
1

Rule Engines and Java Technology
NYJavaSIGNYJavaSIG

May 23, 2001

Colleen McClintock
JRules Product Manager
cmcclintock@ilog.com

Agenda

 Business Rules

 Business Rule Engines

 Inside the Rule Engine - performance tips for writing rules

 J2EE Pet Store Demonstration

 J2EE Integration

 Rule Engine Standards

 Q&A

Agenda

Case Study: Loan Purchasing

Java and Business Rules- “Write Once, Run Away!”
Chris Roberts , Sun Microsystems

 Major institution in the secondary mortgage industry

 Loan Purchasing Application processes over 5,000 loans per day

 Maintained by business users and a business analyst since 1996

with no developer involvement!

 Monthly business rule changes

 Turnaround time for business policy changes went from 1-3

months to 3 days

Business Rules

Benefits of Business Rule Technology

 Business rule engine can be a standard component in system
architecture

 Improves the software development process by:

 Lengthening software lifespan

 Minimizing time required to modify software when business and

market conditions change

 Incorporating business people into the software development and

maintenance process

Business Rules

Business Rules
 Statements of business policy that describe and control the

structure, operation, and strategy of an organization

IF LIEN TYPE IS FIRST MORTGAGE
THEN OCCUPANCY STATUS MUST BE PRINCIPAL RESIDENCE

PORTFOLIO MUST HAVE <= 30% IN TECHNOLOGY SECTOR

PRIMARY BENEFICIARY ALLOCATION + SECONDARY BENEFICIARY ALLOCATION MUST = 100%

IF INVESTOR AGE IS UNDER 35
AND INVESTMENT OBJECTIVE IS GROWTH AND INCOME
THEN RECOMMEND 50% GROWTH AND INCOME STOCKS

IF AVERAGE DAILY BALANCE EXCEEDS $5000
THEN RECOMMEND INTEREST BEARING ACCOUNT

Business Rules

Identifying and Modeling
Business Rules

 Identify business rules during requirements and analysis
phases

 Use rules to represent business policy that changes frequently
 Identify rules that will be exposed to business people
 Rules should be atomic units of business policy

 Smallest expressible standalone unit of policy

 Change independently
 Capture rules in “structured-English” then express using terms

from UML model or class diagrams during design phase

Business Rules

2

Implementing Business Rules
We would like to take
business rules from here…

Application Code

to here.

Application Code

Business
Rules

Business Rules

Business Rule Engines

 Business rules are:

 Expressed declaratively

 Externalized from

application code

 Rule engine:

 Is a Java object in your

application

 Evaluates and executes

business rules

Rule Engine

WHEN LIEN TYPE IS FIRST
MORTGAGE
THEN OCCUPANCY STATUS
MUST BE PRINCIPAL
RESIDENCE

WHEN STATE IS ALASKA OR
HAWAII
THEN MAXIMUM LOAN LIMIT
IS $250,000

Business Rules

Java Application

Business Rule Engines

Rule Engine Class

Business Rule Engines

 Rule engine class consists of methods
to control the rule engine

 Created with an associated rule set

 Set of of objects known as working

memory
 Rules applied to objects of working

memory
 Rule engine has methods to trigger

rules on demand

IlrContext

addRule()
addRules()
assert()
fireAllRules()
fireRule()
removeRule()
removeRules()
retract()
update()

Rule Set Class

Business Rule Engines

 Rule set class maintains a collection
of rules

 Rules are added using one of the

parse methods

 Rule sets may be shared by multiple

rule engines

 Rules exposed through instances of

Rule class

IlrRuleset

addRule()
addRules()
getRule()
parseCompiledRules()
parseFactory()
parseFile()
parseStream()
parseString()
parseURL()
removeRule()
removeRules()

IlrRule

getName()
getPacketName()
makeFactory()

Rule Translation

 Rules operate on the Java objects in your application

IF
 the customer is older than 65
THEN
 offer them a senior citizen discount

customer.getAge() > 65

offerSeniorDiscount(customer)

Condition

Action

Business Rule Engines

Java
Application

Objects

Rule Engine Object

Activated Rules

Referenced
Objects

Rule
Engine
Object

WHEN MAINTENANCE
ACTIVITY IS SCHEDULED
FOR A NETWORK
ELEMENT
THEN IGNORE ALL
ALARMS

WHEN CRITICAL ALARM
DETECTED ON SWIITCH
THEN PAGE NETWORK
OPERATOR

Rule Engine Environment

Business Rule Engines

Assert

Java Application

3

Instantiate a JRules engine objectRegister the objects with the engineFire the rules

CustomerJRules CustomerJRules

Application

Rules

Rule Engine Integration

IlrContext engine = new IlrContext();

engine.assert(customer);

engine.fireAllRules();

engine.getRuleset().parseFileName(“rules.ilr”);

Business Rule Engines

Rule Evaluation Cycle
Rule instancesRuleset

Action

Action

Update objects, Assert new objects, Retract objects

Execute actions

Action

Action

Action

Match

conditions

Inside the Rule Engine

Example of Update

Inside the Rule Engine

IF
 ShoppingCart.purchaseAmount > $200
THEN
 Customer.category = “Gold”

IF
 Customer.category == “Gold”
THEN
 ShoppingCart.discount += 5%

IF
 ShoppingCart.discount > 15%
THEN
 ShoppingCart.discount = 10%

Naïve implementation

 Iterate over objects and rules at each working memory change
 Memorize rule instances to avoid double execution
 Not scalable

 100 rules and 10,000 objects

=>1,000,000 tests at every change

Inside the Rule Engine

The Rete Network
 Rule conditions are compiled into a network

 Minimizes the number of evaluations

 Tests are shared between rules

 Changes are propagated incrementally

Inside the Rule Engine

Ruleset Compiler

Objects

Rule instances

Rete
Network

Shape of Rete Network

Inside the Rule Engine

Intra-object tests

Lists of objects

Rule instances

Join tests

Lists of triples

Lists of pairs

...

Join tests

Object.field op value

Object1.field1
 op Object2.field2

4

Example of Rule Conditions

Inside the Rule Engine

IF
 Buyer.status = “Active”
 AND Seller.itemToSell = Buyer.itemToBuy
 AND Seller.reliability > 70%
THEN
 …

Rule1

IF
 Seller.reliability > 70%
 AND Buyer.behavior = “Compulsive”
THEN
 …

Rule2

Example of a Rete Network

Inside the Rule Engine

Rule2

behavior = “Compulsive”

Class = Seller Class = Buyer

status = “Active”reliability > 70%

S1 B2

itemToSell = itemToBuy

Rule1 S2 B1 S1

Rule2 S2

B2

B2

S2 B1 B2

S1 S2 B1 B2

IF
 Buyer.status = “Active”
 AND Seller.itemToSell = Buyer.itemToBuy
 AND Seller.reliability > 70%
THEN
 …

IF

 Seller.reliability > 70%

 AND Buyer.behavior = “Compulsive”

THEN

Performance Hint #1

 Join tests are combinatorial
 Cascade of tests follows the order of tests in rules
 Put the most restrictive test first
 Can dramatically reduce combinatory explosion

Inside the Rule Engine

Rule 1

Inside the Rule Engine

IF
 Buyer.itemToBuy = Seller.itemToSell
 AND Seller.sellingPrice > Transaction.maxAmount
THEN
 …

Network for Rule 1

Inside the Rule Engine

Class = Buyer Class = Seller Class = Transaction

itemToBuy = itemToSell

sellingPrice > maxAmount

1000 1000 1

10

2

x1,000,000

x10Total: 1,000,010 tests

IF
 Buyer.itemToBuy = Seller.itemToSell
 AND Seller.sellingPrice > Transaction.maxAmount
THEN
 …

Rule 2

Inside the Rule Engine

IF
 Seller.sellingPrice > Transaction.maxAmount
 AND Buyer.itemToBuy = Seller.itemToSell
THEN
 …

5

Network for Rule 2

Inside the Rule Engine

Class = SellerClass = Buyer Class = Transaction

sellingPrice > maxAmount

itemToBuy = itemToSell

1000 1000 1

5

2

x1000

x5000Total: 6,000 tests

IF
 Seller.sellingPrice > Transaction.maxAmount
 AND Buyer.itemToBuy = Seller.itemToSell
THEN
 …

Performance Hint #2

 Test sharing improves performance
 Some Rete compilers are sensitive to the syntax and order of

tests
 Use uniform syntax in rules
 Use same order for tests in rules

Inside the Rule Engine

Rules with No Shared Tests

Inside the Rule Engine

IF
 Seller.status = “Active”
 AND Seller.sellingPrice > Seller.maxPrice
 AND …

Rule1

IF
 Seller.maxPrice < Seller.sellingPrice
 AND Seller.status = “Active”
 AND …

Rule2

Rules with Shared Tests

Inside the Rule Engine

IF
 Seller.status = “Active”
 AND Seller.sellingPrice > Seller.maxPrice
 AND …

Rule1

IF
 Seller.status = “Active”
 AND Seller.sellingPrice > Seller.maxPrice
 AND …

Rule2

Writing Rules for Performance

 Put the most restrictive tests first
 Use a uniform syntax in rules
 Use the same order for tests in rules

Inside the Rule Engine

Rule Engines in J2EE

 Rule engine can be embedded directly in an EJB

 Stateful session bean or entity bean (rule context must be

serializable)

 Rules can reference EJB objects (entity beans have a different

object identification mechanism - EJBObject.isIdentical())
 EJB Rule engine server

 Implemented as stateless session bean
 External rule engine server

 Connect to via stateless session bean

J2EE Integration

6

Demonstration

 Java Pet Store sample
application enhanced with a
rule engine

 Business rules used to
display banners and apply
discounts to shopping cart
items

 Web-based rule editor used
to create and edit rules via
the administrator interface

J2EE Integration J2EE Integration

JRules Rule Engine Server
 Rule Engine Server EJB

 Stateless session bean

 Retreives ruleset from entity bean

 Pooled by container
 Pools rule execution contexts

 Saves ruleset parsing and context

creation time on each subsequent

invocation of server
 Call rule engine server:
 invokeRules(String,IlrSessionData)

 Primary key identifies ruleset entity bean

 Session data contains objects to be

evaluated and returned

J2EE Integration

Rule
Engine

Ruleset1

Rule
Engine

Ruleset2

Stateless Session EJB

JRules Rule Engine Server

Ruleset 1
Entity EJB

Ruleset 2
Entity EJB

JRules Rule Engine Server

J2EE Integration

public static IlrContextSessionHome getIlrContextSessionHome() throws

javax.naming.NamingException {

 InitialContext initial = new InitialContext();

 Object objref = initial.lookup(JNDINames.ILR_CONTEXTSESSION_EJBHOME);

 return(IlrContextSessionHome)PortableRemoteObject.narrow

 (objref,IlrContextSessionHome.class);

 }

 Get a reference to the home object

 JNDI look-up

JRules Rule Engine Server

J2EE Integration

private static void initRuleEngine() {

 try {

 contextHome = EJBUtil.getIlrContextSessionHome();

 session = contextHome.create();

 } catch (javax.naming.NamingException ex) {

 Debug.println("NamingException in initRuleEngine caught:" + ex);

 } catch (javax.ejb.CreateException ex){

 Debug.println("EJB Create exception in initRuleEngine caught:" + ex);

 } catch (Exception ex) {

 Debug.println("initRuleEngine caught:" + ex);

 }}

}

 Use the home object to create the Rule Engine Server EJB

 EJB container pools stateless session beans and retrieves bean

from pool to service request

 EJB container creates and destroys beans to resize the pool

JRules Rule Engine Server

J2EE Integration

public Object[] processCart(IlrContextSession session, Collection items, String ruleset){

 try {

 Object[] cartItems = items.toArray(); // array of shopping cart items

 Object[] discountItems = {}; // declare array of returned discount items

 // IlrSessionData has two parameters – the argument objects and the result object

 IlrSessionData data = new IlrSessionData(cartItems,discountItems);

 // invoke the Rule Engine Server and return the response

 Object[] response = session.invokeRules(ruleset,data);

 /* response contains returns an array containing two elements. The first element is
the result object, as specified in data. The second element is a java.lang.String
containing the messages printed to ?context.out by the executed rules */

 return response;

 } catch (Exception ex) {

 Debug.println("Discount Pricing caught:" + ex);

 }

 Create IlrSessionData
 Call invokeRules method

7

Rule Engine Standards

Standards

 Java Rule Engine API – JSR 94
 Extend J2SE and J2EE with a standard rule

engine API
 JSR – http://java.sun.com/jcp/jsr/jsr_094_ruleengine.html

 SRML – Simple Rule Markup Language
 http://www.oasis-open.org/cover/srml.html

 Subset of rule language constructs common to
forward chaining engines

 Share and execute rules across applications
 Other business rule XML initiatives:

 RuleML http://www.oasis-open.org/cover/ruleML.html

 BRML http://www.oasis-open.org/cover/brml.html

Summary
 Java business rule engines can:

 Help you develop more adaptable applications

 Help you deliver business rules to your business people
 Features to consider when evaluating vendors:

 100% Pure Java

 Direct access to Java Objects

 Product architecture and API

 Performance

 EJB integration

 XML data access/rule representation

 Support for delivering business rules to business people
 Evaluate products against your application requirements- a feature

checklist comparison is not very useful!

Summary

Questions

Questions

