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Topics being covered ...

Introduction

Game Theory Terminology
. Two Person Games

N Person Games

Traditional Game Theory

Developed by John von Neumann and Oskar
Morgenstern

Studies bargaining between rational agents in a very
general setting

Agent “Second Guessing”

notion of a “strategy”

Defining a “"Game”

At least Two ‘Players’ (Individual or Entity)
Each player has a number of possible ‘Strategies’
. The strategies chosen determine the ‘outcome’

Associated with each outcome is a collection of
‘payoffs’, one to each player

Representation of a Game

Bimatrix Representation
. Suppose Rose and Colin are playing a Game
. A and B are the strategies of play

Colin
A B

(2-2) (-33)
Rose
B | (55  (10,-10)

Games in a P2P Scenario

Downloading and Uploading Files from Peers
Payoffs as a Client ‘C’ or a Server 'S’

Free-Rider Problem

Entities Maximize their own rewards while sharing
files




Définition

Tpi=0

- Zero-sum game P2
- Quoi faire ? 173132
P10 1]-2-1
2/-2/0]1

- One thing that P1 might -11-3[-3[-2

Choix de P1

L

do is to ask “for each

move I might P1 0/1]-2]-1 <):'
make, what is the worst / 212101 <‘,j

thing (for me) that P2
can do?”.

- Best choice : max des

minima={2,3} ‘1 ‘3 ‘3 ‘2
0]1]-2]-1
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Choix de P2

L

Similarly P2 could
analyse looking for
the move which

1
will [0 1]2]-1
2

minimise his loss
given that P1 will

try to make this as ﬁ

big as possible.

. Best choice: -11-3|-3|-2
minimum des 0 1 _2 _1
maxima { 3 } 2 _2 0 1

Situation instable
@ P2
-1[-3[-3[-2] = [-1]-3[-3[-2
mo (0] 1]-2]-1 = [0]1]-2]-1
=[2[2] 01
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Movement Diagram

. The game and the movement diagram analysis

Server Server
| A B | A B
Al @2 33 A
Client B (0,0) (2,-2) Client B E
C | (55 (10-10) c

Equilibrium Outcome

- An ‘Equilibrium’ exists when both players play a strategy such
that the payoff to each player is higher for that combination of
strategies than any other combination.

Server Server
| A B c D | A B c
Al 110 A |
Cent B | 5 [ 1 | 7 [20] dlent B i
c| 3243 c
D|-16 0 o0 16 D




Equilibria .. contd ..

Agents are economically rational

Act to maximize expected utility w.r.t knowledge about other agents’
actions and their own payoffs

Weak Equilibrium
No agent can ‘gain’ by changing his/her strategy; given the rest are fixed

Strict Equilibrium
Every Agent is strictly worst off; if he/she changes strategy

Dominance Principle

Principle of Dominance
A strategy S dominates T if every outcome in S is at least as good the
corresponding outcome in T and at least one outcome in S is strictly better
than the corresponding outcome in T
Weakly dominating
Removal of a row/column will also remove the use of an optimal strategy (although there is
still ‘at least’ one left)
gly or Strictly
If all elements of row(column;) >= row(column;)
then ‘i dominates j’
but does not contain the optimal strategy
A rational player
should never play a ‘dominated’ strategy

Client

Saddle Points

. An outcome in a matrix game is called a ‘Saddle Point’ if the
entry at that outcome is

Both less than or equal to any entry in its row

Both greater than or equal to any entry in its column
Saddle Point Principle:
If a matrix game contains a ‘Saddle Point’, both players should
play strategies which contain it.

Server
A B C D
A 4 2 5 2
Client B 2 1 a1 20 Saddle Points
Not a saddle point c| 3 2 4 2
D -16 0 16 1

Strategies

. Pure Strategies
Playing one strategy with certainty
. Mixed Strategies

A plan that involves a mixture of strategies according to certain
fixed probabilities

Server
As Bg
2—>3
Client Ac | 2 -3 T J/
Bc |0 3
0<— 3

Pure strategy doesn't work

Mixed strategies

What we want is a “spy-proof” strategy.

This is one which works even if the other player knows what
the strategy is.

We manage this by moving from a pure strategy to a mixed
strategy in which a player makes a random choice across a set
of pure strategies.

Random BUT with specific probabilities

The “expected value’ of getting payoffs a4, ay, ... a) with
respective probabilities py, py, ...py is

P1ay+Pgap+ .+ Pk

Expected Value Principle

Server

As Bg

Client Ac | 2 -3
B.| 0O 3

Client assumes that Server will choose strategies As and Bs with probabilities x
and (1-x) respectively.

Payoff from Ac: P(Ac) = x * 2 + (1-x) * (-3)

Payoff from Bc:  P(B¢) =x* 0+ (1-x) *3

The Client wants a payoff independent of the strategy of the server
P(Ag) = P(Bg)

If Client plays with (3/8 Ac, 5/8 B¢)

P(Ag) = P(Bg) = % = Value of the game




Envelope Method

To Find Minimax 1
Higher Envelope for — |
Client’s Best Strategy
2 N ged 2
Value of the game
Client 0 0
C
-3
Payoff is as small as possible
Because of Server's Best Response
-5
As Bs

Client Strategy

Server 3

Ac B 2
S s 1 — | Strategy Ag

Client Ac | 2 -3 0
Bc | O 3 -1 Strategy Bg

2

3
Prob. client does A, 0 02 04 06 08 10
Prob. client does B, 10 08 06 04 02 0

o If Client plays (3/8 A, 5/8 Bg)
Pay(As) = Pay(Bg) = 3/4 = Value of the game
e No matter what what strategy S adopts !!!

Solution of a Game

Value of the Game
Optimal Strategies of the Players

Server’s Optimal Strategy = 3/4A,1/4B
Client’s Optimal Strategy = 3/8A,5/8B

Minimax Theorem

Finite Game: When both the strategy sets of game
(X, Y, A) are finite sets.
Minimax theorem for finite games sets
V is the value of the Game
There is a mixed strategy for Player I (Client) s.t.
I'sgain >=V
There is a mixed strategy for Player II (Server) s.t.
II's gain <=V

Review Zero-Sum Games

Dominant strategies

B.. is always better for
Client Server

Ag is always better for

Server
Client

Review Zero-Sum Games

Server

Minimax - Pure strategy

Strategy which maximizes gains ~ Client

supposing that opponent will
minimize loss

Ac is always better (dominant) for
Client

Given that, Server should play B




Review Zero-Sum Games

Minimax - Mixed strategy

Play randomly but choose probabilities
rationally

Server

Optimal for Client

50% A, & 50% By,

Optimal for Server Client

75% Ag & 25% Bg
Value of Game = 0.5 for Client

Utility Theory

One should evaluate a payoff by its 'utility to the
player’ rather than on its ‘numerical monetary value’
Existence of Saddle Points
. Ordinal Scale
Higher Numbers represent higher preferred outcomes
Hence, only order of numbers matter
. Ordinal Utilities
Involvement of Mixed Strategies
. Interval Scale
Order of numbers and ratio of differences matter
. Cardinal Utilities

Two-Person Non-Zero Sum Games

Interests of the players are
. ‘not strictly” opposed
. ‘not strictly’ coincident
Server
AS BS

Ac (22) (G-

Client

Bc -1L3) (‘4

Equalizing Strategy

Strategies in which the opponent earns a payoff regardless of
the strategy the opponent plays.
Client’s Optimal Mixed Strategy (3/7 A, 4/7 Bc)
Expected Payoff = 16/7
Client’s Equalizing Strategy
Server
‘ AS BS

Ac 24 1,0

Client

Bc (ERAYREN (V)]

Nash Equilibrium

Both Players play equalizing strategies

Neither player can gain by deviating

This is an ‘equilibrium’ called *Nash Equilibrium’ in
the honor of John Nash.

Proof states that ‘Every Two-Person Game has

at least one equilibrium in

either Pure Strategies or Mixed Strategies’

Nash Equilibrium ... contd ...

Example:

Server

Equilibria
\‘ As B

Client™~_Ac | (1,1) | (25)
Be 1=(52) (-1,1)




Nash Equilibrium : Complexity

Christos Papadimitriou (UC Berkeley) Algorithms,
Games, and the Internet

Is there a polynomial algorithm for computing the
Nash equilibrium in a 2-person game?

Assuming that there is a guaranteed solution, it
belongs to the class of problems ‘between’ P and NP

Equivalence & Interchangeability

When the game has multiple saddle points
The saddle points have the same ‘value’

Non-zero Sum Games can have multiple non-
equivalent and non-interchangeable saddle points

Not equivalent Server
Or Interchangeable
AS BS

Client Ac (1,1) (2,5
Bc (5,2) (-1,-1)

Pareto Optimality Principle

Vilfredo Pareto, Italian Economist 1900
Existence of Unique Nash Equilibrium
Pareto Optimal Outcome exists when in a game
. There is an outcome that has higher payoffs to both players
or
One of the players has a better outcome and the other player has
the same outcome

Server

Pareto Optimal

Client Ac | B3) (-1,5)

Be | (5-1)  (0,0) <— Equilibrium

Prudential Strategies

Prudential Strategy

In a Non-Zero Sum game, a player’s optimal strategy
in the player’s own game

Security Level

The Value of the Game with Prudential Strategy
Counter-Prudential Strategy

Optimal Response of a player to his/her opponent’s
prudential strategy

The Prisoner’s Dilemma

Consider the strategies as follows
C : Payoff for Sharing
D : Payoff for *Not’ Sharing
R : Reward for Sharing
.S Sucker Payoff
T : Temptation Payoff
U : Uncooperative Payoff
>R>U>SandR> (S +T)/2 Agent 2

C D
CI(RR) (5T
D | (T.S) (UV)

T

Agent 1

Repeated Plays

Games are not necessarily played once; but repeated
Cooperating in early plays for beneficial outcomes
Strict logic prevents cooperation from being started
Next play occurrence with probability *p”
. If a player never chooses an equilibrium strategy (D) then
payoff,=R/(1-p)
If a player chooses D in the mth game
payoffy, = R + p"R + (1 - pyp"T + p™*1U) /(1 - p)
. The player never chooses D if
payoff, > payoffy forall values of ‘m’
Hence, p>(T-R)/(T-U)
If the probability of continuing play is higher than a threshold, it
makes sense for both the players to cooperate!




Replica Management as a Game

Dennis Geels and John Kubiatowicz (UC Berkeley)

Problem of deciding how many replicas of each file to

distribute, and where to place them

. Too few replicas: servers become overloaded, and clients
see reduced performance

. Extra copies of replicas: wastage of bandwidth and storage
that could be reassigned to other files

4_Qui perd et qui gagne ?

. Roulette au casino
. Loto




