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Recent technological advances in communication systems now allow the exploitation of real-
time information for dynamic vehicle routing and scheduling. It is possible, in particular, to
consider diverting a vehicle away from its current destination in response to a new customer
request. In this paper, a strategy for assigning customer requests, which includes diversion, is
proposed, and various issues related to it are presented. An empirical evaluation of the proposed
approach is performed within a previously reported tabu search heuristic. Simulations compare
the tabu search heuristic, with and without the new strategy, on a dynamic problem motivated
from a courier service application. The results demonstrate the potential savings that can be
obtained through the application of the proposed approach.

In the past few years, there has been a rapid
growth in communication and information technol-
ogies (e.g., global positioning satellites, cellular
phones, geographic information systems, geosyn-
chronous satellite-based systems, etc.). These recent
advances afford opportunities for using real-time
information to enhance the performance of decision
systems in the area of vehicle routing. According to
the fraction of requests that are known in advance,
vehicle routing problems may be classified as static
or dynamic. In the static case, all data are known
before the routes are constructed and do not change
afterward (e.g., location of transportation requests,
demand, etc.). However, in the dynamic case, all or a
fraction of all requests are revealed as the routes are
executed. Hence, dispatchers are forced to react to
events that occur in real time, such as new service
requests, unexpected delays, accidents, etc. Numer-
ous examples of dynamic vehicle routing and dis-
patching problems may be found in practice, like
ambulance or police services, courier services, dial-
a-ride problems (e.g., transportation-on-demand for
the handicapped) and many others.

Due to the new information technologies men-
tioned above, real-time information is now available
at lower costs. This explains the new interest that
dynamic vehicle routing problems have gained re-
cently. However, there is still a lack of methodolo-
gies that can efficiently solve dynamic vehicle rout-

ing problems through a judicious integration of real-
time information.

In dynamic vehicle routing problems, one poten-
tial use of real-time information is to divert a vehicle
away from its current destination to serve a request
that just occurred in the vicinity of its current posi-
tion. In this work, we propose an approach for the
dynamic assignment of new requests, which in-
cludes diversion, and we examine different ways of
implementing it. An empirical evaluation is per-
formed within the tabu search heuristic reported in
GENDREAU et al. (1996b).

The problem considered is motivated from a cou-
rier service application found in the local operations
of long-distance shipping services, where the mail is
collected at different customers’ locations and
brought back to a central office for further process-
ing and shipping. This problem belongs to the class
of pick up (or delivery) only problems where a set of
requests must be transported to (or from) a central
depot. The goal is to design a set of minimum cost
routes, originating and ending at the central depot,
to satisfy the transportation requests. In a dynamic
context, each new request is inserted in real time in
the current set of planned routes, where a planned
route is the sequence of requests that have been
assigned to a vehicle but have not been serviced yet.

The paper is organized as follows. Section 1 pre-
sents a brief literature review dedicated to dynamic
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vehicle routing problems. Then, Section 2 describes
the problem considered in this study. Section 3
briefly introduces the original tabu search heuristic
reported in Gendreau et al. (1996b) that we subse-
quently modified to explore the benefits of a new
dynamic assignment strategy. Section 4 presents
and discusses several issues related to it. Section 5
explains how the original tabu search heuristic was
modified to include it. Section 6 reports computa-
tional results based on different ways of implement-
ing the proposed strategy within the tabu search
heuristic. Finally, section 7 summarizes our find-
ings.

1. LITERATURE REVIEW

THE EARLIEST PAPERS in the literature on dynamic
vehicle routing and dispatching were presented in
the seventies and were either application-oriented
(WILSON and COLVIN, 1977) or analytical (DAGANZO,
1978; STEIN, 1978).

By the end of the eighties, dynamic vehicle routing
gained an increasing attention. Two major factors
explain this tendency: new developments in infor-
mation technologies and the need for decision sys-
tems that could exploit this information to better
represent the real world. Interesting survey articles
on dynamic vehicle routing can be found in
PSARAFTIS (1988, 1995), POWELL (1995) and LUND,
MADSEN, and RYGAARD (1996).

Because real-time vehicle routing problems are
NP-hard and quick response times are required, ex-
act algorithms are not yet capable of handling prob-
lems of realistic sizes (PSARAFTIS, 1980, 1983; et al.
1985 DIAL, 1995). This justifies the use of heuristics
in real-time environments. According to how they
deal with the dynamic aspects of the problem, the
problem solving approaches reported in the litera-
ture can be classified in three major categories. They
are reported in the following subsections.

1.1 Adaptation of Static Algorithms

This approach is based on the notion of a rolling
horizon. As time unfolds, static problems are solved
repeatedly over events found within an horizon of
length L that extends from the current time t to t �
L. Different strategies emerge when the length L of
the horizon is modified. If L is very small, a myopic
near-term strategy is observed. In some cases this
strategy can provide near-optimal solutions (BELL et
al., 1983; Dial, 1995; Psaraftis, 1985; Powell, 1988).
In contrast, if L is very large, the problem consid-
ered is richer but, because it contains long-term
events, the solution obtained is typically weaker
unless a fast and powerful solution procedure is

used (TRUDEAU et al., 1989; GENDREAU et al., 1996a,
1996b). Note also that longer-term events may be
postponed, because they are likely to lead to useless
calculations and updates.

Adaptation of static procedures to dynamic vehicle
routing problems can be divided in two classes:

a. A sophisticated static problem-solving procedure,
which typically involves a re-optimization of the
routes, is applied each time an input update oc-
curs. Several researchers have used this ap-
proach like Bell et al. (1983), HILL et al. (1988),
BROWN et al. (1987), Psaraftis (1980, 1983),
Psaraftis et al. (1985), POWELL et al. (1988) and
Dial (1995). The drawback of this approach is the
amount of computation time resulting from re-
peatedly executing the static algorithm. This dis-
advantage is more dramatic when new events
occur frequently and when the execution of the
static algorithm requires more time.

b. Fast local operations (e.g., insertion) are used for
reacting to any input revision (Trudeau et al.,
1989; Wilson and Colvin, 1977; ROUSSEAU and
ROY, 1988; Solonki, 1991; MADSEN, RAVN, and
RYGAARD, 1995). This approach is easy to imple-
ment and is appropriate for a dynamic environ-
ment where time pressure is important (e.g.,
Lund, Madsen, and Rygaard, 1996). However, it
is myopic because solutions are produced through
consecutive insertions (whereas a complete reor-
dering of the routes may lead to better solutions).
To overcome this weakness, some authors com-
bine local operations with re-optimization proce-
dures. This is often achieved by executing a set of
successive insertions followed by a local search
(e.g., exchange procedures like 2-opt, see LIN,
1965). For different applications reported in the
literature, see RIVARD (1981), ROY et al. (1985),
Gendreau et al. (1996a, 1996b).

All studies mentioned above ignore the potential
benefits of considering the stochastic aspects of the
problems and trying to forecast the future. Stochas-
tic methods are aimed at overcoming this weakness.

1.2 Stochastic Methods

Real-time dispatching problems have a stochastic
nature (e.g., accidents, congestion, unexpected
changes in meteorological conditions, etc.). Stochas-
tic methods can be viewed as a natural way to judi-
ciously address these issues. The goal is to react
properly to an event to insure a good quality of
service to the customers disturbed by these events,
while minimizing their undesirable impact on the
whole system. Two major classes of stochastic ap-
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proaches are reported in the literature: stochastic
programming and Markov decision processes.

Markov Decision Processes

Formulations based on this modeling approach
were proposed by Powell (1988), BERTSIMAS and VAN
RYZIN (1991, 1993). Unfortunately, Markov decision
processes are confronted with the following limita-
tions that often prevent them from being applied to
complex real-world problems: (i) the state space
grows quickly with problem size; (ii) simplifying as-
sumptions are often made to make the model more
tractable.

Stochastic Programming

The only work that we are aware of in this cate-
gory is the one done by Powell et al. (1988) in his
comparative review of dynamic vehicle allocation
problems. The author proposed a hybrid model that
combines insights from Markov decision processes
and classical network formulations.

1.3 Other Methods

A new generation of approaches arises that try to
replicate the dispatcher’s decision making process.
This is achieved by automating the decision proce-
dure based on previous decisions taken by a skilled
dispatcher. Within this framework, SHEN and
POTVIN (1995) used a neural network to elaborate an
expert consulting system for a dispatcher working in
a courier service company. In the same context, BE-
NYAHIA and POTVIN (1995) proposed an approach
based on genetic programming.

1.4 Diversion Strategies

Apart from the study of REGAN, MAHMASSANI, and
JAILLET (1994), Regan, Mahmassani, and Jaillet
(1995) have proposed different diversion strategies
in the context of a truck-load carrier. These studies
will be discussed in Section 4.

2. PROBLEM DEFINITION

THE PROBLEM CONSIDERED is a dynamic pick up (or
delivery) problem motivated from courier service ap-
plications. The static version of the problem can be
stated as follows. Given a fixed size fleet of m iden-
tical vehicles and a set of requests to be served, the
goal is to find a set of minimum cost routes that
service these requests. More precisely:

● The vehicle routes must originate from and ter-
minate at a fixed depot;

● Each vehicle services one route and the service
point of each request is visited exactly once by
exactly one vehicle;

● No capacity constraint is considered (because
small items are transported);

● Each service point (including the depot) has its
own time window [e, l], where e is the earliest
service time and l is the latest service time.
Each route must start and end within the time
window associated with the depot. However, the
service points have “soft” time windows.
Thereby, a vehicle can arrive before the lower
bound or after the upper bound: if the vehicle
arrives too early, it must wait to start its ser-
vice; if the vehicle is too late, a penalty for late-
ness is incurred in the objective function.

The objective is to minimize a weighted sum of total
distance and total lateness over all customers.

In the dynamic version of the problem, a number
of service requests are not known completely ahead
of time, but are rather dynamically revealed as time
goes by. As illustrated in Figure 1, in a dynamic
setting, a vehicle route can be divided into three
parts at any instant t:

● completed movements, which form the part of
the route already executed. Thereby, this part
cannot be modified anymore;

● current movement to reach the current destina-
tion;

● planned movements, which constitute the por-
tion of the routes not yet executed by the vehicle
(planned route).

Given a new request at instant t, the problem is to
assign this request to a particular vehicle and in-
clude it in its planned route at minimum cost.

Fig. 1. A vehicle route in a dynamic setting.
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In the following section, we briefly describe the
original tabu search heuristic developed to tackle
this problem.

3. A PARALLEL TABU SEARCH ALGORITHM

AT ANY INSTANT t, a solution to our dynamic problem
is a set of planned routes, each beginning with the
current destination of the associated vehicle. This
current destination is fixed in the procedure to be
described and cannot be modified (i.e., the vehicle
must reach its current destination).

The algorithm developed in Gendreau et al.
(1996b) is a parallel tabu search heuristic with an
adaptive memory. Tabu search is an iterative local
search technique that starts from some initial solu-
tion. At each iteration, a neighborhood is generated
around the current solution and the best solution in
this neighborhood becomes the new current solution
(even if it does not provide an improvement). By
allowing a degradation of the objective, it is possible
to escape from bad local optima, as opposed to pure
descent methods. The interested reader will find
more details about this approach in GLOVER and
LAGUNA (1997).

The algorithm developed in Gendreau et al.
(1996b) can be described as follows:

● Construct I different initial solutions with a sto-
chastic insertion heuristic (where the choice of
the next customer to be inserted is randomized).

● Apply tabu search to each solution and store the
resulting routes in the adaptive memory.

● While a stopping criterion is not met do:
—Use the routes stored in the adaptive memory

to construct the initial solution.
—Decompose the problem into subproblems ob-

tained through a decomposition procedure.
—Apply tabu search to each subproblem.
—Add the routes of the resulting solution in the

adaptive memory.

In the following, the main points of this algorithm
are briefly introduced.

Adaptive Memory

An adaptive memory that stores previously found
elite solutions is used to generate new starting
points for the tabu search. This is achieved by com-
bining routes taken from different solutions in mem-
ory (ROCHAT and TAILLARD, 1995). Any new solution
produced by the tabu search is included in the mem-
ory if it is not filled yet. Otherwise, the new solution
replaces the worst solution in memory, if it is better.

Neighborhood Structure of Tabu Search

The procedure for generating the neighborhood is
called the CROSS exchange. Basically, two seg-
ments of variable lengths are taken from two differ-
ent routes and are swapped.

Parallel Implementation

To cope with real-time environments, the algo-
rithm was implemented on a network of worksta-
tions. The parallelization of the procedure was
achieved at two different levels: (1) different tabu
search threads run in parallel, each of them starting
from a different initial solution; and (2) within each
search thread, many tabu searches run indepen-
dently on subproblems obtained through a decompo-
sition procedure. Given the available platform, a
master–slave scheme was chosen to implement the
procedure. The master process manages the adap-
tive memory and creates initial solutions for the
slave processes that run the tabu search.

A Dynamic Environment

Given the dynamic context, it is important to
maintain the consistency of the adaptive memory
with the current environment. Also, the memory
itself must be consistent, that is, the current desti-
nation of each vehicle (which is fixed) must be the
same for all solutions in memory. Thus, whenever a
new event occurs, the search threads are first inter-
rupted. Then, after an appropriate update of the
adaptive memory, it is possible to restart the search
threads with new solutions constructed from this
updated memory. A new event may be of two types:

● A vehicle has finished serving its current cus-
tomer. In this case, its next destination (i.e., the
next customer to be serviced) has to be deter-
mined. The best solution in memory is used for
this purpose. The remaining solutions in the
adaptive memory are updated by removing this
customer from its current location and by in-
serting it in first position in the planned route of
the vehicle.

● A new service request has just occurred. In this
case, the new request is inserted in all solutions
in adaptive memory. If there is no feasible in-
sertion position in any solution, the request is
rejected. Otherwise, the request is accepted and
all solutions with no feasible insertion places
are discarded from memory. The best solution is
then re-optimized using a local search heuristic
based on CROSS exchange to have at least one
solution of high quality, which includes the new
request.
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Section 4 will now consider the case where the
next destination of each vehicle is not fixed. To ad-
dress this issue, a dynamic assignment strategy that
includes diversion as a special case is proposed. Its
implementation within the tabu search heuristic
presented here is reported in Section 5.

4. A NEW STRATEGY FOR HANDLING CUSTOMER
REQUESTS

4.1 Motivation

Apart from the study of Regan, Mahmassani, and
Jaillet (1994, 1995), all approaches that we are
aware of fix the current destination of each vehicle.
However, diverting a vehicle away from its current
destination may be quite beneficial. This could be
considered, for example, when a new request occurs
in the vicinity of the current position of some vehicle,
while the driver is on his way to his current desti-
nation. Technically, diversion is now possible due to
recent advances in communication technologies. In
the following, we present an approach which in-
cludes diversion as a special case. We also investi-
gate the trade-off between computation time and
solution quality, given that this strategy takes place
in a context where time pressure is important (ve-
hicles are moving fast and diversion opportunities
may be quickly lost).

In Regan, Mahmassani, and Jaillet (1994, 1995),
the authors have proposed different diversion strat-
egies in the context of a truck-load carrier. This
problem is a combined pick up and delivery problem
with no consolidation (i.e., at any time, a vehicle is
either empty or carrying a single load). In our appli-
cation, in contrast, a vehicle may be used to carry
many loads concurrently. Also, in the context of a
truck-load carrier, requests are more distant from
each other and the activities take place over a longer
time horizon (e.g., a few days). Finally, diversion
was evaluated in a context where simple local dis-
patching rules were used, thus resulting in myopic
approaches. The results reported in these studies
show that substantial benefits can be obtained
through the exploitation of diversion.

4.2 A Broader View

Diversion consists of allowing a vehicle to be di-
verted away from its current destination to serve a
request that just occurred in the vicinity of its cur-
rent position. Figure 2 shows an example for one
vehicle route. We suppose that a new request un-
folds at point A at instant t, while vehicle 1 is at
position D� on his way to service point B. The only
modification that can result from en-route diversion
is the modification of the current destination of one

vehicle. This occurs if the vehicle services the new
request before its current destination B. In this pa-
per, we propose a broader approach, where a change
that occurs in the system may lead to redirecting one
or more vehicles.

Figure 3 illustrates this new strategy in a sche-
matic way. We first assume that the current desti-
nation of each vehicle is part of the planned route

Fig. 2. Diversion.

Fig. 3. A dynamic assignment strategy that includes diver-
sion.
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(and may thus change). Whenever a new request
occurs, this request and the current routes are pro-
vided as input to some optimization procedure. The
latter then produces a new set of routes with the
new request. The optimization procedure may be
anything that we can think of, such as:

● A simple insertion procedure. Diversion then
happen if the new request is inserted just before
the current destination of some vehicle.

● An insertion followed by some re-optimization
procedure (e.g., tabu search).

● An exact algorithm (assuming that it is fast
enough).

Depending on the optimization procedure, it may
well happen that the current destination of each
vehicle remains the same after its application (al-
though the planned routes have changed). Con-
versely, the current destination of one or more vehi-
cles may change, but not necessary for servicing the
new request (which appears further away on a
planned route). Thus, diversion is simply a particu-
lar outcome of the dynamic assignment strategy pre-
sented here.

4.3 Solution Quality Versus Computation
Time Trade-Off

Let us assume that a new request appears at point
A at instant t and that it is possible to estimate the
position D� of the vehicle (between the point D just
served and the current destination B), see Figure 4.

Because new opportunities for including the new
request are now offered through the inclusion of the
current destination in the planned route, the solu-
tion obtained should be better. However, some
amount of time �t is required to apply the optimiza-
tion procedure. Hence, a decision based on the situ-
ation at instant t when a new request appears, does

not correspond to the state of the system at (t � �t)
when the decision becomes available (i.e., the vehi-
cle will be at position D� rather than D�). Conse-
quently, the situation should be assessed at instant
(t � �t) rather than instant t. The goal is to provide
a decision that will fit in the context found at the end
of the time allocated to the optimization procedure.

Clearly, this amount of time is a very important
factor. In dynamic settings, finding a value that
achieves a good trade-off between execution time
and solution quality is very challenging. If �t is too
small, not enough time is available for the optimi-
zation procedure. Therefore, the situation may be
incorrectly assessed, resulting in a bad decision.
Otherwise, if �t is too large, opportunities for diver-
sion may be lost.

To assess the benefits that can be gained from the
application of our dynamic assignment strategy, the
parallel tabu search heuristic developed by Gend-
reau et al. (1996b) was used as the optimization
procedure. The next section shows how the original
algorithm was modified to implement it.

5. IMPLEMENTATION

5.1 Inclusion of the Current Destination

In the original implementation of the tabu search
heuristic (Gendreau et al., 1996b) reported in Sec-
tion 3, the current destination of each vehicle is a
fixed node that is not part of the planned route to be
optimized. We thus included the current destination
of each vehicle in the planned route and used in-
stead the current position of the vehicle as the fixed
node. With this modification, the re-optimization
procedure based on CROSS exchanges can now
move the current destination around (as any other
service point on the planned route).

5.2 Time Projection

When a new request is received at time t, all
solutions in the adaptive memory are updated ac-
cording to the state of the system at time (t � �t),
where �t is the amount of time allocated to the
optimization procedure. The planned routes of the
best solution in adaptive memory are used for this
purpose. A dummy point Ft��t

i is created for every
vehicle route i of every solution in the adaptive
memory. This dummy point Ft��t

i represents the
position of vehicle i at time (t � �t) and is the fixed
node associated with route i.

Time projection of the solutions in adaptive mem-
ory is illustrated in Figure 5. In this figure, a fleet of
two vehicles is considered: a new request occurs at
instant t, and �t is the amount of time allocated to
the optimization procedure. In the best solution S*

Fig. 4. Time projection.
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at instant t � �t, vehicle 1 will have finished service
at customer 1 and customer 3, whereas vehicle 2 will
not have yet reached customer 2. Hence, before ap-
plying the optimization procedure, customer 1 and
customer 3 are removed from S* and the dummy
points are inserted at the beginning of the two
routes. To update solution S, customer 1 and cus-
tomer 3 are first removed from it (because they are
serviced). Then the dummy fixed points are added at
the beginning of the two routes. It is worth noting
that the customers that have not been serviced yet
are found in the same order on the planned routes
before and after the update. Only the service times
are likely to change.

5.3 Handling New Events

Suppose that a new event occurs at instant t. The
new events that occur during the time interval [t,
t � �t] will not interrupt the search threads. In-
stead, these events are handled as follows:

a. When a vehicle has finished serving a customer,
its next destination is determined by the best
solution found in the adaptive memory. That is,
in the time interval [t, t � �t], everything is
“frozen” and we simply follow the best solution in
memory.

b. When a new request occurs, we must decide
whether to accept or reject it, because the cus-
tomer may be waiting for a prompt answer about

the ability to handle his request (a request is
rejected if the end time of the planned route ex-
ceeds the upper bound of the time window at the
depot after its insertion). Basically, the new re-
quest is inserted in all solutions in a copy of the
adaptive memory. Solutions with no feasible in-
sertion places are discarded. If at least one feasi-
ble solution remains, the new request is accepted
and is kept in a list of pending requests. Other-
wise, it is rejected.

At instant (t � �t), all search threads are inter-
rupted. The adaptive memory is updated with the
best solution found by the optimization procedure,
and the pending requests are handled one by one, as
in the original algorithm (Gendreau et al., 1996b).
Finally, the search threads are restarted with new
solutions constructed from the adaptive memory.

5.4 Setting �t

The amount of time allocated to the optimization
procedure must be related to the rate at which new
events occur. When few events occur, a large evalu-
ation time can be allowed. Conversely, in case of a
highly dynamic environment, the evaluation must
be done quickly. Based on these observations, three
rules are considered.

RULE 1. �t is chosen in such a way that the optimi-
zation procedure ends before any vehicle begins

Fig. 5. Time projection in adaptive memory.
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its service at its current destination. Let us as-
sume that a service request is received at time t,
and that service at the current destination on
route i begins at time ti. Then, choose �t such that
t � �t � ti, @i, that is, �t � mini(ti) � t. By
choosing �t � mini(ti) � t, we only need to add a
dummy fixed node at the beginning of each
planned route, which corresponds to the position
of the vehicle at time t � �t. Unfortunately, �t is
often very small because there is typically one or
more vehicles that are close to their current des-
tination. This rule was not retained in our compu-
tational experiments.

RULE 2. The amount of time �t is fixed a priori and
is related to the average time interval between the
occurrence of two requests. It is proportional to a
moving average of the l last intervals, that is �t �
�1T�, where �1 is a constant and T� is the moving
average. By relating �t to the average request
inter-arrival times, our choice is based on the in-
tensity of occurrence of new requests.

RULE 3. In rule 2, the computation of �t may take
into account a service request that is not so urgent
(i.e., its time window is much later than the cur-
rent time). This is true, in particular, in contexts
where the calls are received much before the re-
quested service times. Therefore, another rule is
proposed. Let X be the length of some time horizon
and lX the number of requests on the planned
routes found within that horizon. Then the aver-
age time per request is defined as X/lX and the
interval �t is such that �t � �2X/lX, where �2 is a
constant.

Rules 2 and 3 represent two different strategies. In
rule 2, intensity is measured using past events, be-
cause the moving average is calculated over the l
last request inter-arrival times. In rule 3, intensity
is assessed using events to come, because the aver-
age time per request is evaluated over requests
found on the planned routes. Results obtained with
these two strategies for setting �t are reported in the
next section.

6. COMPUTATIONAL RESULTS

6.1 Simulation Framework

Simulations were performed to assess the benefits
of the proposed approach. Data were taken from
Solomon’s 100-customer Euclidean problems (SO-
LOMON, 1987), as in Gendreau et al. (1996b). In the
following, we describe the essential components of
the simulator. The interested reader will find more

details about this simulator in Gendreau et al.
(1996b).

● The customer locations are generated within a
[0, 100]2 square.

● The travel times are proportional to the corre-
sponding Euclidean distances.

● Six different sets of problems are defined,
namely C1, C2, R1, R2, RC1, and RC2. The
customers are uniformly distributed in the prob-
lems of type R, clustered in groups in the prob-
lems of type C and mixed in the problems of type
RC. In the problems of type 1, only a few cus-
tomers can be serviced on each route due to a
narrow time window at the depot, as opposed to
problems of type 2 where each route may have
many customers.

● The set of requests is divided into two subsets.
The first subset contains requests that are as-
sumed to be known at the start of the day. They
are randomly selected among the entire set of
requests with a bias in favor of requests with
early time windows. The second subset contains
requests that are received in real-time. In this
case, the arrival time of each request is adjusted
to create two different types of scenarios: sce-
nario 1 with half of the requests known in ad-
vance, and scenario 2 with only 25% of the re-
quests known in advance. In the latter case, a
higher degree of dynamism is obtained, because
there are more requests that occur in real-time
within the same time horizon.

● Using minutes as time units for time-related
data in Solomon’s files, the time horizon is set to
15 minutes. The intent is to have a realistic rate
of new unfolding requests (about three requests
per minute for scenario 1 and five requests per
minute for scenario 2).

6.2 Numerical Results

The experiments reported in this section were per-
formed on a network of 9 SUN UltraSparc-IIi work-
stations (300 MHz). Each process was programmed
in C�� and communication between the processes
was handled by the Parallel Virtual Machine Soft-
ware. In these experiments, the objective function to
minimize is the sum of the total distance traveled
and the total lateness over all customer locations.
The fleet size was set to the number of routes in the
best solution reported in the literature for each prob-
lem (Gendreau et al., 1996b). The value of the pa-
rameters found in the original algorithm were kept
as in Gendreau et al. (1996b). Parameters related to
our new dynamic assignment strategy are tested in
the following.
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6.2.1 Preliminary Tests

Scenario 1 (with half of the requests known in
advance) was first considered for the preliminary
experiments. The new algorithm was tested under
rule 2 (see Section 5) where the interval �t is com-
puted as a multiple of a moving average T� of inter-
arrival times. That is, �t � �1T�, where �1 is a
multiplier. The moving average is taken over l loads,
with l � �1K, where K is the number of requests
that are known in advance and �1 is a multiplier.
Parameters �1 and �1 are determined empirically.

Preliminary experiments were performed over
two problems selected in each of the six categories
C1, C2, R1, R2, RC1, and RC2. In these experi-
ments, the values 0.10, 0.25, 0.50, 0.75, and 0.90
were tested for �1 whereas the values 0.10 and 0.25
were tested for �1. The results obtained did not
clearly show an improvement over the original algo-
rithm. Thus, more investigations were required,
leading to an important refinement in our algo-
rithm.

As mentioned in Section 5, a copy of the adaptive
memory is used to decide whether a new request
should be accepted or rejected. This can lead to
inconsistencies with the true memory. In particular,
two important problems were identified:

● A new best solution that is received from a tabu
search thread is not inserted in the copy (only in
the adaptive memory itself). Consequently, re-
quests that could have been inserted in the so-
lutions found in the true adaptive memory at
time t � �t may have been wrongfully rejected.

● A new solution may be received from a tabu
search thread while the adaptive memory is full.
In this case, the worst solution in adaptive
memory is replaced by the new one. At this
point, there is an inconsistency with the copy
that still includes this worst solution.

To improve the implementation, both the adaptive
memory and its copy are updated whenever a new
solution is received from a tabu search thread. Table
I shows the kind of improvement that can be ob-
tained with the refined implementation, using �1 �
0.9 and �1 � 0.25. The four numbers in each entry
are the average number of unserved customers, dis-
tance traveled, total lateness, and objective value
(sum of total distance traveled and total lateness),
respectively, for each problem set. The row “Overall”
contains averages taken over the entire set of 56 test
problems. When the number of unserved customers
is maintained, the objective value is improved. In
contrast, when the number of unserved customers is

reduced, this is achieved with only a slight increase
in the objective value.

6.2.2 Parameter Values

To determine the best values for parameters �1
and �1 under rule 2, tests were performed over a
small sample of problems selected in each of the six
categories C1, C2, R1, R2, RC1, and RC2. Several
values had to be tested for every problem in the
sample. Thereby, a significant amount of computa-
tion time is required if the size of the sample is too
large. In contrast, this size has to be large enough to
get a correct calibration. For these experiments, the
size of the sample was set to 4. Because scenarios 1
and 2 represent different degrees of dynamism (re-
quests occur more frequently in scenario 2), the ex-
periments were conducted separately for the two
scenarios. Table II reports some results obtained
with different combinations of values using scenario
1 and scenario 2. As in Table I, the four numbers in
each entry are the average number of unserved cus-
tomers, distance traveled, total lateness, and objec-

TABLE I
Comparison of the Refined Implementation (New) with the Old

One Using Scenario 1

Problem Set

New
�1 � 0.90,
�1 � 0.25

Old
�1 � 0.90,
�1 � 0.25

C1, 9 problems 0a 0
835.781b 838.784

2.025c 1.403
837.807d 840.187

R1, 12 problems 0.583 0.75
1183.00 1182.49

51.125 52.55
1234.125 1235.04

RC1, 8 problems 0.375 0.25
1317.37 1316.12

47.058 47.852
1364.43 1363.97

C2, 8 problems 0 0.25
608.321 602.624

0 0
608.321 602.624

R2, 11 problems 0.181 0.181
1058.76 1073.06

57.20 66.64
1115.97 1139.70

RC2, 8 problems 0 0
1188.09 1244.00

45.166 53.276
1233.26 1297.27

Overall, 56 problems 0.21 0.27
1040.62 1050.80

35.69 39.02
1076.31 1089.82

aNumber of unserved customers.
bTotal distance traveled.
cTotal lateness.
dObjective value.
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tive value, respectively, for each problem set. The
values �1 � 0.50, �1 � 0.15 for scenario 1 and �1 �
0.50, �1 � 0.10 for scenario 2 were finally selected.

Under rule 3, the interval �t is computed as a
function of the length of some rolling time horizon,
that is, �t � �2X/lX, where �2 is a constant, lX is the
number of requests on the planned routes within
horizon X, X � �2L, where L is the length of the
time horizon for the simulation and �2 is a multi-
plier. The tests were conducted as for rule 2. Table
III reports some results obtained with different com-
binations of values using scenario 1 and scenario 2.
The values �2 � 0.50, �2 � 0.25 for scenario 1 and
�2 � 0.25, �2 � 0.25 for scenario 2 were finally
selected. Note that, under rule 2, �t is about 5 sec-
onds for scenario 1, and 2.8 seconds for scenario 2.
Under rule 3, �t is about 4 seconds for scenario 1 and
2 seconds for scenario 2.

6.2.3 Assessing the New Implementation

Table IV compare the new algorithm (with the
best parameter values found under rule 2 and rule
3) with the original algorithm reported in Gendreau
et al. (1996b), for scenario 1 and scenario 2. Here,
the tests were conducted over all problems in each

category. The results highlight the fact that the new
implementation performs well against the original
algorithm for the two scenarios. More precisely:

RULE 2. For scenario 1, both the number of un-
served customers and objective value were im-
proved with regard to the original algorithm
(apart from subset R2). The reduction ranged
from 33.3 to 100% for the number of unserved
customers and from 0.6 to 3.0% for the objective
value. In the case of subset R2, the increase in the
objective value was marginal when compared to
the reduction in the number of unserved custom-
ers: 0.3% against 60%. Note that the lowest reduc-
tion observed in the objective value with the new
strategy is still larger than the only increase ob-
served (0.7% against 0.3%). For scenario 2, the
results demonstrate that applying our approach
under rule 2 reduces both the number of unserved
customers and the objective value in all catego-
ries. The reduction ranges from 11.2 to 67% for the
number of unserved customers, and from 1.0 to
2.7% for the objective value.

RULE 3. For scenario 1 and for categories C1 and
RC2, where the original algorithm succeeds in

TABLE II
Searching for the Best Parameter Values under Rule 2

Problem Set

Scenario 1 Scenario 2

�1 � 0.90
�1 � 0.15

�1 � 0.90
�1 � 0.25

�1 � 1.20
�1 � 0.25

�1 � 0.50
�1 � 0.10

�1 � 0.50
�1 � 0.15

�1 � 0.50
�1 � 0.10

�1 � 0.50
�1 � 0.15

�1 � 1.20
�1 � 0.15

�1 � 0.90
�1 � 0.25

�1 � 0.25
�1 � 0.25

C1 4 problems 0a 0 0 0 0 0 0 0 0 0
829.89b 832.35 828.535 852.31 828.94 882.42 871.055 908.478 925.06 881.658

0c 0 0 0.65 0 0.105 0 19.79 15.027 2.127
829.89d 832.35 828.535 852.96 828.94 882.525 871.055 928.268 940.088 883.785

R1 4 problems 0.25 0 0.25 0.25 0 0.25 0 0.25 0 0.50
1253.02 1284.25 1262.32 1266.03 1281.79 1296.70 1284.24 1303.97 1303.56 1296.28

63.435 38.307 43.90 47.12 45.385 76.00 63.982 73.315 67.71 53.067
1316.46 1322.56 1306.22 1313.15 1327.18 1372.70 1348.22 1377.28 1371.28 1349.35

RC1 4 problems 0.5 0.75 0.5 0.75 0.25 0.25 0.75 0.5 1.00 1.00
1334.86 1324.50 1310.76 1318.16 1330.19 1366.52 1349.24 1405.42 1402.88 1354.10

74.472 62.985 55.962 67.762 83.022 54.99 80.737 77.917 61.32 64.82
1409.33 1387.49 1366.72 1385.92 1413.22 1421.50 1429.98 1483.34 1464.20 1418.92

C2 4 problems 0 0 0 0 0 0 0.25 0 0 0
642.978 625.628 612.602 616.238 627.51 607.572 619.515 613.62 621.495 612.33

0 0 0 0 0 0 0 0.002 0 0
642.978 625.628 612.602 616.238 627.51 607.572 619.515 613.62 621.495 612.33

R2 4 problems 0.5 0.25 0 0.75 0 0 0.75 0 0.25 0
1096.48 1106.52 1106.13 1126.82 1107.19 1113.66 1093.96 1119.40 1140.72 1106.98

24.182 30.155 19.337 53.782 14.645 17.63 93.605 23.73 14.032 22.36
1120.66 1136.67 1125.47 1180.60 1121.84 1131.29 1187.56 1143.13 1154.76 1129.34

RC2 4 problems 0 0 0 0 0 0 0 0 0 0
1226.10 1184.14 1188.22 1198.09 1180.53 1207.95 1235.45 1213.50 1144.22 1218.88

24.045 38.74 10.745 45.41 17.482 37.50 19.827 35.867 60.822 37.622
1250.14 1222.88 1198.96 1243.50 1198.01 1245.45 1255.28 1249.37 1205.04 1256.50

aNumber of unserved customers.
bTotal distance traveled.
cTotal lateness.
dObjective value.
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serving all customers, the new algorithm im-
proves the objective value. This reduction ranges
from 1.3 to 4.3%. In the case of R1 and C2, both the
number of unserved customers and objective value
were improved. The reduction ranged from 66.8 to
100% for the number of unserved customers, and
from 2.6 to 2.7% for the objective value. For RC1
and R2, the number of unserved customers was
improved at the cost of a small increase in the
objective value (i.e., 67% against 0.04% for RC1
and 80% against 0.6% for R2). Using rule 3 in-
stead of rule 2 results in a small reduction of the
objective value ranging from 0.5 to 2.0% when the
number of unserved customers is the same. Rule 3
succeeds in reducing the number of unserved cus-
tomers obtained by rule 2 for RC1 and R2, at the
cost of a small increase in the objective value (i.e.
50% against 1.8%, and 51% against 0.2%).

For scenario 2, the comparison with the original
algorithm indicates a reduction of both the number
of unserved customers and the objective value over
all categories. This reduction ranges from 16.8 to
100% for the number of unserved customers, and
from 2.0 to 4.3% for the objective value. The results

also indicate that, apart from RC1 and R2, rule 3
leads to the same number of unserved customers
than rule 2, but it reduces the objective value by 0.9
to 2.2%. For R2 and RC1, rule 3 succeeds in reducing
both the number of unserved customers (i.e., 12 and
100%, respectively), and the objective value (i.e., 0.6
and 1.1%, respectively).

7. CONCLUSION

IN THIS PAPER, a new strategy for the dynamic as-
signment of new requests, which includes diversion
as a special case was proposed. Tests were con-
ducted to assess its benefits within a previously
reported tabu search heuristic. Some issues related
to the proposed model were addressed and explored.
Results show that a reduction in the sum of total
distance traveled and total lateness, and in the num-
ber of unserved customers is observed when com-
pared with the original heuristic, where the current
destination of each vehicle is fixed.

Future work will be aimed at considering addi-
tional sources of uncertainty like congestion, acci-
dents, vehicle breakdowns, and others. A taxonomy

TABLE III
Searching for the Best Parameters Values Under Rule 3

Problem Set

Scenario 1 Scenario 2

�2 � 0.50
�2 � 0.15

�2 � 0.90
�2 � 0.15

�2 � 1.20
�2 � 0.15

�2 � 0.50
�2 � 0.25

�2 � 0.25
�2 � 0.25

�2 � 0.25
�2 � 0.25

�2 � 0.50
�2 � 0.25

�2 � 0.90
�2 � 0.15

�2 � 1.20
�2 � 0.15

�2 � 0.50
�2 � 0.15

C1 4 problems 0a 0 0 0 0 0 0 0 0 0
829.26b 834.125 857.005 829.112 839.488 880.675 889.275 880.555 955.958 882.895

0c 0 0.375 0 0 1.977 0 0.90 1.695 0
829.26d 834.125 857.38 829.112 839.488 882.652 889.275 881.455 957.652 882.895

R1 4 problems 0.25 0.25 0.25 0.25 0.25 0 0.25 0.25 0.25 0.25
1272.71 1274.41 1267.60 1275.08 1265.19 1282.77 1302.15 1293.42 1282.50 1285.20

51.997 52.532 43.627 39.537 45.217 46.415 51.71 60.865 58.432 56.23
1324.71 1326.94 1311.23 1314.62 1310.41 1329.18 1353.86 1354.29 1340.93 1341.42

RC1 4 problems 0.75 0.75 1.00 0.75 0.75 0 1.00 1.00 1.00 0.25
1339.43 1344.64 1321.06 1325.66 1352.71 1366.24 1358.48 1380.77 1363.36 1334.95

62.587 74.707 71.185 60.04 64.92 71.422 89.21 60.082 71.322 68.03
1402.02 1419.34 1392.25 1385.70 1417.63 1437.66 1447.69 1440.86 1434.68 1402.98

C2 4 problems 0 0 0.5 0 0 0 0.25 0 0 0
615.518 614.925 616.928 616.878 624.21 601.972 650.912 612.018 630.335 603.122

0 0 0 0 0 0 0 0 0 0
615.518 614.925 616.928 616.878 624.21 601.972 650.912 612.018 630.335 603.122

R2 4 problems 0 0 0.5 0 0 0 0.50 0 0.50 0.50
1110.10 1095.61 1113.52 1091.81 1105.60 1089.10 1090.41 1083.09 1104.65 1101.28

60.165 61.09 46.065 56.442 64.455 14.995 36.237 22.917 14.192 40.322
1170.27 1156.70 1159.58 1148.25 1170.06 1104.09 1126.65 1106.00 1118.84 1141.60

RC2 4 problems 0 0 0 0 0 0 0 0 0 0
1186.05 1198.42 1172.54 1177.27 1198.94 1221.02 1207.80 1191.57 1207.86 1218.99

23.472 29.502 23.862 25.457 32.652 35.692 28.942 40.562 46.522 27.662
1209.52 1227.92 1196.40 1202.73 1231.60 1256.72 1236.75 1232.13 1254.38 1246.66

aNumber of unserved customers.
bTotal distance traveled.
cTotal lateness.
dObjective value.
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of such events will be developed to help us in the
task of determining appropriate responses.
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