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Montréal, Québec, Canada H3C 3J7
c Defence Research and Development Canada, Centre for Operational Research and Analysis,

Ottawa, Ont., Canada K1A 0K2

Received 5 December 2002; received in revised form 23 March 2006; accepted 25 March 2006
Abstract

This paper proposes neighborhood search heuristics to optimize the planned routes of vehicles in a context where new
requests, with a pick-up and a delivery location, occur in real-time. Within this framework, new solutions are explored
through a neighborhood structure based on ejection chains. Numerical results show the benefits of these procedures in
a real-time context. The impact of a master–slave parallelization scheme, using an increasing number of processors, is also
investigated.
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1. Introduction

Dynamic vehicle routing and dispatching problems have emerged as an area of intense investigations, due
to recent advances in communication and information technologies that now allow information to be obtained
and processed in real-time (Dror and Powell, 1993; Gendreau and Potvin, 1998; Powell et al., 1995). As com-
pared to their static counterpart, these problems exhibit distinctive features (Psaraftis, 1995). In particular, the
data (e.g., customers to be serviced) are not completely known before solving the problem, but are dynami-
cally revealed as the current solution, based on incomplete and uncertain information, is executed. Thus, it
is not possible for the decision maker to solve the entire problem at once. Such problems are found in many
different application domains, like delivery of petroleum products and industrial gases (Bausch et al., 1995;
Bell et al., 1983), truckload and less-than-truckload trucking (Powell et al., 1995; Powell, 1996), dial-a-ride
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systems (Wilson and Colvin, 1977) and emergency services (Gendreau et al., 1997). In this paper, we focus on a
problem typically found in courier services for the same-day local pick-up and delivery of small sized items
(letters, parcels). As opposed to dispatching systems where a vehicle is dedicated to a single customer, like
those found in emergency services or truckload trucking applications, planned routes are associated with each
vehicle to specify the order of visit of the previously assigned, but not yet serviced, customer requests. Apart
from exhibiting a strong routing component, the problem is further compounded by the presence of a pick-up
and a delivery location associated with each request, as well as soft time windows at both locations.

In this context, many different factors must be considered when a decision about the allocation and sched-
uling of a new request is taken: the current location of each vehicle, their current planned route and schedule,
characteristics of the new request, travel times between the service points, characteristics of the underlying
road network, service policy of the company and other related constraints. It is thus a complex decision prob-
lem where the decision must typically be taken under considerable time pressure. Here, neighborhood search
heuristics, in particular tabu search, are proposed as a means to effectively and efficiently tackle this dynamic
problem and optimize the planned routes between the occurrence of new events. Such heuristics are shown to
be more effective than simple dispatching rules based on insertion methods, even under stringent time pressure
conditions. This result is achieved through a powerful neighborhood structure based on ejection chains. Con-
ceptually introduced by Glover (1996), ejection chains have seldom been implemented in practice for solving
vehicle routing problems, with notable exceptions for the Traveling Salesman Problem (Rego, 1998a), the
Vehicle Routing Problem (Rego and Roucairol, 1996; Rego, 1998b) and the Vehicle Routing Problem with
Time Windows (Bräysy, 2003; Caseau and Laburthe, 1999; Rousseau et al., 2002; Sontrop et al., 2005). This
paper now shows that ejection chains can be made operational for a complex real-time pick-up and delivery
problem with time windows, where response time is a crucial issue.

The remainder of the paper is divided along the following lines. First, the specific problem to be addressed
is introduced in Section 2. Solution procedures based on neighborhood search heuristics are then proposed in
Section 3 and their adaptation to a dynamic environment is presented in Section 4. A simulator that generates
different operating scenarios is introduced in Section 5. Finally, computational results are reported in Section
6 and the conclusion follows.

2. Problem definition

2.1. Static problem

Our problem is motivated by local area (e.g. intra-city) courier services, where parcels or letters are picked up
and delivered during the same day by the same vehicle. This problem falls in the general class of pick-up and
delivery problems. Following the notation used in Savelsbergh and Sol (1995), the static version of the problem,
where all requests are known in advance, can be formally stated as follows. Let N be a set of transportation
requests of cardinality n, where the load of each request i must be carried from a pick-up location oi to a delivery
location di. Let N+ and N� be the set of all pick-up and delivery locations, respectively. That is, N+ = ¨i2Noi

and N� = ¨i2Ndi. We define the set of locations V as N+¨N� and V0 as V¨{0}, where 0 is a central depot.
Let also M be a set of vehicles of cardinality m, with each vehicle k 2M starting and ending its route at the
central depot (at time tk and tk, respectively). At each location v 2 V, there is a time window [ev,lv] for the start
of service, where ev and lv are the lower and upper bounds, respectively. It is assumed that the service cannot
start before ev; thus, a vehicle must wait if it arrives before the lower bound. On the other hand, the upper bound
is a soft constraint which may be violated. There is also a time window at the depot 0, where e0 and l0 are the
earliest start time and latest end time of each route, respectively; a vehicle is allowed to end its route after l0. For
each pair of locations v and v 0 2 V0, tv,v 0 is the travel time between v and v 0. Dwell times at pick-up and delivery
locations can be easily incorporated into the travel times and will not be explicitly considered in the following.

Given the above notation, a pick-up and delivery route Rk for vehicle k is a directed route through a subset
Vk�V such that

• Rk starts and ends in 0;
• {oi,di}˙Vk = ; or {oi,di}˙ Vk = {oi,di} for all i 2 N;
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• If {oi,di}˙Vk = {oi,di} then oi is visited before di;
• vehicle k visits each location in Vk exactly once;
• if v 0 is the predecessor of v in Vk and v 050, the arrival time of the vehicle at location v is tv = max(tv0,

ev 0) + tv 0,v; otherwise tv = tk + t0,v.

Note that there is no capacity constraint in this problem because the items to be transported are rather
small as compared to the overall vehicle capacity. A solution to this problem is a set of routes such that:

• Rk is a pick-up and delivery route for every k 2M;
• {Vk j k 2M} is a partition of V.

2.2. Dynamic problem

In a typical courier service application, the problem is dynamic because the company continuously receives
new calls for the pick-up and delivery of small items. Consequently, for each new request, a decision must be
quickly taken about its allocation to a particular vehicle and its scheduling within the vehicle’s planned route.
Fig. 1 depicts a typical situation for one vehicle, where +i and �i represent the pick-up and delivery location of
customer i, respectively. At the current time, the vehicle is located at point X and is moving towards its next
service location. Its current planned route is the following: pick-up customer 1, pick-up customer 2, deliver
customer 2, pick-up customer 3, deliver customer 3 and deliver customer 1. Assuming that a call from cus-
tomer 4 comes in, the problem is to include the new pick-up and delivery locations in the route in order to
minimize some cost function (which may imply resequencing the planned route).

Within the current simulated environment, the following assumptions are also made:

• Requests must be received before a fixed time deadline to be serviced the same day. Those that are received
after the deadline, however, may be kept for the next day. Thus, there may be a number of pending or ‘‘sta-
tic’’ service requests (for which a solution may have been constructed beforehand).

• Uncertainty comes from a single source, namely the occurrence of new service requests. In particular,
there is no other source of uncertainty associated with customer requests, like cancellations or erroneous
information. Furthermore, the travel times are known with certainty; no unexpected perturbation is
assumed to come from the external world, like sudden congestion on the network caused by an accident,
vehicle breakdown, etc.

• Communication between the central dispatch office and the drivers take place at each service point and is
aimed at identifying their next destination. Consequently, the drivers do not know the global ‘‘picture’’ rep-
resented by their current planned route (which may be modified frequently by the optimization procedure).
+2
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Fig. 1. A planned route.
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• If some waiting time is expected at the driver’s next destination, he is asked to wait at his current location.
This is a form of least commitment strategy, as a movement is performed at the latest possible time to allow
for ‘‘last minute’’ changes to the planned route due to the arrival of new service requests. Once a driver is
‘‘en route’’ to his next location, however, he must necessarily service that location (i.e., the vehicle cannot be
diverted away from its current destination).

2.3. Objective

The objective can take many forms, but is typically aimed at achieving a good trade-off between operations
costs (total travel time, overtime) and customer satisfaction (time window compliance). The cost function used
throughout this work is to minimize a weighted sum of three different criteria: total travel time, sum of lateness
over all pick-up and delivery locations and sum of overtime over all vehicles. The resulting function is thus
X

k2M

T k þ a
X

v2V

maxf0; tv � lvg þ b
X

k2M

maxf0; tk � l0g
where Tk is the total travel time on route Rk and a and b are weighting parameters. In the experiments re-
ported in Section 6, a and b were set to 1.

It is worth noting that this objective function does not include any probabilistic information about future
incoming requests. In fact, the optimization procedure is applied only to requests known with certainty at a
given time (see Powell (1996), for a model that incorporates uncertainty, although in a simpler setting where
no consolidation of customer requests takes place).

3. Solution procedure

In recent years, neighborhood search heuristics have been applied with success to a variety of hard prob-
lems. For vehicle routing and dispatching problems, tabu search, in particular, has led to the design of heu-
ristics that are among the most effective for pick-up or delivery-only problems (Gendreau et al., 1994;
Gendreau et al., 1999; Potvin et al., 1996; Taillard et al., 1997). The presence of two-point requests, however,
with a precedence constraint between the pick-up and the delivery makes the courier service problem much
harder.

Since the optimization takes place over known requests only, a series of static multiple vehicle pick-up and
delivery problems with time windows are solved over time, using appropriate information update mechanisms
to keep track of the planned routes. Static problems of this kind are typically addressed through heuristic
means. Many problem-solving approaches first cluster customers into smaller groups to reduce the main prob-
lem into different single vehicle problems, which are then solved exactly or heuristically (Bodin and Sexton,
1986; Dumas et al., 1989; Ioachim et al., 1995). Other approaches are based on pure insertion and exchange
methods (Jaw et al., 1986; Madsen et al., 1995; Roy et al., 1984; Wilson and Colvin, 1977). In Van der Bruggen
et al. (1993), a simulated annealing metaheuristic using a neighborhood structure based on arc exchange has
produced solutions of good quality for single vehicle problems, but in relatively large CPU times. An exact
algorithm is also reported in Dumas et al. (1991).

Solving pick-up and delivery problems in a dynamic setting introduces another level of complexity, as the
response time becomes a crucial issue. In fact, most of the problem-solving methods mentioned above are too
computationally expensive to be applied in a dynamic setting. The implementation of a sophisticated neigh-
borhood structure based on ejection chains in such an environment thus represents a considerable challenge.

In the following, the ejection chain neighborhood developed for our dynamic pick-up and delivery appli-
cation will be described in detail. Then, the iterative search framework will be presented.

3.1. Ejection chain neighborhood

Ejection chains (Glover, 1996; Rego and Roucairol, 1996; Thompson and Psaraftis, 1993; Xu and Kelly,
1996) are at the core of our problem-solving methodology. In our application, a request (with both its



M. Gendreau et al. / Transportation Research Part C 14 (2006) 157–174 161
pick-up and delivery location) is taken from one route and moved to another route, thus forcing a request
from that route to move to yet another route, and so on. The chain may be of any length and may be cyclic
or not. That is, it may end with the insertion of the last request in the route that started the process, thus pro-
ducing a cycle, or in some other route not yet included in the ejection chain (note that a chain of length 0 cor-
responds to a request being rescheduled in its own route).

3.1.1. Ejection and insertion moves

An ejection move can be described as follows (where ri and rj denote the current routes of requests i and j,
respectively)

1. select two requests i and j;
2. remove (eject) j from rj;
3. move i from ri to rj.

In step 1, there are O(n2) ejection moves for a problem defined over n requests. Step 2 is performed in con-
stant time, since the impact of removing each request from its own route is computed only once at the start of
the neighborhood evaluation. This is done in O(n2) and does not add to the overall complexity (O(n) calcu-
lations are required for each request, as the removal or addition of a request must be propagated along the
route to get the new service times at each location and the exact objective value). Step 3 is performed in
O(n) through the following:

(a) choose the best insertion place for the pick-up location of request i in route rj (without j), using an
approximation function;

(b) propagate the impact of the chosen insertion place along the route;
(c) choose the best insertion place for the delivery location of request i in route rj (with pick-up location of

request i, but without j) using an approximation function;
(d) propagate the impact of the chosen insertion place along the route.

Approximations are thus used in Step 3 to achieve a total complexity of O(n3). These approximations are
the followings:

• The insertion of the pick-up and delivery locations are not done simultaneously but rather in a sequential
fashion. That is, the best insertion place for the pick-up is first identified. Then, the best insertion place for
the delivery is chosen (after the insertion of the pick-up location).

• When evaluating the insertion places of the pick-up or delivery location, an approximation of the true objec-
tive function is used (with a propagation being performed only when the insertion place for the pick-up or
the delivery has definitively been chosen). An approximation function is maintained at each service location
to evaluate in constant time how a modification to the service time at this location impacts the cost function.
For example, when a new location i is inserted between locations k � 1 and k, the approximation function
associated with location k is used to evaluate the impact of the time shift at k on the total cost. The approx-
imation functions are constructed at each location at the start of the neighborhood evaluation: an exact eval-
uation with propagation is done for a few time shift values; then, a linear interpolation between these values
provides the approximation function. Further details may be found in Taillard et al. (1997).

Insertion moves, where a request is moved to another route without ejection are evaluated in a similar way.
Since there are O(n) ways to select the request to be moved and only O(m) ways to select the target route, the
complexity in this case is O(n2m). The total complexity for both insertion and ejection moves is thus
O(n2(n + m)).

Note that the adverse effects associated with the use of approximation functions are alleviated by also con-
sidering the location just before and after the best insertion place (according to the approximation function).
Hence, 32 = 9 different insertions for the pick-up and delivery are considered and evaluated exactly, and the
best one is selected at the end. The increase in computation time is offset by a better quality and stability of the



162 M. Gendreau et al. / Transportation Research Part C 14 (2006) 157–174
solutions produced. Further tests, using 52 = 25 insertion places, did not produce any substantial
improvement.

3.1.2. Ejection chains
The task of finding the best chain or cycle of ejection/insertion moves over the current set of routes is mod-

eled as a constrained shortest path problem (which is then solved heuristically). In the associated graph, a
‘‘layer’’ of vertices is associated with each route. The vertices in a given layer correspond to the customer
requests serviced on a particular route, plus a dummy vertex (see below). Most arcs connect pairs of vertices
in different layers and are of two different types, depending on the move:

• Ejection arcs (i, j) model the ejection of request j by request i. The cost on these arcs corresponds to the
insertion cost of request i in the new route (without j) minus the savings obtained by removing i from
its current route. The best insertion place for request i is found using the procedure reported in Section
3.1.1, namely, a sequential insertion of the pick-up and delivery locations based on approximation func-
tions constructed at the start of the neighborhood evaluation.

• Insertion arcs (i,dummyk), k 2M, connect request i to the dummy vertex associated with route k. These arcs
model the insertion of request i in route k (without ejection). The cost on these arcs corresponds to the inser-
tion cost of request i in its new route minus the savings obtained by removing i from its current route.

Apart from these inter-layer arcs, intra-layer insertion arcs connect each request to its corresponding
dummy route vertex. In this case, the request is simply rescheduled in the same route. This alternative is man-
datory when a delivery location cannot be moved to another route because the corresponding pick-up location
has already been serviced by the vehicle.

The shortest path calculated over this graph is constrained as the ejection chain is not allowed to eject more
than one request per route. This restriction is necessary, otherwise the ejection costs would not be accurate for
a second or any subsequent visit, due to previous ejections in the routes. This constraint also implies that neg-
ative cycles are not a problem since a layer cannot be visited twice (except to close a path to evaluate an ejec-
tion cycle).

The resulting constrained shortest path problem is NP-hard. In particular, the Generalized Traveling Sales-
man Problem (GTSP) is a special case of this problem as it corresponds to finding a shortest cycle which visits
every route exactly once (Noon and Bean, 1991). The problem is thus solved in a heuristic way using an adap-
tation of the all-pairs Floyd–Warshall shortest path algorithm (Ahuja et al., 1993). This algorithm is modified
to constrain the shortest paths to visit each layer or route at most once. Although the paths produced do
respect the constraint, they are not optimal. The algorithm constructs a path, at step j, by considering the addi-
tion of a vertex in paths that cover (at most) route 1 to route j � 1, where route k contains the kth selected
vertex, 1 6 k 6 j � 1. Clearly, the examination order of the vertices directly impacts the solution produced
at the end. An approximate solution is obtained by a priori fixing the ordering strategy. Different strategies
have been considered and tested: ordering based on the index of the vertices, hierarchical ordering based
on the index of the routes followed by the vertex which provides the first improvement, and hierarchical order-
ing based on the index of the routes followed by the vertex which provides the best improvement. The second
strategy proved to be a good compromise between efficiency and effectiveness and was finally selected. A
greedy heuristic, which simply extends the current path with the best available ejection/insertion move, as long
as an improvement is obtained, was also tried in place of the Floyd–Warshall algorithm. The heuristic was
very fast but the results were poor.

3.2. Tabu search

Our tabu search heuristic follows the general guidelines provided in Glover (1989) to exploit the neighbor-
hood structure presented in Section 3.1. In its simplest form, it can be summarized as follows:

1. start from a solution s;
2. sbest s;
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3. set the tabu list to the empty list;
4. while a stopping criterion is not met do:

(a) generate the neighborhood of s through non tabu moves (or tabu moves that lead to solutions that
improve sbest) and select the best solution s 0;

(b) if s 0 is better than sbest then sbest s 0;
(c) s s 0;
(d) update the tabu list.
5. output sbest.

Typically, the stopping criterion is based on a number of iterations (fixed number of iterations or maximum
number of consecutive iterations without improving the best solution sbest).

An adaptive memory (Rochat and Taillard, 1995) and a decomposition procedure (Taillard, 1993) are
added to this basic scheme to diversify and intensify the search. In the first case, a pool of routes taken from
the best solutions visited thus far is exploited to restart the search in a new unexplored region of the search
space. In the second case, the problem is decomposed to focus the search on smaller subproblems. These
two mechanisms are described in the following. Additional details about the tabu list and its management
are also provided.

3.2.1. Adaptive memory

The adaptive memory serves as a repository of routes associated with the best visited solutions. These
routes are used after a fixed number of iterations to provide a new starting solution for the search. A solution
is created by randomly selecting routes from the solutions found in memory, one at a time. The selection
mechanism is designed in such a way that routes issued from better solutions have a higher probability of
being selected. After each selection, routes with one or more requests in common with those found in the
solution being constructed are discarded from the selection process. Consequently, some requests may need
to be independently inserted at the end, due to the lack of admissible routes. The insertion is done in the
same way as in Section 3.1.1 (i.e., pick-up first, delivery second), but an exact evaluation with propagation
is used. In this case, it is less expensive to propagate than to construct approximation functions, as only a few
insertions are typically needed to produce a complete solution. Through this approach, the new solution is
typically made of routes taken from different solutions in memory, in a manner reminiscent of genetic
algorithms.

The adaptive memory being of limited length, a solution produced by the search can be stored only if it is
not already found in this memory. Forbidding duplicates is important, since the memory would tend, other-
wise, to be filled up with identical or nearly identical solutions. To obtain a diversified search, a variety of solu-
tions is thus to be preferred over a few identical solutions, even if some of these solutions are not of very high
quality. Assuming that the new solution is not a duplicate, its inclusion will take place if the memory is not
filled yet or if the solution is better than the worst solution in memory, in which case the worst solution is
dropped.

In Section 6, another problem-solving scheme, also based on this adaptive memory, is investigated. In this
case, the tabu search is restricted to a descent to the first local minimum. This approach thus corresponds to a
multi-start local search descent with starting points provided by the adaptive memory. It is referred to as the
adaptive descent heuristic in the following.

3.2.2. Decomposition
To intensify the search, the starting solution is decomposed into disjoint subsets of adjacent routes, with

each subset or subproblem being processed by a different tabu search. When every subproblem is solved,
the new routes are simply merged back to form a complete solution. The decomposition uses the polar angle
associated with the center of gravity of each route. Through a sweep procedure, the domain is partitioned into
sectors that approximately contain the same number of routes. A certain number of decomposition and recon-
struction cycles take place before the final solution is sent to the adaptive memory, with each decomposition
being applied to the solution resulting from the previous decomposition. At each cycle, the decomposition
(i.e., the subset of routes in each subproblem) changes by choosing a different starting angle to construct
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the sectors. Also, the number of tabu search iterations is increased from one decomposition to the next, as
the solutions are increasingly difficult to improve (see Taillard (1993) and Taillard et al. (1997) for further
details).
3.2.3. Tabu list

For efficiency purposes, the tabu list exploits the objective value of the new solution produced through a
particular move. Namely, each potential solution is associated with a position in the list, which is the objective
value of the solution (multiplied by 100 and rounded to the nearest integer) modulo the size of the list. The
value stored at this position is an iteration number which corresponds to the end of the tabu status of the asso-
ciated solution. Consequently, if the value found at this position is larger than the current iteration number,
the move leading to the new solution is tabu. This approach can filter out legitimate solutions when they col-
lide at the same position (i.e., if their objective value differs by a multiple of the tabu list size). However, this
eventuality is unlikely, as the size of the tabu list is set to a large value.
4. A dynamic environment

Optimization takes place in a context where the dispatching situation is evolving dynamically due to the
occurrence of new events. This has a number of implications on the algorithmic design presented in Section
3.2. First, appropriate update mechanisms must be implemented to keep track of the planned routes and to
ensure that the adaptive memory is consistent with the current state of the world. Second, response times must
be fast enough to cope with the dynamic environment. These issues are addressed in the following.

4.1. Handling new events

Basically, the procedure runs between the occurrence of new events to optimize the current planned routes.
It interacts with its environment as follows:

1. while ‘‘no event’’ run the optimization procedure;
2. if ‘‘event’’ then

(a) stop the optimization procedure;
(b) if the event is ‘‘occurrence of a new request’’ then

(i) update the solution found by the optimization procedure, as well as all solutions in the adaptive
memory, through the insertion of the new request;

(ii) add the updated solution found by the optimization procedure to the adaptive memory, if
indicated;

(iii) apply a local descent to the best solution in memory;

otherwise (‘‘end of service at a location’’)
(i) add the solution found by the optimization procedure to the adaptive memory, if indicated;
(ii) identify the driver’s next destination, using the best solution stored in the adaptive memory;

(iii) update all solutions in memory (see below);

(c) restart the optimization procedure with a new solution generated from the adaptive memory.

Thus, each new request is inserted in every solution in adaptive memory. To quickly produce at least one
solution of very high quality with the new request, a local descent is then applied to the best solution in
memory. The descent stops at the first local minimum using the neighborhood structure based on ejection
chains.

In the case of an ‘‘end of service’’, the serviced location is first removed from all solutions in memory. Then,
the best solution in memory is used to identify the driver’s next destination. The other solutions in memory are
updated accordingly, that is, the driver’s next destination is moved in first place if it is not already there. Given
that a vehicle must necessarily service a location once it is ‘‘en route’’ to this location, the driver’s next des-
tination is then fixed in all solutions (and cannot be rescheduled by the optimization procedure).
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4.2. Parallelization

In this application, it is important to react promptly to new occurring events. Fortunately, the nature of our
algorithm (neighborhood search coupled with an adaptive memory) makes it a good candidate for paralleliza-
tion. A parallel implementation was thus developed to increase the amount of computational work performed
between the occurrence of events. Due to the coarse-grained, loosely connected parallel environment available
to us (i.e., a network of SUN UltraSparc workstations), an implementation based on a master–slave scheme
was developed. Basically, the master manages the adaptive memory and generates starting solutions from it;
these solutions are sent to slave processes that improve them by performing tabu search and return the best
solution found to the master. Apart from its low communication overhead, this scheme has one main advan-
tage: it induces a multi-thread search strategy in which several distinct paths are followed in parallel (Badeau
et al., 1997; Crainic et al., 1997). Another level of parallelization is provided within each search thread through
the decomposition procedure introduced in Section 3.2.2. Namely, the subproblems created by the decompo-
sition are allocated to different processors and are solved in parallel. Our approach thus combines the master–
slave scheme presented above with this decomposition procedure to yield a two-level parallel organization.

To cope with environments with a high request arrival rate, one processor is dedicated to the management
of the adaptive memory, decomposition of each problem into subproblems and dispatch of the workload
among slaves. This processor does not perform tabu search, but applies a local descent on the best solution
in memory after the insertion of a new request (cf., Section 4.1). This descent is performed by a specific process
to prevent the master from optimizing for too much time while other tasks are accumulating (e.g., new
requests coming in). Time sharing on the master processor allows for all tasks to be taken care of simulta-
neously, although more slowly.

Fig. 2 illustrates the parallelization approach on five processors, using two search threads and a decompo-
sition of the main problem into two subproblems within each search thread. In the figure, processor 1 is the
master, and processors 2–5 are slaves running the tabu search on their particular subproblem.

5. Simulator

A simulator was developed to produce different operating environments that reflect as closely as possible
what is observed in the real world. This simulator is responsible for

• generating new requests according to different time–space distributions;
• updating the current dispatching situation (e.g., monitoring the movement of vehicles and the actual pick-

up and delivery times);
• generating unexpected stochastic events, such as vehicle breakdowns and accidents.
Processor 1
(Master)

Decomposition Decomposition

Adaptive Memory Management

Dispatch

TS TS TS TS

Proc.2 Proc.3 Proc.4 Proc.5

(Slaves)

Fig. 2. Two-level parallelization scheme.
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It is worth noting that the third capability of the simulator has not been exploited yet. The simulator first
sets up a time horizon that spans the entire day. For example, an operations day which runs from 9:00 AM to
4:30 PM, has a time horizon of 450 min (or 7.5 h). Within this horizon, discrete-time events are produced by
the simulator to account for the occurrence of new service requests and the execution of the planned routes
(i.e., end of service at a pick-up or delivery location). We will now look more closely at these events.

5.1. Occurrence of a new request

The simulator generates the characteristics of each new request, namely, its time of occurrence as well as the
pick-up and delivery locations with their time windows. These values must be feasible. For example, the time
windows must leave enough time for the vehicle to reach the pick-up point, service this point, and go directly
to the delivery point. The values must also be ‘‘realistic’’, as the occurrence of requests varies over time (e.g.,
peak hours) and space (e.g., densely populated area). To this end, both time and space are discretized: the dis-
patching area is divided into a set P of smaller rectangular zones and the time horizon is divided into a set L of
smaller time intervals of, possibly, different lengths.

An activity matrix A is given where each element al
p, p 2 P, l 2 L, stands for the probability of any

new activity request (either a pick-up or a delivery) to appear in zone p in the corresponding time interval
l. Using this information, the simulator generates origin-destination matrices Pl, l 2 L, where pl

pq is the
probability that a request with pick-up location in zone p and delivery location in zone q will appear in time
interval l.

The generation of a new request then proceeds as follows: given the current time interval l, a Poisson law of
intensity kl is applied to determine the time of occurrence of the next request. Then, the Pl matrix is used to
determine the zones within which the pick-up and delivery locations will appear. Within each zone, the exact
pick-up and delivery locations i and j are generated with a uniform distribution.

With regard to the time windows, the straight line distance between the pick-up and delivery locations i and
j is used to compute the minimum travel time t(i, j) (using some a priori average speed). The time window inter-
val at the pick-up location is then produced by first determining the earliest service time ei based on the prob-
ability distribution shown in Fig. 3.

In this figure, t is the current time and ~t is the latest feasible time to begin the service, namely:
~t ¼ l0 � ½tði; jÞ þ tðj; 0Þ�:
Hence, it is not possible to come back to the depot before the end of the day, l0, if the service starts after ~t.
Given these, the earliest pick-up time ei is generated in the interval ½t; ðt þ~tÞ=2� with probability b and in the
interval ½ðt þ~tÞ=2;~t� with probability (1 � b), where b is drawn from a uniform distribution U[0.6,1.0]. Note
that by using b values greater than 0.5, the earliest pick-up time distribution is biased towards the current time.
The time window at the pick-up location is then set to [ei,ei + d(l0 � t)] where d(l0 � t) is a fraction of the time
remaining until the end of the day. In this formula, d is drawn from a uniform distribution U ½d; d� where d and
d are user-defined parameters which may vary with location and time.

A time window is generated in the same way for the delivery location. In this case, the probability distri-
bution for the generation of the earliest service time, as shown in Fig. 3, is defined over the interval
β

1 - β

t ~tt ~t
2
+

Fig. 3. Earliest pick-up time distribution.
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½ei þ tði; jÞ;~t þ tði; jÞ� rather than ½t;~t�. As for the pick-up location, the width of the time window is a fraction of
the remaining time.
5.2. End of service

Currently, this event is not random because no stochastic event can actually perturb the travel times
between service locations. The arrival and end of service times at the next location are calculated for each
planned route from the preceding location and the average speed of the vehicle.
6. Numerical experiments

The aim of this section is to compare different heuristic methods for handling new requests in dynamic envi-
ronments when the arrival rate of these requests is of increasing intensity. The methods range from sophisti-
cated ones, like tabu search, to simple ones, like insertion. It is expected that the relative performance of these
methods will change depending on the environment. In the following, the operating scenarios considered for
the computational experiments are first introduced. Numerical results follow.
6.1. Operating scenarios

Problems with 10 and 20 vehicles were generated with all vehicles moving at a constant average speed of
30 km/h. The area is a 5 km · 5 km2 and the depot is located at (2.0 km, 2.5 km). The area is divided into
4 · 5 rectangular zones. Only one activity matrix A is defined; that is, the probability distribution over the
zones do not change over time. These probabilities range from 0.01 to 0.13, depending on the zone; they
are selected to create a high activity region around which the activity diminishes. Note that a uniform spatial
distribution was also tested: although the solutions produced were somewhat different (e.g., the travel times
were typically larger), the observations made in the following still hold in this case.

The day is divided into five time periods: early morning, late morning, lunch time, early afternoon and late
afternoon. The lunch time period is half the length of the other ones (which are of equal length). Two sets of
Poisson intensity parameters, in requests per minute, were used for these periods: (0.75, 1.10, 0.25, 0.40, 0.10)
and (0.55, 0.70, 0.10, 0.40, 0.10). This leads to 33 and 24 requests per hour on average. The service time is
equal to 5 min at each service location and a call is accepted only if there is at least 30 min between the call
and the latest pick-up time. The variables d for generating the pick-up and delivery time windows are taken
from the uniform distributions U[0.1,0.8] and U[0.3,1.0], respectively. Simulations have been done for ‘‘days’’
of 4 and 7.5 h, using five different problems in each case.
6.2. Parameter settings

Preliminary experiments were performed to determine the parameter values for our optimization proce-
dure. These are the followings:

6.2.1. Tabu search

The length of the tabu list is set to 100,000, with each entry in the list being associated with a particular
objective value (objective values are multiplied by 100 and then rounded to the nearest integer to obtain
the corresponding entry in the list). With respect to the neighborhood, exact evaluations are performed for
three different time shift values at each service location to construct the approximation functions.

The number of iterations, as mentioned in Section 3.2.2, depends on the decomposition cycle. This number
is set to 10 for the first decomposition and is incremented by 5 at each new decomposition (it is automatically
reset at 10 after a new restart from the adaptive memory). The tabu tenure is set to half the number of iter-
ations of the current decomposition cycle.

The minimum number of decomposition cycles is set to 3. However, this number is dynamically adjusted:
when the number of restarts from the adaptive memory increases between two consecutive events (i.e., the time
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interval between two events is longer, thus meaning that the current period is less intense), the number of
decomposition cycles is also increased to allow the tabu search to work longer before returning a solution
to the adaptive memory. Conversely, the number of decomposition cycles is decreased when the number of
restarts between two consecutive events decreases.

6.2.2. Decomposition

For problems involving 10 and 20 vehicles, the solution is decomposed into 2 and 4 subsets of routes,
respectively. As the problems are dynamic and may contain empty routes at the start, a solution is decom-
posed only if the resulting subsets contain at least 3 non empty routes.

6.2.3. Adaptive memory

The size of the adaptive memory is set to 32 solutions.

6.3. Numerical results

In this section, the tabu search is compared with other heuristic ways of handling new requests. The insert

heuristic simply inserts a new request at its best insertion place, using the insertion procedure reported in Sec-
tion 3.1.1. The construct heuristic rebuilds a new solution each time a request comes in. That is, all service
locations are removed from the planned routes and a new set of routes is constructed by sequentially inserting
each request at its best insertion place, using again the insertion procedure reported in Section 3.1.1. The inser-
Table 1
Simulation of 7.5 h with 20 vehicles and 24 requests per hour

Instance number Insert Construct Insert+ Construct+ Adaptive decent Tabu

1 785a 722 599 650 563 539
50b 37 1 4 3 1
21c 19 1 4 3 0

856d 778 601 658 569 540

2 832 790 608 664 567 614
47 43 1 0 3 3
28 28 1 0 2 1

907 861 610 664 572 618

3 924 823 702 773 676 629
90 131 2 10 0 2
69 92 2 8 0 1

1083 1046 706 791 676 632

4 1080 880 748 808 695 700
75 98 0 26 2 6
54 74 0 23 1 5

1209 1052 748 857 698 711

5 997 849 747 776 696 694
84 109 0 2 3 0
59 74 0 1 1 0

1140 1032 747 779 700 694

Average 923 813 681 734 639 635
69 84 1 8 2 2
46 57 1 7 1 1

1038 954 683 749 642 638

a Travel time.
b Lateness.
c Overtime.
d Total.
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tion order is based on the time of occurrence of each request. The insert+ heuristic is similar to the insert heu-
ristic, except that a local descent, using the neighborhood based on ejection chains, is applied to the solution
obtained after the insertion. The descent stops at the first local minimum. The construct+ heuristic is similar to
the construct heuristic, except that a local descent is applied to the solution obtained at the end of the construc-
tion. The last two heuristics, tabu search and adaptive descent both exploit the adaptive memory. The adaptive

descent heuristic, as previously mentioned, is a variant of the former where the tabu search is restricted to a
local descent to the first minimum. It is thus a multi-start local descent with starting points provided by the
adaptive memory.

In Table 1, the results obtained on five different problem instances generated under scenario 1 are reported.
This scenario corresponds to simulations of 7.5 h executed on a single processor, using 20 vehicles and the less
intense request arrival rate (i.e., 24 requests per hour, on average), with the computer simulating and solving
events at the same time as the real clock. Under scenario 1, each vehicle services 1.2 request per hour, on aver-
age. Given that a service time of 5 min is associated with each service point, 12 min are used for this purpose,
thus leaving 48 min for traveling. Each entry in the table contains four different numbers: travel time, lateness,
overtime and total (sum of the three first numbers), in this order. All results are in minutes, rounded to the
nearest integer. Clearly, the methods using a local descent are much better than the others, with adaptive des-

cent and tabu being the best. The poor results produced by the construct+ heuristic should be noted. At first
sight, this heuristic should perform better than insert+, since a construction looks as a better way to reoptimize
the current solution than a simple insertion. The explanation of this unexpected behavior is that each time a
new request comes in, the construct+ heuristic loses the gains previously obtained by the local descent: the
Table 2
Simulation of 4 h with 10 vehicles and 24 requests per hour

Instance number Insert+ Adaptive descent Tabu

1 357a 345 336
118b 83 65

84c 51 55
559d 480 456

2 370 369 386
86 85 68
68 58 53

524 512 506

3 358 355 352
129 120 139
87 86 98

574 562 589

4 359 350 359
92 63 38
71 48 31

521 461 428

5 372 350 348
153 88 75
90 64 52

615 502 476

Average 363 354 357
115 88 78
80 61 58

559 503 493

a Travel time.
b Lateness.
c Overtime.
d Total.
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occurrence of each new request triggers the reconstruction of the solution, without any consideration for the
previous solution.

Given that scenario 1 is not very intense, most of the total cost comes from the traveling time, with only a
few minutes of lateness or overtime. The results of tabu and adaptive descent are very close, with a difference of
0.6% in favor of tabu. The method insert+ is the best among the other methods, but it is still 7% over tabu. It is
worth noting that tabu and adaptive descent contain stochastic features and do not necessarily produce the
same solution when applied two or more times on the same problem. We ran the tabu search heuristic 20 times
on a particular problem instance and obtained a standard deviation of 2.7%. Since five different instances are
solved by each heuristic, the standard deviation for the average is approximately 1.2%. Discrepancies are also
due to the real-time nature of the problem. Since the times at which calculations and actions are performed by
the algorithm can slightly vary from one execution to the next, the ‘‘synchronization’’ with external events is
modified, with an obvious impact on the final solution. Hence, even simpler heuristics that use a descent phase
may also exhibit some variance in the results, although to a much lesser extent.

Given the fact that insert, construct and construct+ were not competitive in any of our experiments, we will
restrict ourselves to the adaptive descent, tabu and insert+ heuristics in the following. Scenario 2 was obtained
by setting the horizon to 4 h and by reducing the fleet size from 20 to only 10 vehicles. The same request
arrival rate of 24 requests per hour was kept, and each vehicle now services 2.4 requests per hour, on average.
Table 2 shows the results. We can see that the lateness and overtime values have increased with regard to
scenario 1. This is an indication that the reduced number of vehicles leads to a more challenging environ-
ment. The tabu search heuristic has now increased the gap with both adaptive descent (2%) and insert+
(11.8%).
Table 3
Simulation of 4 h with 10 vehicles and 33 requests per hour

Instance number Insert+ Adaptive descent Tabu

1 486a 458 473
4580b 4417 4392

709c 696 699
5775d 5571 5564

2 441 412 402
973 944 867
316 311 297

1730 1667 1566

3 437 426 455
1092 1009 853
336 333 303

1865 1768 1611

4 446 405 434
1210 1031 1104
344 317 348

2000 1753 1886

5 524 525 495
4325 4206 4121
695 701 687

5544 5432 5303

Average 467 445 452
2436 2322 2267
480 472 467

3383 3239 3186

a Travel time.
b Lateness.
c Overtime.
d Total.
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Scenario 3 is more dynamic than scenario 2 and was obtained by increasing the request arrival rate from 24
requests to 33 requests per hour, while keeping the same horizon length and number of vehicles. Under sce-
nario 3, each vehicle services 3.3 requests per hour, on average. Hence, only 27 min are left for traveling during
each hour, once the service times are subtracted. This increase in the number of requests has a dramatic impact
on solution quality, as observed in Table 3. Almost 90% of the total cost is now due to overtime and lateness at
customer locations. This scenario is also a ‘‘turning point’’ in the sense that the gap between tabu and both
adaptive descent and insert+ has dropped from 2% to 1.5% and from 11.8% to 5.8%, respectively. When
the request arrival rate is increased even more, we observed that this tendency keeps on. That is, the adaptive

descent and insertion+ methods both get progressively closer to tabu, until no distinction can be made between
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Fig. 4. Behavior of tabu search with increasing computation time: (a) average number of locations per route, (b) tabu search activity with
normal clock, (c) slowing down the clock by a factor of 2.5 and (d) slowing down the clock by a factor of 5.
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the various methods. At this point, the benefits associated with a sophisticated search framework vanish. One
might say that with more requests per route, more opportunities for optimization are available; however, these
cannot be exploited due to a lack of computation time between the occurrence of events. Fig. 4 illustrates this
point on one instance taken from Table 3 (produced under scenario 3, a simulation of 4 h with 10 vehicles and
33 requests per hour, on average).

Curve (a) shows the average number of service locations per vehicle on the planned routes over time (i.e.,
locations that have been assigned to a vehicle but not serviced yet). The next three curves show the number of
improvements to the best known solution over time slices of 15 min. Curve (b) is the ‘‘normal’’ one when the
simulator generates events at the same time as the real clock. Curves (c) and (d) were produced by simulating a
faster computer: in this case, the time was artificially slowed down by factors of 2.5 and 5, respectively.
Clearly, the tabu search is more active when more computation time is available. In particular, the ‘‘peak’’
observed on curve (d), which happens when there is a fairly large number of service locations on each route,
shows that the tabu search can now take advantage of optimization opportunities.

6.3.1. Parallelization

The benefits of the parallel implementation are illustrated for scenario 3, using 8 and 16 processors (plus the
master). Table 4 shows the average result obtained with tabu over the five instances of Table 3. Improvements
of 4.3% and 5.7% are obtained over the sequential implementation with 8 and 16 processors, respectively. The
same trend is observed for the two other scenarios, but the gains are smaller. Under scenario 1, for example,
an improvement of 2.2% is observed with 16 processors.

6.3.2. Computation times

In a dynamic setting, the number of requests on the planned routes varies over time. To provide a mean-
ingful comparison, each method was evaluated when there is a ‘‘peak’’ of requests on the planned routes, using
again the five instances of Table 3. This peak is reached after two to three hours of simulation: at this point,
about 10 to 15 locations are found on each planned route. Table 5 shows the average computation time in
seconds for a simple insertion, a reconstruction, one iteration of a neighborhood search based on ejection
chains and a descent to the first local minimum.

Insertion and reconstruction procedures are faster, but they are likely to exploit only a small fraction of the
time available between two events. When their task is over, they just sit and wait for the next event. The adap-
tive descent and tabu search heuristics, on the contrary, exploit all the time available between two events to
optimize the current solution. They run as long as they are not interrupted by a new event, and are thus likely
to find a better solution.
Table 5
Computation times (in seconds)

Insertion Reconstruction 1 iteration (local search) Descent (local search)

.02 s .15 s .23 s 7.7 s

Table 4
Parallel implementation of tabu search

1 processor 8 processors 16 processors

Average 452a 439 433
2267b 2160 2125

467c 449 447
3186d 3048 3005

a Travel time.
b Lateness.
c Overtime.
d Total.
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7. Conclusion

This study has shown that both the adaptive descent and tabu search heuristics can cope with complex
dynamic environments found, for example, in local pick-up and delivery services. When enough computing
power is available, they produce improved results over simpler heuristics (even if the optimization takes place
over known requests only, with no consideration for the future).

This work is based on some simplifying assumptions. Future work will thus be aimed at closing the
gap with real-world courier service applications. In particular, we will look more closely at the following
issues:

• Ability to divert a vehicle away from its current destination to service a new request in the vicinity of the
vehicle’s current position. Such opportunities may be exploited when communication between the dispatch
office and the drivers can take place at any time (not just at service locations). In this case, a good trade-off
must be found between computation time and solution quality, since vehicles are moving fast: if the eval-
uation takes too long, diversion opportunities may well be lost.

• Consideration of additional stochastic elements such as stochastic service times and travel times. Recourse
actions, in particular, may be developed in the case of sudden unexpected events, like vehicle breakdown or
congestion due to an accident.

• Ability to exploit probabilistic information about the future, like time-space distribution of service requests
(using, for example, historical data). This ability could definitively improve the decision-making process at
the current time.

• Consideration of complicating factors often found in real-world operations (e.g., drop-off sites for the
transfer of packages between vehicles, hierarchical organization of the distribution system with a central
hub and mini-hubs, etc.).

• Cooperation between dispatchers, either in a self-interested context or in a corporate context where all dis-
patchers work for the same company.

Acknowledgements

This work was partly supported by the Canadian Natural Sciences and Engineering Research Council
under grant CRD 177440. Financial support was also provided by Lockheed Martin Electronic Systems
Canada, and by the Defense Research Establishment Valcartier.
References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs,
New Jersey.
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