global fine tuning by gradient
descent on supervised criterion.

Target

supervised cost

fθ

x

f
(2)
θ

f
(3)
θ

f sup
θ
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Perspectives on denoising autoencoders
Manifold learning perspective

x

x

x̃

x̃

qD(x̃ |x)

gθ′(fθ(x̃))

Denoising autoencoder can be seen as a way to learn a manifold:

Suppose training data (×) concentrate near a low-dimensional manifold.

Corrupted examples (.) are obtained by applying corruption process

qD(eX |X ) and will lie farther from the manifold.

The model learns with p(X |eX ) to“project them back”onto the manifold.

Intermediate representation Y can be interpreted as a coordinate system
for points on the manifold.
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Perspectives on denoising autoencoders
Information theoretic perspective

Consider X ∼ q(X ), q unknown. X̃ ∼ qD(X̃ |X ). Y = fθ(X̃ ).

It can be shown that minimizing the expected reconstruction error
amounts to maximizing a lower bound on mutual information
I(X ;Y ).

Denoising autoencoder training can thus be justified by the objective
that hidden representation Y captures as much information as
possible about X even as Y is a function of corrupted input.
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Perspectives on denoising autoencoders
Generative model perspective

Denoising autoencoder training can be shown to be equivalent to
maximizing a variational bound on the likelihood of a generative
model for the corrupted data.

data

hidden
factors

corrupted
data

observed

X

Y

X̃

hidden
factors

corrupted
data

observed
data

X

Y

X̃

variational model generative model
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Benchmark problems
Overview

We used a benchmark of challenging classification
problems (Larochelle et al., 2007) available at
http://www.iro.umontreal.ca/~lisa/icml2007

8 classification problems on 28× 28 grayscale pixel images
(d = 784).

First 5 are harder variations on the MNIST digit classification
problem. Last 3 are challenging binary classification tasks.

All problems have separate training, validation and test sets (test set
size: 50 000).
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Benchmark problems
Variations on MNIST digit classification

basic: subset of original MNIST digits: 10 000 training samples, 2 000 validation

samples, 50 000 test samples.

rot: applied random rotation (angle be-
tween 0 and 2π radians)

bg-rand: background made of random
pixels (value in 0 . . . 255)

bg-img: background is random patch
from one of 20 images

rot-bg-img: combination of rotation and
background image
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Benchmark problems
Shape discrimination

rect: discriminate between tall and wide rectangles on black background.

rect-img: borderless rectangle filled with random image patch. Background is a
different image patch.

convex: discriminate between convex and non-convex shapes.
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Experiments

We compared the following algorithms on the benchmark problems:

SVMrbf : suport Vector Machines with Gaussian Kernel.

DBN-3: Deep Belief Nets with 3 hidden layers (stacked Restricted
Boltzmann Machines trained with contrastive divergence).

SAA-3: Stacked Autoassociators with 3 hidden layers (no
denoising).

SdA-3: Stacked Denoising Autoassociators with 3 hidden layers.

Hyper-parameters for all algorithms were tuned based on classificaiton
performance on validation set. (In particular hidden-layer sizes, and ν for
SdA-3).
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Performance comparison
Results

Dataset SVMrbf DBN-3 SAA-3 SdA-3 (ν)

basic 3.03±0.15 3.11±0.15 3.46±0.16 2.80±0.14 (10%)

rot 11.11±0.28 10.30±0.27 10.30±0.27 10.29±0.27 (10%)

bg-rand 14.58±0.31 6.73±0.22 11.28±0.28 10.38±0.27 (40%)

bg-img 22.61±0.37 16.31±0.32 23.00±0.37 16.68±0.33 (25%)

rot-bg-img 55.18±0.44 47.39±0.44 51.93±0.44 44.49±0.44 (25%)

rect 2.15±0.13 2.60±0.14 2.41±0.13 1.99±0.12 (10%)

rect-img 24.04±0.37 22.50±0.37 24.05±0.37 21.59±0.36 (25%)

convex 19.13±0.34 18.63±0.34 18.41±0.34 19.06±0.34 (10%)
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Performance comparison
Analysis of the results

Pretraining as denoising autoencoders appears to be a very effective
initialization technique.

SdA-3 outperformed SVMs on all tasks, the difference being
statistically significan on 6 of the 8 problems.

Compared to Deep Belief Nets, SdA-3 was significantly superior in 4
of the problems, while being significantly worse in only 1 case.

More striking is the large gain from using noise (SdA-3) compared
to the noise free case SAA-3.

Note that best results on most MNIST tasks were obtained with first
hidden layer size of 2000, i.e. with over-complete representations
(since d = 784).
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Analyzing the filters learnt by denoising autoencoders

To view the effect of noise, we look at filters learnt by the first layer
on mnist basic for different destruction levels ν.

Each filter corresponds to the weights linking input x and one of the
first hidden layer units.

Filters at the same position in the image for different destruction
levels are related only by the fact that the autoencoders were started
from the same random initialization point.
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Learnt filters
0 % destroyed
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Learnt filters
10 % destroyed
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Learnt filters
25 % destroyed
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Learnt filters
50 % destroyed
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Learnt filters
Qualitative analysis

with no noise, many filters appear similarly uninteresting
(undistinctive almost uniform grey patches).

as we increase the noise level, denoising training forces the filters to
differentiate more, and capture more distinctive features.

higher noise levels tend to induce less local filters (as we expected).

one can distinguish different kinds of filters, from local blob
detectors, to stroke detectors, and some full character detectors at
the higher noise levels.

Neuron A (0%, 10%, 20%, 50% destruc-
tion)

Neuron B (0%, 10%, 20%, 50% destruc-
tion)
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Conclusion and future work

Unsupervised initialization of layers with an explicit denoising
criterion appears to help capture interesting structure in the input
distribution.

This leads to intermediate representations much better suited for
subsequent learning tasks such as supervised classification.

Resulting algorithm for learning deep networks is simple and
improves on state-of-the-art on benchmark problems.

Future work will investigate the effect of different types of corruption
process.
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THANK YOU!
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Performance comparison

Dataset SVMrbf SVMpoly DBN-1 DBN-3 SAA-3 SdA-3 (ν)

basic 3.03±0.15 3.69±0.17 3.94±0.17 3.11±0.15 3.46±0.16 2.80±0.14 (10%)

rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)

bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 6.73±0.22 11.28±0.28 10.38±0.27 (40%)

bg-img 22.61±0.37 24.01±0.37 16.15±0.32 16.31±0.32 23.00±0.37 16.68±0.33 (25%)

rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 47.39±0.44 51.93±0.44 44.49±0.44 (25%)

rect 2.15±0.13 2.15±0.13 4.71±0.19 2.60±0.14 2.41±0.13 1.99±0.12 (10%)

rect-img 24.04±0.37 24.05±0.37 23.69±0.37 22.50±0.37 24.05±0.37 21.59±0.36 (25%)

convex 19.13±0.34 19.82±0.35 19.92±0.35 18.63±0.34 18.41±0.34 19.06±0.34 (10%)

red when confidence intervals overlap.
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