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Abstract

Throughout its history, the field of computer graphics has been striving towards in-

creased realism. This goal has traditionally been described by the notion of photo-

realism, and more recently and in many cases the more ambitious goal of perceptual

realism. Photo-realistic image synthesis involves many algorithms describing the phe-

nomena of light transport in a scene as well as its interaction with various materials. On

the other hand, research in perceptual realism typically involves various tone mapping

algorithms for display devices as well as algorithms that mimic the natural response of

the human visual system in order to recreate the visual experience of a real scene.

An important aspect of realistic rendering is the accurate modeling of the scene

elements such as light sources and material reflectance properties. This dissertation

proposes a set of new techniques for efficient acquisition of material properties as well

as new algorithms for high quality rendering with acquired data. Here, we are mostly

concerned with the acquisition and rendering of local illumination effects. In particular,

we propose a new optical setup for efficient acquisition of the bidirectional reflectance

distribution function (BRDF) with basis illumination and various Monte Carlo strate-

gies for efficient sampling of direct illumination.

The dissertation also looks into the display end of the image synthesis pipeline and

proposes algorithms for displaying scenes on high dynamic range (HDR) displays for

visual realism, and for tying the room illumination with the viewing environment for a

sense of presence and immersion in a virtual environment. Here, we develop real-time

rendering algorithms for driving the HDR displays as well as for active control of room

illumination based on dynamic scene content. Thus, we propose contributions to the

acquisition, rendering, and display end of the image synthesis pipeline while targeting

real-time rendering applications, as well as high quality off-line rendering with realistic
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materials and illumination environments.
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Chapter 1

Introduction

The pursuit of realism has been a central theme throughout the history of computer

graphics. The goal of realism in computer generated imagery has traditionally been

described by the notion of photo-realism - creating or rendering images that are in-

distinguishable from real photographs. Applications of realistic rendering include en-

tertainment such as movies and games, simulation and virtual reality applications, ar-

chitectural design, and scientific visualization. More recently, the scope of realism in

image synthesis has been extended to the notion of perceptual realism - synthesizing

scenes that are perceived as real by a human observer. The goal of perceptual realism

is, in many cases, even more challenging than photo-realism as its aim is to afford the

viewer the same visual experience as if they were actually immersed in the scene.

Photo-realistic rendering typically involves the development of algorithms for the

simulation of physically accurate light transport in a scene. However, the quality of

rendering produced by these algorithms is limited by the quality of the input scene de-

scriptions such as materials and illumination models. Therefore, photo-realistic render-

ing also requires accurate modeling of scene attributes such as geometry, lighting, and

material properties, such as surface reflectance. Realistic illumination and reflectance

can be very complex and hard to describe analytically. Therefore, the best way to ob-

tain high quality representation of complex illumination and materials is by acquiring

real world data through measurements.

At the other end of the image synthesis pipeline, images rendered using realistic

material and illumination representations need to be shown on display devices. Since

displayed images are meant to be viewed by a human observer, this stage typically

needs to account for the characteristics of the human visual system along with that of
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Figure 1.1: Overview of stages of the realistic image synthesis pipeline including

acquisition, rendering and display. Individual components of the pipeline that are dis-

cussed as part of this dissertation are highlighted.

the display device. Hence, the notion of perceptual realism assumes importance for

image display.

1.1 Realistic Image Synthesis Pipeline

Figure 1.1 presents a general overview of the realistic image-synthesis pipeline as dis-

cussed in this dissertation. As illustrated, the three major stages of the pipeline are:

acquisition, rendering and display. The figure also lists the main components of the

pipeline while highlighting those components toward which we make a contribution in

this dissertation. As discussed above, photo-realistic rendering typically involves the

acquisition and rendering stages of the pipeline, while perceptually realistic rendering

involves the display stage.

Acquisition and Rendering for Photo-Realism: With the advances within the field

of digital photography over the last decade, there has been significant interest in ac-

quiring material and illumination models from photographs. This acquisition method

has led to the development of image-based modeling and rendering techniques for re-

alistic rendering. Image-based acquisition techniques have become very popular with

the development of high dynamic range (HDR) imaging techniques [112]. This is par-
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ticularly true for acquisition of complex real world illumination in the form of HDR

environment maps [29]. These environment maps, also called radiance maps, repre-

sent the absolute intensities of the surrounding illumination, and can be used to render

scenes with natural illumination, as well as for realistic relighting of virtual objects with

major applications in movies and games. However, the availability of such a represen-

tation for complex natural illumination requires its integration into existing rendering

systems, as well as the development of new algorithms for efficient rendering with such

a representation.

In recent years, image-based techniques have also become popular for acquisition

of material properties, such as reflectance functions and reflectance fields. However,

most previous work has been conducted under highly controlled lighting conditions

with multiple light sources carefully positioned to cover a hemisphere of incident di-

rections [84]. The material samples sometimes also need to be translated with respect

to the light sources using some mechanical gantry for dense sampling of incident il-

lumination [85, 93]. Hence, acquiring reflectance properties of materials has typically

been on the scale of a few hours of acquisition time in a dedicated environment. Also,

the acquired data are huge and typically suffer from noise in the measurements re-

sulting in the requirement of post-processing of the data and resampling into a more

compact form for usage in rendering.

Image-based techniques are widely used for real-time photorealistic rendering ap-

plications such as games. The challenge here is to integrate the huge amounts of ac-

quired illumination and material data into the real-time rendering framework. Many

researchers have used frequency-domain analysis for encoding the acquired data into

compact basis function representations for real-time rendering. Examples of popularly

used basis functions are spherical harmonics [110, 142] and wavelets [72, 92]. Such

basis function approaches are now becoming popular in commercially available games,

and 3D programming APIs such as DirectX [11].

This dissertation proposes a set of new techniques for efficient acquisition of mate-

rial properties as well as new algorithms for high quality rendering with acquired data.

Here, we are mostly concerned with the acquisition and rendering of local illumina-

tion effects. In particular, we propose a new optical setup for efficient image-based
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acquisition of the bidirectional reflectance distribution function (BRDF) using curved

reflective surfaces, such that there are no moving parts, and the entire setup fits in a

small, enclosed area. In addition, in order to speed up acquisition time and to avoid

any post-processing of the data, we propose directly optically sampling the BRDF data

into a suitable basis function during acquisition. The aim here is to acquire the data in

terms of coefficients of a suitable basis function that can then be used to reconstruct

the reflectance function during rendering. The advantage of such an acquisition is that

the data are directly low-pass filtered during acquisition and encoded into a compact

form that can be used in rendering systems within a few minutes. The dissertation also

proposes various Monte Carlo strategies for sampling the acquired reflectance data as

well as natural HDR lighting for efficient rendering of scenes with complex direct illu-

mination.

Display for Perceptual Realism: Perceptually realistic rendering is mainly con-

cerned with algorithms that aim to recreate the visceral experience of a real scene for

a human observer. This includes the development of appropriate tone-mapping algo-

rithms for display devices (e.g., [35, 73, 111, 116, 135]), as well as development of

algorithms that mimic the natural response of the human visual system to displayed

scenes [39, 60, 99, 114]. Tone-mapping algorithms map the computed scene radiance

values to the dynamic range of a display device while preserving the contrast and per-

ceived scene intensities. Perceptually realistic rendering has to also account for the

response of the visual system to these intensities, such as light adaptation and glare

simulations.

One of the most significant advances in perceptual realism is the development of

high dynamic range display technology [119]. The human visual system can simultane-

ously capture approximately five orders of magnitude of dynamic range which cannot

be represented by standard display devices. Tone mapping operators for these display

devices alleviate this problem to an extent but they cannot recreate the natural adaptive

responses in the visual system to such dynamic range. HDR displays are thus the key to

perceptually realistic representation of real world HDR scenes. As part of this disser-

tation, we also develop algorithms for processing HDR images in real-time for driving
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the HDR display devices, and demonstrate its use in many potential applications such

as photo-realistic rendering and medical imaging.

It is our hypothesis that the HDR display acts as a window into a virtual world.

However, this sense of realism and immersion in a virtual environment is lost outside

this window as the HDR display cannot account for the viewing conditions. A true

sense of immersion can only be achieved if the illumination levels in the real and vir-

tual world are compatible. As part of this dissertation, we aim to connect the room

illumination to the viewing environment to achieve a sense of presence and immersion

in a virtual environment.

Hence, this dissertation aims to take both the aspects of realism, photo-realism

and perceptual realism, into account while targeting real-time rendering applications

as well as high-quality offline renderings with realistic materials and illumination en-

vironments.

1.2 Chapter Overview

The remainder of this thesis is organized as follows. Chapter 2 discusses the relevant

background for the topics covered in this dissertation. In Chapter 3, we describe our

novel image-based BRDF acquisition technique for acquiring basis reflectance of ma-

terial samples. We develop a set of appropriate basis functions for this purpose and

discuss how to project the acquired data into either spherical harmonics or an analyti-

cal model as a way of extrapolation for rendering. We also present a working prototype

and some acquisition results.

We then discuss a series of Monte Carlo techniques for efficient sampling of di-

rect illumination targeting high quality offline rendering in Chapters 4 and 5. In Sec-

tion 4.2, we discuss how sampling from the product distribution of illumination and

the reflectance function, which we call bidirectional sampling, is more efficient than

sampling from the individual distributions. We discuss two Monte Carlo strategies

for sampling according to the bidirectional importance. In Section 4.3, we extend our

bidirectional sampling strategy to also account for the binary visibility function. In this

case, we employ Metropolis sampling to establish a correlation in the energy estimate



6 Chapter 1. Introduction

of neighboring pixels on the image plane, thereby reducing noise in partially occluded

regions. In Chapter 5, we extend product distribution sampling in the temporal do-

main to efficiently generate coherent samples for a video sequence in the presence of

dynamic illumination.

Real-time perceptually realistic rendering is the theme of Chapters 6 and 7. We

present our algorithm for processing HDR images in real-time for driving the HDR

displays in Chapter 6 and demonstrate its use in many potential applications. In Chap-

ter 7, we propose to tie the room illumination into the display and viewing environment.

Here, we actively control the room illumination according to illumination in a virtual

environment, thereby triggering the natural visual adaptation processes and providing

an increased sense of immersion in the virtual environment.

Finally, we conclude with a discussion on the scope and contribution of the disser-

tation in Chapter 8.
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Chapter 2

Background and Related Work

We first present an overview of the relevant background and previous work in this chap-

ter. We start by describing the Bidirectional Reflectance Distribution Function (BRDF)

and how it is used to represent the surface reflectance property of materials. We review

some analytical BRDF models used in computer graphics followed by a discussion on

existing BRDF acquisition techniques and various basis representations for BRDFs.

We then review some concepts of Monte Carlo integration and importance sampling

in the context of computing the direct illumination integral. Finally we review various

tone mapping algorithms for display devices and some studies on viewing conditions

that are relevant to our work on enhancing perceptual realism.

2.1 The Bidirectional Reflectance Distribution

Function

Accurate descriptions of how light reflects off a surface are a fundamental prerequisite

for realistic rendering. Real world materials exhibit characteristic surface reflectance,

such as glossy or specular highlights, anisotropy, or retro-reflection, which need to

be modeled for visual realism. The surface reflectance of a material is formalized

by the notion of the Bidirectional Reflectance Distribution Function as described by

Nicodemus et. al. [94], which is a 4 dimensional function describing the response of

a surface in a certain exitant direction to illumination from a certain incident direction

over a hemisphere of directions.

Figure 2.1 depicts the geometry of light interaction at a surface that describes the

BRDF. Light arriving at a differential surface dA from an incident direction (θi,φi)
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Figure 2.1: The BRDF geometry.

through a solid angle dωi is reflected in the direction (θr,φr) centered within a cone of

solid angle dωr. The BRDF is mathematically defined as the ratio of the directionally

reflected radiance to the directionally incident irradiance. Please refer to Appendix A

for a brief definition of some relevant radiometric terms.

fr(λ,ωi,ωr) =
dLλ,r(λ,ωr)
dEλ,i(λ,ωi)

(2.1)

Here dEλ,i is the incident spectral irradiance (i.e., the incident flux of a given wave-

length per unit area of the surface) and dLλ,r is the reflected spectral radiance (i.e., the

reflected flux of a given wavelength per unit area per unit solid angle). Since the defini-

tion above includes a division by solid angle, the units of a BRDF are inverse steradian

[1/sr]. We can drop the wavelength dependence for notational simplicity. The BRDF

then becomes,

fr(ωi,ωr) =
dLr(ωr)
dEi(ωi)

(2.2)

The BRDF is thus a function of four variables: two variables describing the in-

coming light direction, and two specifying the reflected light direction. Note that this

model of reflectance assumes a homogenous material. For materials with spatially
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varying reflectance property, the BRDF is also a function of the position x on the sur-

face and hence a higher dimensional function. BRDFs maintain the laws of Helmholtz

reciprocity, i.e.,

fr(ωi,ωr) = fr(ωr,ωi) (2.3)

and energy conservation,

Z
Ω

fr(ωi,ωr)cosθrdωr ≤ 1,∀ωi ∈Ω. (2.4)

2.1.1 Analytic BRDF Models

Analytical reflection models attempt to describe certain classes of BRDFs using a math-

ematical representation involving a small number of parameters.These parameters can

be either adjusted manually or obtained from fitting to measured BRDF data. These

analytical models mostly fall under two categories. (1) Empirical models that are not

based on the underlying physics, but provide a class of functions that can be used to

approximate reflectance. (2) Physics based models that take into account the physical

properties of the material while modeling a specific phenomenon or class of materials.

Empirical Models

One of the earliest models to express specular reflections which is still widely used

today in computer graphics is the Phong model [105]. The model is a sum of a diffuse

component and a cosine weighted specular lobe. It can be expressed as

fr(l̂, v̂) = ρd +ρs
(r̂ · v̂)s

(n̂ · l̂)
, (2.5)

where l̂ is the normalized vector towards the light source, v̂ is the view vector, r̂

is the vector obtained by reflecting the light vector about the surface normal n̂ and

lies in the same plane as l̂ and n̂, s is the specular exponent, and ρd and ρs are the

coefficients of diffuse and specular reflectance respectively. The model is based on

ad hoc observation of the behavior of reflectance and is neither reciprocal nor energy

preserving.
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Blinn [10] adopted the model for a more physically accurate reflection by comput-

ing the specular component based on the halfway vector ĥ:

fr(l̂, v̂) =
ρd

π
+ρs

(n̂ · ĥ)s

(n̂ · l̂)
, (2.6)

Lafortune et al. [71] presented a more elaborate generalized cosine lobe model that

can account for off-specular peaks, retro-reflection and anisotropy:

fr(l̂, v̂) =
ρd

π
+∑

i
[Cx,i(l̂x · v̂x)+Cy,i(l̂y · v̂y)+Cz,i(l̂z · v̂z)]si . (2.7)

An advantage of this model is that it is well suited for fitting to measured BRDF

data.

Ward [140] proposed a model for anisotropic reflection based on an elliptical Gaus-

sian distribution of normals. It is both energy conserving and reciprocal. It can be

expressed as

fr(l̂, v̂) =
ρd

π
+ρs

1√
cosθi cosθr

exp[−tan2δ( cos2φ

α2
x

+ sin2φ

α2
y

)]

4παxαy
, (2.8)

where δ is the angle between the half vector and the normal; φ is the azimuth angle

of the half vector projected into the surface plane; and αx,αy are the standard deviations

of the surface slope in the principal x̂ and ŷ directions, respectively. This does not model

Fresnel effects or retroreflection.

Ashikhmin and Shirley [6] have proposed an anisotropic Phong model that observes

the laws of reciprocity and energy conservation, includes a Fresnel reflectance term and

a non constant diffuse term. The specular part of the model is given by

ρs(k̂1, k̂2) =

√
(nu +1)(nv +1)

8π

(n̂ · ĥ)nu·cos2φ+nv·sin2φ

(ĥ · k̂)max((n̂ · k̂1),(n̂ · k̂2))
F((k̂ · ĥ)), (2.9)

where k̂1 is the light vector, k̂2 is the view vector, ĥ the halfway vector, F is the

Fresnel term , and nu, nv are two Phong like exponents that control the shape of the

specular lobe in orthogonal directions u and v.
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Physically-based Models

There has been a whole body of work, initially in the field applied optics and later in

computer graphics, in developing physically accurate reflection models. The illumi-

nation model by Torrance and Sparrow [133] is one of the most important physically-

based models for the inter-reflection of light at rough surfaces. It derives the specular

component by assuming the reflecting surface to be composed of microfacets based on

a Gaussian distribution. It includes a Fresnel term for off-specularity and also accounts

for shadowing and masking with respect to the microfacet distribution. It is given as

fr(l̂, v̂) =
F ·G ·D

π · (n̂ · l̂) · (n̂ · v̂)
, (2.10)

where F, the Fresnel reflectance term as derived from Snell’s laws, is given in the

form

F =
(g− c)2

2(g+ c)2 [1+
(c(g+ c)−1)2

(c(g− c)+1)2 ], (2.11)

with c = (ĥ · v̂), and g2 = n2 + c2−1 where n is the index of refraction. The term

D is the distribution term for the microfacets and assumes a Gaussian distribution of

the angle between normal and the halfway vector. This can also be interpreted as a

distribution of the halfway vector itself. Because the microfacets are perfectly specular,

only those with a normal equal to the half vector ĥ cause perfect specular reflection

from l̂ to v̂. Finally, the term G describes the geometrical attenuation caused by self-

shadowing and masking of the microfacets. Under the assumption of symmetric, v-

shaped grooves, G is given as

G = min{1,
2(n̂ · ĥ)(n̂ · v̂)

(ĥ · v̂)
,

2(n̂ · ĥ)(n̂ · l̂)
(ĥ · v̂)

}. (2.12)

Several variations of this model have been proposed. Cook and Torrance [20] have

extended the model for spectral rendering. Poulin and Fournier [106] presented an

anisotropic reflection model assuming a microgeometry of oriented cylindrical grooves.

Schilck [115] has proposed a model in which all terms are approximated by simple

rational polynomial formulae to improve performance. Oren and Nayar [97] have pro-
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posed a microfacet distribution model for diffuse reflection. Ashikhmin et al. [7] pro-

posed an expression for the shadowing and masking for any arbitrary distribution of

microfacet normals. He et al. [57, 58] have developed an even more comprehensive

model to account for arbitrary polarization of incident light to describe effects like

interference.

Distribution-based BRDF Model

Recently, Ashikhmin [5] has proposed a BRDF model that is a generalization of the

Ashikhmin-Shirley Phong model in that it allows for arbitrary microfacet distributions

in the spirit of [7], while preserving a much simpler mathematical formulation:

ρ(k̂1, k̂2) =
cp(ĥ)F((k̂ · ĥ))

(k̂1 · n̂)+(k̂2 · n̂)− (k̂1 · n̂)(k̂2 · n̂)
(2.13)

Here, p(ĥ) is a particular distribution of half-vectors that describes the material, c

is an RGB scaling constant, and k̂1, k̂2, ĥ, F are as defined in the AS Phong model. The

Fresnel term F(k̂ · ĥ) is given by Schlick’s polynomial approximation [115]:

F((k̂ · ĥ)) = r0 +(1− r0)(1− (k̂ · ĥ))5 (2.14)

where r0 is the reflectance at normal incidence. An advantage of the model is

that the distribution p(ĥ) can be extracted from measured data using a very simple

procedure without requiring any numerical fitting. p(ĥ) can be extracted just from the

backscattering measurements as k̂1 = k̂2 = k̂ = ĥ for backscattering geometry. The

D-BRDF takes the form

ρ(k̂, k̂) =
cr0 p(ĥ)

2(k̂ · n̂)− (k̂ · n̂)2
, (2.15)

providing a function that is proportional to the distribution p(ĥ). We employ this

D-BRDF framework to fit measured data in Chapter 3.
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2.1.2 BRDF Acquisition

Despite the richness of the various analytical models, they still do not capture the re-

flectance property of all kinds of day-to-day materials. Also, the parameters required

by these models to approximate a certain kind of material are not easily obtainable.

Measurement is the most straightforward approach of obtaining BRDF data for a broad

class of materials and we review some measurement techniques in this section.

Dense Measurements

As an alternative to analytical BRDF models, one can use dense measurements of

BRDFs directly in a rendering system. Such data is available from many sources typi-

cally using some version of a gonio-reflectometer (e.g., the Cornell [21] and STARR [96]

databases), or by doing dense measurements with a camera (e.g., CUReT [24] database).

The gonio-reflectometer measurement setup usually involves a photometer and a light

source that can both be moved with respect to a surface sample to cover a hemisphere

of measurement directions. A dense set of measurement with this setup can take a

large amount of time. Also, when using data from such a setup there is generally a

need to account for any missing information in directions for which there are no avail-

able measurements. For example, the BRDF data in the CUReT database represents

205 reflectance measurements uniformly distributed over the hemisphere of 60 differ-

ent materials. This amounts to a relatively sparsely sampled BRDF due to which there

is a need to fit the data to analytical models [26].

Image-based Acquisition

The wide availability and decreasing cost of digital cameras has recently led researchers

to explore various image based BRDF acquisition approaches. One way of reducing

the number of images that need to be taken is by using curved surfaces for acquir-

ing BRDFs. Marschner et al. [84] constructed an image-based acquisition device for

isotropic BRDFs that photographed a curved object with uniform BRDF from many

illumination directions to efficiently collect a dense sample set. Lensch et al. [77] pre-

sented a clustering procedure to model spatially varying BRDFs and fit each cluster
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to a Lafortune model [71]. They then used principal component analysis to compute

basis BRDFs for material clusters.

Matusik et al. [85] presented a radically different data driven approach to modeling

BRDFs. They developed an acquisition device for isotropic BRDFs that sampled the il-

lumination directions much more densely than Marschner and acquired BRDF data for

over a 100 representative materials. They then employed linear and non-linear dimen-

sionality reduction techniques to obtain a low-dimensional manifold that characterizes

the BRDFs and developed ways for users to navigate over this manifold to generate

new BRDFs over the space spanned by their acquired data.

Generally, these methods require knowledge of the geometric shape, and are not

well-suited for capturing fabric or sheet materials. Such materials can be measured

by wrapping them around a cylinder at various orientations as recently done by Ngan

et al. [93]. In this case, they acquire measurements over the hemisphere populating

approximately 25% of the sampling bins with data and also fit the acquired data to the

anisotropic Phong model [6].

Figure 2.2: The Ward imaging gonio-reflectometer.

In many cases, planar samples are, however, more convenient. Other researchers

have therefore focused on special optics to cover a large range of incident or exitant

light directions for a planar sample in a single photograph. Ward’s imaging gonio-

reflectometer [140] as shown in Figure 2.2 was the first image-based measurement
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device for planar samples. He used a semi-silvered hemispherical mirror, a CCD cam-

era with a fisheye lens and a movable collimated light source to capture the reflectance

data. This setup enables every outgoing direction to be measured with a single image,

greatly reducing the acquisition time. The drawback of the design is the difficulty in

measuring BRDF values near the grazing angles making it unsuitable for measuring

very specular materials. Malzbender et al. [80] use a dome with attached, individu-

ally controlled light sources to photograph a surface under varying lighting conditions

and recover the per pixel reflectance function which they encoded as coefficients of a

polynomial for reconstruction.

Han and Perlin [53] developed a device to capture bidirectional texture functions

(BTFs) based on a kaleidoscope. Their setup is similar to ours in the sense of not

involving any movement of the camera as well as light source. However, their de-

vice measures a sparse set of orientations over the hemisphere and is not suitable for

BRDF acquisition. Dana [25] designed an acquisition device using a parabolic mir-

ror that densely covers a relatively small solid angle. The system also involves planer

translations of the light source to cover various incident directions and translations of

the sample in order to scan the surface for spatial variations in reflectance. Recently,

Kuthirummal and Nayar [70] have developed a class of radial imaging systems for

image-based acquisition of geometry, texture, and BRDFs. Their BRDF measurement

setup can image 4 radial lines of reflectance of a given material for a fixed light source

direction. Our design, as discussed in Chapter 3 [45], is most closely related to the

last two papers. It can however measure a much larger zone of directions and can be

extended to acquire spatially varying BRDFs like Dana.

2.1.3 Basis Representations and Illumination

Independent of the acquisition process, the acquired data is generally not used directly

due to problems such as missing measurements and noise in the measurement process.

Furthermore, the inherent dimensionality of the BRDF data, and the need to sample it

at a high resolution leads to unwieldy storage problems. Researchers have therefore

either resorted to fitting the data to analytical models [41, 71, 93, 140] or sampled
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the data into some suitable basis function representation. We will review some such

representations in this section.

Spherical harmonics have been a popular choice for representing BRDFs in com-

puter graphics [110, 142]. They are the analogue of the Fourier series as defined on a

sphere. The BRDF function is approximated by a finite number of terms of the spheri-

cal harmonic series as

f (θ,φ) =
∞

∑
0

cm
l Y m

l (θ,φ) (2.16)

where Y m
l is the spherical harmonic basis function of order l and degree m and cm

l

is the corresponding coefficient. An advantage of this representation is that arbitrary

rotations over a sphere are well defined and in the context of BRDFs this is useful

for local lighting computations. The major disadvantage of this representation is that

for specular BRDFs, the spherical harmonics basis functions suffer from oscillations

around the true function value, also known as Gibbs phenomenon. These oscillations

are visible in the reconstruction as undesirable ringing artifacts (Figure 3.3).

Wavelets are suitable for representing functions containing high frequency con-

tent because they localize in the spatial and the frequency domain. Schröder and

Sweldens [117] extended wavelets to spherical domain to efficiently represent spheri-

cal functions. They used these spherical wavelets to represent a 2D slice of BRDF by

keeping the viewing direction constant. Lalonde and Fournier [72] and more recently

Ng et al. [92] have proposed solutions to represent the four-dimensional BRDF with

wavelets. The problem with the wavelet representation is that arbitrary rotations are

not efficient.

Another approach is to map points on a hemisphere onto a disk. Keondrink et

al. [68] take this approach of representing BRDFs using orthonormal basis functions

on the unit disk. They project the Zernike polynomial functions onto a hemisphere and

use tensor-products of these functions to represent BRDFs. Rotation matrices are not

defined for the Zernike polynomial representation.

Gautron et al. [42] recently developed a basis over the hemisphere that is a more

natural choice for representing BRDFs than spherical harmonics (SH). However, there
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is a need to convert the data to SH for arbitrary rotations. The development of our

zonal basis function for BRDF measurement in Chapter 3 can be seen as a further

generalization of the hemispherical basis. Our proposed basis transformation method

can also be seen as an improvement over their approach of explicitly fitting the SH

basis to be zero below the hemisphere.

Somewhat related to our approach, Wenger et al. [141] project basis illumination

from a discretized geodesic sphere to acquire the time-varying reflectance fields of an

actor’s performance for post-production relighting. Basis illumination in the form of a

wavelet noise pattern has also been used for inferring the per-pixel reflectance function

of a scene for relighting and environment matting applications [101].

2.2 Monte Carlo Integration and Sampling

In this section, we present an overview of Monte Carlo (MC) integration and sam-

pling as applied to realistic image synthesis. Many treatises exist in the literature that

introduce the broad concepts of probability theory and Monte Carlo methods and we

point the reader here to the texts by Kalos and Whitlock [62] and Hammersley and

Handscomb [52]. For introduction to Monte Carlo methods in ray tracing and image

synthesis, we refer the reader to [36, 37, 103, 121].

2.2.1 Monte Carlo Integration

The goal in image synthesis is to compute the reflected radiance for every surface point

visible to the viewer. In this thesis, we will restrict ourselves to evaluating the direct

illumination integral. In the presence of arbitrary HDR illumination and BRDFs, the

direct illumination integral is too computationally intensive for a brute-force solution.

Instead, we employ Monte Carlo integration, a stochastic technique that allows us to

compute approximations for integrals where an exact solution is intractable.

Suppose we wish to evaluate the integral

I( f ) =
Z

S
f (x)p(x)dx, (2.17)
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where f (x) is a function defined over the domain S and p is the underlying prob-

ability density function (PDF) of f . One can approximate such an integral with a

tractable sum IN( f ). Given a set of identically independently distributed samples

X = {x1,x2, . . . ,xN} drawn from some density p(x) defined over S, the tractable sum

IN( f ) =
1
N

N

∑
i=1

f (xi) (2.18)

converges asymptotically as N → ∞.

The integral I( f ) is also referred to as the average or the expected value E(x) of a

random variable x over the domain S. The expected value of a random variable satisfies

the following properties:

E(αX) = αE(X); (2.19)

E(∑
i

Xi) = ∑
i

E(Xi), (2.20)

where X is a random variable and α is any constant.

Now, let us examine the variance of a random variable. The variance var(X) of a

random variable X is the expected value of the squared difference of the realization of

a variable and its expected value

var(X) = E((X −E(X))2)

= E(X2)−E(X)2.

For independent random variables Xi, variance observes the following properties:

var(∑
i

Xi) = ∑
i

var(Xi); (2.21)

var(αX) = α
2var(X). (2.22)

With these properties in mind, we see that
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var(IN( f )) = var(
1
N

N

∑
i=1

f (xi))

=
1

N2

N

∑
i=1

var( f (xi))

=
1
N

var( f (xi)).

In Monte Carlo rendering, variance manifests itself as per-pixel noise in the output

image. The above equation shows that the variance in a Monte Carlo estimator of

an integral I( f ) is inversely proportional to the sample size N. Moreover, the error

in the estimate behaves similarly to the standard deviation of the function, i.e., the

square-root of the variance. This highlights the fundamental problem with Monte Carlo

integration: the notion of diminishing returns. Because image quality depends on N2,

one must quadruple N to halve the error.

This brings us to the concept of importance sampling which an important variance

reduction technique employed in Monte Carlo integration. Consider an integral I( f )

that needs to be evaluated for a function f over the domain x ∈ S:

I( f ) =
Z

S
f (x)dx. (2.23)

An unbiased Monte Carlo estimate of I( f ) can be obtained from the following sum:

I( f )≈ 1
N

N

∑
i=1

f (xi)
p(xi)

. (2.24)

where p is a PDF, and xi ∼ p. p is referred to as the proposal distribution for

the N random variables xi. In order to have a good estimate of I( f ), we need f
p to

have low variance. Choosing p appropriately such that f and p have similar shape,

and that p is large when f is large is called importance sampling. In the context of

computing the direct illumination integral, p has traditionally been chosen according

to the distribution of the incident illumination or the distribution of the BRDF.
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2.2.2 Sampling of Direct Illumination

All rendering systems, both global and local, must at some point compute the direct

illumination in the scene. Unfortunately, this task remains expensive, especially for

complex light sources such as environment maps and other image-based representa-

tions. Much effort has focused on the development of more efficient techniques for

completing this task.

Sampling of Environment Maps

Figure 2.3: Example of sampling via CDF inversion. Left: a 1-D PDF, p(x). Center:

the corresponding CDF, C(x). Right: uniform samples along the vertical axis trans-

formed by C−1(x) onto the horizontal axis and re-distributed according to p(x). Image

courtesy of [118].

Illumination from environment maps has been a topic of much recent research.

Most of this work focuses on interactive applications and therefore uses expensive

precomputation [51, 59, 64, 66]. In some recent work, the illumination and/or BRDF

are projected into finite bases such as spherical harmonics (e.g., [109, 110, 122]) and

wavelets [92].

Other researchers have used importance sampling techniques to distribute samples

according to the energy distribution in the environment map, either by using point

relaxation schemes [19, 69] based on Lloyd’s clustering algorithm [79] or by using an

efficient hierarchical Penrose tiling scheme [98].

Agarwal et al. [2] introduced a sampling method for environment maps taking
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into account both the energy distribution in the environment map and the solid an-

gle separating the samples. In this way, close clustering of environment map samples

is avoided, which reduces redundant shadow tests.

A common technique for sampling from an arbitrary discrete distribution p(x) is to

build the corresponding cumulative density function (CDF). For every real number x,

the CDF is given by

C(x) = p(X ≤ x). (2.25)

In other words, C(x) is the probability that the random variable X takes on a value

less than or equal to x. For X ∈ [0,1], the CDF is computed as

C(x) =
Z x

0
p(x)dx. (2.26)

In order to sample from p(x), we can choose a uniform variate ui ∈ [0,1], and then

transform it according to the inverse of the CDF to generate xi = C−1(ui). This is

illustrated in Figure 2.3. Note that since p(x) ≥ 0, C(x) is a monotonically increasing

function and C−1(x) always exists.

Secord et al. [118] described an algorithm for computing and inverting a 2-D CDF

based on image intensities in the context of stippling. This is a simple and efficient

method, a variant of which we use in our work for drawing samples from environment

maps. Inversion of CDFs is also used by Lawrence et al. [75] to sample from environ-

ment maps. For details on the CDF inversion method for sampling from environment

maps, we refer the reader to Burke’s Master’s thesis [12].

Sampling of BRDFs

Importance sampling from the BRDF is a common operation particularly for scenes

with uniform illumination, such as outdoor scenes. Simple analytical models such as

diffuse, Phong and generalized cosine lobe models can be easily sampled analytically.

For example, given a Phong BRDF with exponent n, the corresponding PDF of the
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specular lobe is given by

p(θ,φ) =
n+1

2π
cosn

θ. (2.27)

We can sample from the above PDF by transforming a pair of uniform random

variables (u1,u2) ∈ [0,1] according to

(θ,φ) = (arccos((1−u1)
1

n+1 ),2πu2). (2.28)

Note that the sampled direction (θ,φ) is distributed about the polar axis +Z. How-

ever, the specular term in the BRDF is parameterized about the reflection direction.

Hence, the final step in sampling involves transforming the generated direction from

the global polar axis to the local frame of the BRDF. Similarly, more sophisticated

analytical models such as the Ward model [140] and the Ashikhmin-Shirley-Phong

model [6] also provide means for analytical inversion of the specular lobe.

Microfacet distribution models based on Gaussian distributions [7, 133] provide an

analytical form of the PDF p(ĥ) that can be inverted, while an arbitrary distribution

such as that of the D-BRDF model needs to be inverted using a 2-D CDF inversion

technique similar to that employed for environment maps. The viewing vector k̂2 then

needs to be reflected about the generated half vector ĥ to obtain the sampling direction

k̂1:

k̂1 = 2(ĥ · k̂2)ĥ− k̂2 (2.29)

The final step involves converting the PDF over the half-vector p(ĥ) into a PDF

over the viewing direction p(k̂2) for importance sampling:

p(k̂2) =
p(ĥ)

4(ĥ · k̂1)
(2.30)

For tabulated BRDFs, kd-tree representations [86] and more recently, factored rep-

resentations [74] have been used for efficient importance sampling, while cosine lobe

approximations have been used for importance sampling of procedural shaders [124].
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In our work as discussed in Chapter 4, we use only Phong and diffuse reflection mod-

els. However, our method could easily be extended to incorporate more sophisticated

materials using any of the above methods.

Multiple Sampling Approaches

Veach & Guibas [136] proposed multiple importance sampling (MIS) as an effective

variance reduction technique. They combined different sampling distributions such as

illumination and BRDF distributions in an optimal manner using their proposed bal-

ance heuristics. However, their method results in a mixing of the variance of the in-

dividual distributions while methods that directly sample from the product distribution

of the illumination and the BRDF generally reduce variance further than MIS [13, 16].

Szecsi et al. [128] sample the unoccluded illumination using correlated sampling

and the difference due to visibility using importance sampling. This method gener-

ally performs well in fully visible regions, but rather poorly in occluded or partially

occluded regions, since the sampling of visibility does not follow a special sampling

pattern. Our work, by contrast, focuses visibility tests according to the direct illumina-

tion integral.

Sampling from Product Distributions

We introduce the notion of bidirectional importance sampling [13] in Section 4.2 that

takes into account the energy of incident illumination as well as the BRDF in the sam-

pling process. We present two Monte Carlo algorithms for sampling from the prod-

uct distribution - one based on rejection sampling and the other based on sampling-

importance resampling (SIR). The SIR algorithm is also used by Talbot et al. [129] for

variance reduction of direct illumination estimate.

Clarberg et al. [16] present a technique for efficiently sampling the product of the

illumination and the BRDF using a hierarchical wavelet representation. Their method

is very efficient for tabulated BRDFs but requires significant precomputation for envi-

ronment maps. Lawrence et al. [75] present an approach for compressing cumulative

distribution functions for efficient inversion and they apply it to sampling from many
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precomputed environment map PDFs for different surface orientations, which is a step

towards approximating the product distribution. Recently, Cline et al. [17] presented an

efficient technique for generating samples according to the product distribution based

on recursive splitting of the environment map at the BRDF peaks. They employ a

warping step to distribute samples into the split regions similar to Clarberg at al., but

without requiring the expensive precomputation step for a wavelet decomposition.

We extend product distribution sampling in the temporal domain in Chapter 5 with

our proposed sequential Monte Carlo (SMC) [46] mechanism for sampling dynamic

illumination. Our solution is very general and can be applied in combination with

any sampling scheme discussed above for proposing samples in the first time step. In

fact, sequential sampling would also help overcome the precomputation requirements

of some of these techniques for a dynamic sequence.

Metropolis Sampling for Global Illumination

Veach & Guibas [137] first applied Metropolis sampling to the problem of image syn-

thesis and developed a general, robust and unbiased algorithm called Metropolis Light

Transport (MLT) that was well suited for hard cases for sampling because of its lo-

calized exploration and path re-usage properties. Fan et al. [38] recently applied the

Metropolis algorithm for efficiently sampling coherent light paths for photon mapping.

Cline et al. [18] presented an efficient unbiased method to solve correlated integral

problems with a hybrid algorithm that uses Metropolis sampling-like mutation strate-

gies in a standard Monte Carlo integration setting, overcoming the startup bias problem

of MLT. They apply energy redistribution over the image plane to reduce variance of

path tracing for global illumination. Our work as discussed in Section 4.3 is similar in

spirit in the sense of initial Monte Carlo sampling followed by Metropolis sampling,

except that we apply this to direct illumination with a specific focus on efficient ex-

ploration of visibility in partially occluded regions [47]. Similarly, our proposed SMC

sampling mechanism for dynamic illumination also includes a Metropolis sampling

step for exploration of the new direct illumination target distribution.
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Sampling from Dynamic Illumination

Several researchers have considered the problem of sampling from dynamic illumi-

nation. For example, Sbert et al. [113] presented a method for reusing light paths

computed in one frame of a light animation sequence in all other frames using multi-

ple importance sampling. The indirect illumination in each frame of the sequence is

approximated as weighted contributions from these precomputed virtual point lights.

This method works on moving point lights, not complex environments.

Some researchers have looked at path re-usage in the context of global illumina-

tion for a sequence of camera animation via reprojection of the primary ray hits on to

the image plane. Here, techniques that are possibly biased [54] as well as unbiased

techniques [87] using multiple importance sampling have been proposed for the path

re-usage. Our proposed SMC sampling mechanism can also be applied to a camera

animation sequence for sample propagation in an unbiased manner, while being more

efficient than multiple importance sampling.

Recent work on dynamic environment maps, including Wan et al. [139] and Havran

et al. [55], approximates environments with a set of point lights that are drawn accord-

ing to the energy distribution in the environment map, and evolve smoothly over time.

However, this procedure introduces a systematic error for specular materials if none of

the chosen point lights resides inside the specular lobe. In this case, one would expect

to see a specular reflection of a dimmer part of the environment, but these methods

cannot produce this result.

2.3 Display Algorithms and Viewing Conditions

Finally, in this section we review some work on tone-mapping algorithms for display

devices and studies on viewing conditions and visual adaptation that are relevant to the

enhancement of perceptual realism of a virtual scene. Creation of a sense of presence

and immersion in a virtual environment is the major focus of perceptually realistic ren-

dering. Research targeting perceptual realism has so far had to deal with two major

factors. First is the dynamic range of display technology and its capacity for represent-
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ing the full range of dark and light intensities found in the real world. And secondly,

accounting for the viewing conditions for displayed images.

2.3.1 Dynamic Range of Display Devices

The limited dynamic range of both imaging devices and displays has received a lot

of attention in recent years. Algorithms have been developed for capturing both pho-

tographs [29, 81, 89, 112] and videos [63] with extended dynamic range. The challenge

has been to faithfully reproduce the range of intensities in the scene on the display

end. Tone mapping operators alleviate the problem of limited dynamic range of con-

ventional display devices to an extent, but are unable to compensate fully for these

shortcomings [76].

For the most part, the dynamic range problem has been addressed recently by new

high dynamic range (HDR) display technology [119]. We discuss how to drive the

projector-based HDR displays in real-time in Chapter 6 while also briefly describing

the algorithm for the LED-based design.

2.3.2 Tone Mapping and Visual Adaptation

The class of image processing techniques for coping with the discrepancy between

real world luminances and those that fit within the limited gamut of a conventional

output device is collectively called tone-mapping. A significant body of research in

realistic rendering has focused on tone mapping operators for displaying a wide range

of intensities on conventional displays. Much of this work is intended primarily for

still images (e.g., [35, 73, 111, 116, 135] and others).

Ferwerda et al. [39] pioneered work on tone mapping operators that explicitly take

visual adaptation into account. Their work uses threshold vs. intensity functions to

map threshold contrasts from the original intensity range to that of the display. Pat-

tanaik et al. [99] developed a model that also incorporates supra-threshold brightness,

color, and visual acuity. Both models could, in principle, be used to track changes in

visual adaptation over time, although they are computationally rather expensive. Other

researchers [4, 34, 60, 100, 114] have developed methods to model the time-dependent
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state of adaptation based on the recent history of viewing conditions in the virtual

world.

One limitation of these methods is that they have no information of the user’s actual

state of adaptation, since it depends largely on the real-world illumination in the room,

rather than the virtual world. The viewing conditions are largely unknown, meaning

that parameters such as the viewer’s light and color adaptation cannot be considered in

the image generation process. An image generated for a dark-adapted viewer will not

be perceived as realistic in a bright room. The use of HDR displays largely removes the

need for tone mapping operators, since they can reproduce intensities from mesopic to

medium photopic vision levels. However, this does not solve the problem of unknown

viewing conditions.

2.3.3 Perceptual Studies on Room Lighting

A vast body of literature in the perceptual psychology community deals with the impact

of room lighting conditions. Many of these studies were performed to analyze the im-

pact of room lighting on ergonomic factors such as screen visibility, eye strain, and so

forth. There has also been work on using light sensors to adjust the display brightness

and contrast (e.g. [3, 8]). These studies try to either minimize the influence of room

lighting on displays or compensate at the display end for the illumination conditions.

We, on the other hand, deliberately focus on tying the room lighting into the viewing

environment to enhance a viewer’s sense of immersion [49].

Other studies analyze the perceived brightness vs. luminance levels of images

viewed under different room illumination (e.g. [9, 32]). Most existing studies only

cover static illumination. An exception is [108], which discusses the need for adjust-

ing for dynamic lighting changes in critical applications such as reading controls for

cockpits. However, all studies we are aware of implicitly assume that room lighting

is the primary factor for adaptation, and that it has a significant impact on the dis-

play surface itself. Both of these assumptions do not hold for HDR displays, and as a

consequence the findings from these studies do not apply to our work.
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2.3.4 Bridging Real and Virtual Illumination

One way of integrating real and virtual objects is to change the illumination in the vir-

tual world to make it consistent with the real world. Nayar et al. [91] recently developed

a lighting sensitive display that tracks changes of illumination in the room, including

directional changes, and uses this information to shade virtual objects. Our work, as

discussed in Chapter 7, takes the opposite approach and adapts the room illumination

to be consistent with a virtual world. We believe there is room for both approaches:

while Nayar et al.’s method creates opportunities for new user interaction metaphors,

ours is useful whenever a specific virtual world needs to be displayed.

There has been other work that uses separate light sources to augment computer

displays. Philips produces a series of high-end flatpanel TVs which have light sources

on the back to illuminate the wall behind the TV [104]. The lights are driven uniformly

based on the average intensity of the screen content, thereby essentially reducing con-

trast between the wall and the TV screen. In contrast, our system creates directional

illumination based on actual information from the virtual environment. Light sources

have also been used to augment displays in theme park rides. There, lights are often

used together with other physical props to show a fixed scene. We, on the other hand

can deal with dynamically generated content, but aim only at creating low resolution

information for the peripheral field of view.

Other related work includes Debevec et al.’s Light Stage 3 [30]. That work uses

a number of computer-controlled lights to illuminate actors or objects such that they

appear on camera as if they were in a certain real-world environment. An actor in

Light Stage 3 sees only a number of point lights, while we aim at producing a smooth

environmental illumination that can convincingly represent the real environment in the

user’s peripheral view. This goal requires a different physical setup, as well as different

calibration and rendering algorithms.

Also related to our work are fully immersive, CAVE-like environments [23]. Un-

fortunately, CAVEs, like other VR displays, have very limited contrast which makes

them unsuitable for representing the kind of adaptation processes we are interested in.

Due to engineering constraints such as power consumption and heat production [119],
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its seems unlikely that immersive HDR environments will be feasible in the near or

even medium term future. Space and cost present further obstacles. Such a system

would also require high resolution, omnidirectional illumination information, which is

hard to generate, for example, in live action film. Therefore, in Chapter 7, we focus on

conventional, limited field-of-view displays with high contrast which we augment with

low-resolution directional illumination.
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Chapter 3

BRDF Acquisition with Basis

Illumination

Realistic image synthesis requires both complex and realistic representation of surface

reflectance as described by the bidirectional reflectance distribution function (BRDF).

Real world materials exhibit characteristic surface reflectance, such as glossy or spec-

ular highlights, anisotropy, or retro-reflection, which need to be modeled for visual

realism. Numerous analytical models of BRDFs have been used in computer graphics

that observe the laws of energy conservation and reciprocity, and hence are physi-

cally plausible. [6, 7, 20, 57, 58]. However, these models generally do not capture

the reflectance properties of all kinds of materials. Furthermore, selecting appropri-

ate model parameters for representing different kinds of real-world materials can be a

non-intuitive and time-consuming process. Therefore, acquisition of various real world

BRDF data has been a very active area of research over the last few years. This task

has typically involved measuring the response of various samples using some version

of a gonio-reflectometer [21, 24, 96, 140]. More recently, several researchers have

employed image based techniques in order to make acquisition of BRDFs more effi-

cient [25, 53, 77, 84, 85].

Independent of the acquisition process, the acquired data is generally not used di-

rectly due to its large size, the noise present in the measurement process, and missing

data for certain incident and exitant directions. The data is either fitted to an ana-

lytical model for rendering [71, 93, 140] or sampled into some suitable basis func-

tion [92, 110, 142]. This fitting process results in the loss of some of the captured high

frequency details in the original data, possibly making the high sampling density of
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acquisition an overkill. At the same time, reducing the sampling density during acqui-

sition would result in aliasing artifacts for sharp features that would then fall below the

Nyquist limit.

In this chapter, we propose an alternative approach to the acquisition of reflectance

data where we optically project the data into a suitable basis function directly during

the capture process [45]. This approach results in optical low-pass filtering of the data

at capture time, and thus addresses aliasing issues and minimizes high frequency noise.

An added benefit is that this prevents any redundancy in data capture as we can use all

of the data we acquire. For this purpose, we design a compact optical setup that can

project illumination as continuous basis functions over a spherical zone of directions.

Likewise, the light reflected off the sample is measured over a continuous zone of di-

rections. BRDF values outside the zonal directions are extrapolated by re-projecting

the zonal measurements into a spherical harmonics basis, or by fitting analytical reflec-

tion models to the data. Our approach speeds up acquisition time to one or two minutes

compared to a few hours required by previous acquisition approaches.

Here, we outline the main contributions of our approach:

• The theory behind, and a practical implementation of the concept of measuring

the response of a surface to a basis function as a way of optically filtering and

encoding the BRDF data.

• Development of a set of orthogonal basis functions defined over the measurement

space, as well as basis transformation as a way of data extrapolation.

• A novel design for a curved reflector catadioptric imaging setup resulting in an

efficient image based BRDF acquisition without involving any moving parts.

3.1 Overview

The distinguishing characteristic of our BRDF measurement system is that it captures

the response of the surface to illumination in the form of smooth basis functions, while

existing methods measure impulse response using thin pencils of light that approximate
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Figure 3.1: Left: Physical setup of our reflectance acquisition device. A camera fo-

cused on the mirrored components views a zone of reflected directions. A projector

illuminates the corresponding zone of incident directions using a beam splitter. Right:

A prototype demonstrating the concept in 2-D. Here, we focus illumination on the mir-

rored components using a laser pointer and observe that the beam bounces back to its

origin.

Dirac peaks. For this concept to be practical, we require an optical setup that allows

us to simultaneously project light onto the sample from a large range of directions,

and likewise to measure the reflected light distribution over a similarly large range of

directions. Developing such optics also has the advantage that no moving parts are

required, which is one reason for the speed of our acquisition.

In this work, we choose a spherical zone of directions as the acquisition region for

both incident and exitant light directions. Spherical zones have several advantages over

regions of other shape. First, they allow us to develop basis functions that align nicely

with the symmetries present in many BRDFs, thus minimizing the number of basis

functions required to represent a given BRDF. Alignment also simplifies extrapolation

of data into missing regions. Second, a zonal setup allows us to design optics that could,

in principle, cover over 98% of the hemisphere, with only a small hole near the zenith,

where BRDF values are usually smoother compared to more tangential directions. Our

optical design for covering this zone, in principle, enables high sampling density close

to the tangential directions which are hard to measure with conventional setups. The
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Figure 3.2: The measurement zone Z.

manufacturing process that we used for our optical components allowed us to produce

a section of that range corresponding to 51% of the hemisphere.

Figure 3.1 shows a diagram and a 2D mockup of such an optical setup. A camera

focused on the mirrored components can capture the full zone of reflected directions

in our setup. Simultaneously, a projector focused on the the mirrored components can

cover the corresponding zone of incident directions.

In the following, we will first discuss the theoretical underpinnings for basis func-

tion BRDF acquisition (Section 3.2), and then describe the physical setup (Section 3.3).

Finally, we present some results in Section 3.4 and conclude with a discussion in Sec-

tion 3.5.

3.2 Measurement with Basis Functions

In this section, we discuss the mathematical concepts behind a basis function approach

for BRDF measurement, and derive the specific basis that we use in our work. Sec-

tion 3.3 then deals with the physical realization of these concepts.

Assume that we want to measure a BRDF fr(ωi,ωr) for combinations of incident

light direction ωi and exitant light direction ωr restricted to a spherical zone Z centered

around the surface normal. Z corresponds to longitudinal angles φ ∈ [0 . . .2π] and

latitudinal angles θ ∈ [θmin . . .θmax], as shown in Figure 3.2.
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We would like to approximate the BRDF over this zone with a linear combination

of basis functions {Zk(ωi)} over the incident light directions. We will include the cosθi

term in this basis representation for convenience and numerical stability, i.e.,

f̂r(ωi,ωr) = fr(ωi,ωr)cosθi ≈∑
k

Zk(ωi)zk(ωr), (3.1)

so that we can write the reflected radiance for any outgoing direction ωr as

Lr(ωr) =
Z

Z
fr(ωi,ωr)Li(ωi)cosθi dωi (3.2)

=
Z

Z

(
∑
k

Zk(ωi)zk(ωr)

)
Li(ωi) dωi (3.3)

=∑
k

zk(ωr)
Z

Z
Zk(ωi)Li(ωi) dωi. (3.4)

In this framework, BRDF measurement can be seen as the process of determining

the coefficients zk(ωr) for each basis Zk and each exitant light direction ωr. If we

have chosen the Zk such that they form an orthonormal basis over the zone Z, then the

coefficients are given as

zk(ωr) =
Z

Z
Zk(ωi) fr(ωi,ωr)cosθi dωi. (3.5)

In other words, we can measure zk(ωr) by recording the reflected light along each

direction ωr ∈ Z for different incident illumination patterns Zk(ωi).

For practical applications, we of course need to extrapolate from the data measured

over the zone to incident and exitant directions that have not been measured. In general,

we would also like to transform the data into a different representation that is more

convenient for rendering purposes, such as a tensor-product Spherical Harmonics (SH)

basis, or coefficients of an analytical reflection model. Interestingly, format conversion

and extrapolation can be achieved in a single, inexpensive step, as described below.

First, however, we introduce the orthonormal zonal basis that we have developed.

3.2.1 Orthonormal Zonal Basis

Like the Spherical Harmonic basis, our Zonal Basis (ZB) is derived from the Asso-

ciated Legendre Polynomials (ALP) Pm
l (x),m ∈ {0, . . . , l}, which are orthogonal over
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x ∈ [−1,1] with Z 1

−1
Pm

l (x)Pm
l′ (x)dx =

2(l + |m|)!
(2l +1)(l−|m|)!

δll′ . (3.6)

For defining spherical harmonics Y m
l , the Pm

l are scaled so that they are orthogonal

over [0,π], with

Y m
l (θ,φ) =



√
2Km

l cos(mφ)Pm
l (cosθ) if m > 0

√
2Km

l sin(−mφ)P−m
l (cosθ) if m < 0

K0
l P0

l (cosθ) if m = 0

, (3.7)

where Km
l is the SH normalization constant:

Km
l =

√
(2l +1)(l−|m|)!

4π(l + |m|)!
. (3.8)

For our zonal basis, we follow the same principle, and rescale the ALP to the range

[θmin . . .θmax].

P̂m
l (x) = Pm

l (n1 · x−n2), (3.9)

with

n1 =
2

cosθmin− cosθmax

n2 =
2cosθmin

cosθmin− cosθmax
−1.

The ZB functions Zm
l (φ,θ) ∈ [0,2π]× [θmin,θmax] then become

Zm
l (θ,φ) =



√
2K̂m

l cos(mφ)P̂m
l (cosθ) if m > 0

√
2K̂m

l sin(−mφ)P̂−m
l (cosθ) if m < 0

K̂0
l P̂0

l (cosθ) if m = 0

, (3.10)

where the zonal normalization constant K̂m
l can be shown to be

K̂m
l =

√
(2l +1)(l−|m|)!

2π · (cosθmin− cosθmax) · (l + |m|)!
. (3.11)
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3.2.2 Basis Conversion to Spherical Harmonics

While the zonal basis is a convenient basis for measurement due to its orthonormal-

ity over the zone, it is not convenient for representing the full BRDF, since it does

not cover the full hemisphere of incident and exitant directions. We therefore need to

extrapolate the missing data, and transform the measurements into a basis that is con-

venient for rendering. The spherical harmonics are one suitable basis, which has been

used extensively in the past for representing BRDF data.

Converting ZB coefficients to SH coefficients requires us to project the continuous

function f̂r over the zone Z into the basis Y m
l , i.e., f̂r(ωi,ωr) ≈ ∑l,m ym

l (ωr)Y m
l (ωi).

Unlike the ZB basis functions, however, the restrictions of the SH basis functions to

Z are not orthonormal, and therefore, the equivalent of Equation 3.5 does not hold for

spherical harmonics. Instead, we have

ym
l (ωr) =

Z
Z

Ŷ m
l (ωi) f̂r(ωi,ωr) dωi, (3.12)

where {Ŷ m
l (ωi)} is the dual basis to the spherical harmonics over the zone Z, i.e. the

basis that fulfills the conditions

Z
Z

Y m
l (ω)Ŷ q

p (ω)dω =


1 if l = p and m = q

0 otherwise

. (3.13)

Since {Ŷ m
l (ωi)} is a basis for the same function space as the SH basis, we also have

Ŷ q
p = ∑

l,m
cm,q

l,p Y m
l . (3.14)

Equations 3.13 and 3.14 together describe a sparse linear system Ax = b where x is

the vector of l,m× p,q unknown linear weights cm,q
l,p that define the duals Ŷ q

p and b is

the vector of lm× pq constraints defined by the RHS in Equation 3.13. The matrix A is

large with N2×N2 elements where N is the number of SH bases being used to represent

a function. However it is very sparse with only O(N2) non-zero values occurring for

combinations of ZB and SH functions with matching degree.
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Once we have the duals Ŷ q
p in terms of the linear weights cm,q

l,p , we can project any

function defined over Z into the SH basis. In particular, we have

f̂r = ∑
l,m

ym
l Y m

l , with ym
l =

Z
Z

f̂rŶ m
l dωi. (3.15)

Given this SH representation of the BRDF, we can now use the coefficients ym
l both

inside the zone Z, and in the region outside the measurement area, which extrapolates

the measurements to the full hemisphere. The exitant directions ωr can be projected

into a spherical harmonic basis in a similar fashion, which results in an extrapolation

of missing data on the outgoing hemisphere.

Moreover, we can also project the individual functions of the ZB into the SH basis

in a precomputation step. Conversion from ZB to SH is then a simple linear transfor-

mation of the zonal coefficients zq
p of a function f̂r by a basis change matrix C into

corresponding SH coefficients ym
l . Each element of this matrix is defined by

Cm,q
l,p =

Z
Z

Zq
pŶ m

l dω. (3.16)

The basis conversion matrix C (N×N) is quite sparse, since it only has non-zero

coefficients when the degrees of the ZB and the SH function match.

3.2.3 Fitting Analytical Reflection Models

For relatively low frequency BRDFs, the spherical harmonic representation produces

very good results. For specular materials, it is well known that basis functions such as

spherical harmonics suffer from Gibbs oscillations that are visible in the reconstruction

as undesirable ringing artifacts. The zonal basis functions developed here also exhibit

the same oscillations for high frequency data. Hence, for specular materials, we cannot

directly use the acquired coefficients or transform them into SH for rendering.

Instead, we propose to fit the higher order zonal representation of specular BRDFs

to an analytical model, thereby overcoming the problem of oscillations in the recon-

struction. In our case, we chose the distribution-based BRDF model proposed by

Ashikhmin [5], due to the simplicity of the fitting procedure. The D-BRDF model is

also a generalization of the Ashikhmin-Shirley-Phong model [6], which was recently
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found to be particularly well-suited for fitting to measured data [93]. However, the

measured zonal data can be fitted to any other suitable analytic model using a numeri-

cal fitting procedure such as Levenberg-Marquardt [107].

Figure 3.3: An illustration of the suppression of ringing through fitting analytical

BRDF models. Left: original acrylic blue paint BRDF. Center: 10th order zonal re-

construction, rendered after transformation into SH, exhibiting severe ringing artifacts.

Right: Corresponding D-BRDF fit to the zonal reconstruction.

Figure 3.3 shows a synthetic example of the D-BRDF fitting. The ground truth data

as shown on the left is the acrylic blue isotropic BRDF acquired by Matusik et al. [85].

The figure in the center is a reconstruction of this BRDF after projection into a higher

order zonal basis function, followed by a transformation into the spherical harmonics

basis for rendering. The black rings represent negative values due to ringing. The figure

on the right corresponds to fitting the zonal reconstruction directly into the D-BRDF

analytical model. Since Gibbs phenomenon results in oscillations around the true value

of the function, the least-squares fit of a BRDF model that does not exhibit this kind of

oscillation is very effective at approximating the original shape.

3.3 Measurement Setup and Calibration

The primary components of our image-based acquisition setup are a convex parabolic

mirror suspended inside a mirrored dome. This optical setup can cover a zone of in-

cident as well as exitant directions of measurement. In addition to the mirrored com-

ponents, the acquisition system consists of a FireWire machine vision camera (Prosil-
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Figure 3.4: Photograph of the proposed BRDF acquisition setup including a camera,
a projector, a beam-splitter, and two curved reflectors mounted on a 40 cm× 40 cm
optical bench.

ica EC 1350C), an LED RGB PocketProjector (Mitsubishi PK1), and a beam splitter

(Figure 3.4). The camera has a resolution of 1360× 1024 and an acquisition rate of

15 frames per second at 12-bits per color channel. The projector has a resolution of

800×600 with peak illumination intensity specified at 200 Lux. An external 350 mm

lens was used to focus the projector at the required focal distance. All reflectance mea-

surements are performed with multiple exposures [29] for high dynamic range (HDR)

acquisition.

Our optical setup consists of two mirrored components, a convex parabola and a

concave reflective dome as shown in Figures 3.1 and 3.5. The dome has a rotationally

symmetric shape with a freeform profile, as detailed in the following.

Dome Shape: For a fixed configuration of parabola, sample, camera, and projector,

the freeform profile of the dome is determined as follows. First, the location of the

dome’s rim D1 is found by intersecting a camera ray reflecting off the bottom edge P1

of the paraboloid with the tangent plane of the sample (Figure 3.5, left). The surface

normal at the rim defines a tangent plane in D1. For the next camera ray reflecting
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Figure 3.5: Iterative process for designing the profile of the reflective dome for a fixed
convex parabolic reflector.

of P2, we compute the intersection D2 of the reflected ray with the tangent plane of

D1 (Figure 3.5, center). The normal in D2 defines a new tangent plane that we can

use in the same way to obtain the next point on the dome. Proceeding iteratively with

this approach, we can determine the full shape of the dome (Figure 3.5, right) in what

amounts to an Euler integration procedure. Note that these simulations are run at orders

of magnitude higher resolution than actual camera or projector pixel resolution.

Design Simulations: The design parameters, i.e., the spatial location of parabola,

sample, camera, and projector, were optimized using detailed simulations with a ray-

tracer. We modeled the camera and projector as thin lens devices. Our simulations

took into account various parameters such as focal distances, finite apertures and pixel

resolutions of cameras and projectors, and stability under minor misalignments of the

various optical components to the optical axis.

Final design: After extensive simulations, we decided on a design that lets us

project over 100 pixels between the vertex and the tangent of the parabolic mirror in

order to provide at least 1 measurement per degree along the latitudinal directions. For

this setup, the distance between the center of projection of the camera and the vertex

of the parabolic mirror is 27 cm, and the distance between the parabola vertex and the

sample at the bottom is 13.5 cm.
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The dimensions of the full dome are 11”× 11”× 10” for this setup. Our design

provides us > 1 pixel/degree measurements over the full measurement zone. The full

dome as simulated in Figure 3.5 would cover the zone from 9◦ to 90◦ off the normal

to the sample. This range corresponds to over 98% of the full hemisphere. Zonal basis

function plots defined over this maximal zone are given in Appendix B.

Physical implementation: For the manufacturing of the dome and parabola, we

chose electroforming process, in which a mandrel of the dome is first machined and

polished, and then the actual dome is deposited on this mandrel in an electrolyte bath.

This process allows the production of optical quality free-form surfaces at moderate

cost. Electroforming also helps with the reproducibility of the design from the ma-

chined mandrel. However, a downside of this approach is that it only allows for convex

holes, since the mandrel has to be removed after the electroforming process. For this

reason, we were only able to build a dome covering the zone from 9◦ to 57◦ off normal,

corresponding to about 51% of the hemisphere (Figure 3.4).

3.3.1 Calibration

Geometric calibration is necessary in order to align the camera and the projector to the

optical axis of the acquisition setup. We also need to perform photometric calibration

in order to recover the absolute scaling factors for our measurements with respect to

some known reflectance standard.

Optical Axis Calibration: The optical axis of the camera and projector need to be

aligned with that of the parabolic mirror and dome. We mount the dome on an optical

table, and mark its optical axis with crosses that are attached to the dome with precision

mounts. The camera is moved with a manual translation stage until all crosses line up.

Likewise, the projector is moved manually until the shadows of all crosses line up. For

details of the design simulation and optical axis calibration process, we refer the reader

to Achutha’s Master’s thesis [1].

Sample Mounting: Due to the large aperture of our optical system, the depth-of-

field is very shallow, about 2 mm. As a result, the material samples have to be mounted

with fairly high precision, which is easily achieved with a mechanical stop.
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Figure 3.6: Plot of measured coefficients of gray card vs. that of pure Lambertian
diffuse reflectance. Note that the measured coefficients have been scaled so that the
DC term (l = 0,m = 0) matches the DC term of 18% Lambertian diffuse reflectance.

Projector Flat-Fielding: We account for any spatial variation of the projector illu-

mination by acquiring an HDR photograph of a full screen image set to medium gray,

projected on to a diffuse white screen at the required focal distance of 28cm. All the

basis images are then modulated by this image.

Reflectance Calibration: An important aspect of the calibration is to recover the

relative scaling factors for our measurements with respect to some known reflectance

standard. For this, we take advantage of an 18% diffuse gray card commonly used

in photography. We measure the diffuse reflectance of the gray card with our setup

using the first 9 zonal basis functions [109]. The relative scaling factors for each color

channel are obtained by white-balancing the results of the gray card measurements.

As an additional step, we plot the first 3 (l ≤ 2,m = 0) measured coefficients of the

gray card against coefficients of 18% Lambertian diffuse reflectance for validation of

the accuracy of the measurement system. As seen in Figure 3.6, once we scale the

measured DC term to match that of 18% gray, the other two terms are off by around



44 Chapter 3. BRDF Acquisition with Basis Illumination

Figure 3.7: Representative set of BRDFs acquired with lower order zonal basis func-

tions rendered under directional lighting. Top row: from left to right - red velvet, dark

dark blue synthetic fabric, red printer toner, magenta plastic sheet. Bottom row: from

left to right - brown leather, glossy red paper, KrylonT M blue paint, chrome gold dust

automotive paint.

2% and 10% respectively.

3.4 Results

Using our prototype setup, we have acquired the BRDFs of various types of materials,

including velvet, anisotropic synthetic, silk and satin fabrics, leather, various kinds of

glossy and shiny papers, paint and plastic samples, printer toners, wax, highly specular

metal foil wrapping papers, and anisotropic samples such as a guitar pick and a copper

coin. Figure 3.12 presents a selection of BRDFs as rendered on a sphere under a

directional light source. Most of the materials were acquired using lower order (l ≤ 6)

zonal basis functions. The silk and satin fabrics, and the guitar pick were acquired
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Figure 3.8: Specular chocolate wrapping papers acquired using higher order zonal

basis functions, and then fit to an analytical model for rendering. Left: Red KitKatT M

wrapping paper. Right: Copper colored LindtT M chocolate wrapping paper.

with order l = 8 zonal basis function, while the shiny wrapping papers and anisotropic

copper coin required acquisition with order l = 10 zonal basis function.

The entire process of acquisition consists of separately projecting the positive and

negative lobes of the basis functions and recording the response to these lobes in HDR.

We used 3 exposures each at 2 f-stops apart for the HDR sequence. Thereafter, in a

post-process we construct HDR images from the 3 different exposures and then subtract

the responses to the negative lobes from the responses to the corresponding positive

lobes in software. Hence, for a 4th order zonal basis acquisition this results in the

processing of 25×2×3 = 150 response images, which takes about one minute. Higher

order basis acquisitions for very specular materials take 5−7 minutes.

Figure 3.13 presents the BRDFs of 2 different paint samples that we acquired using

4th order zonal basis functions, rendered on the Audi-TT car model, and illuminated

by an HDR environment map using the Physically Based Ray Tracing (PBRT) sys-

tem [103].

A representative set of the BRDFs acquired using lower order (l ≤ 6) zonal basis

functions is shown in Figure 3.7. For this class of materials, the entire process of acqui-
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Figure 3.9: Visual comparison of two kinds of acquired satin samples wrapped around

a cylinder as lit by a point source against real photographs. Left column: Photographs

of the red and blue satin samples. Right column: Rendering of the D-BRDF fit to the

acquired data.

sition followed by a basis transformation into the SH basis took under three minutes.

Figure 3.8 demonstrates the specular materials, in this case shiny metal foil choco-

late wrapping papers, which we then fit to the D-BRDF analytical model. The D-BRDF

fitting procedure consists of constructing the distribution of the half-vector ωh between

the incident light direction ωi and exitant viewing direction ωr as a function of the

back-scattering direction measurements, i.e., the directions where ωi = ωr. In our case,

we extract the zonal half-vector distribution from the measured data, and then extrap-

olate that to cover the full hemisphere of half-vector directions. The entire acquisition

and fitting procedure took only a few minutes to complete in all examples. Similarly,

we also fit the anisotropic guitar pick, the copper coin and the red satin sample to the

D-BRDF analytical model (Figure 3.12, bottom row).

Finally, as a way of validating our measurement and fitting approach, we pho-

tographed two satin samples wrapped around a cylinder in a dark room and lit by a col-
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limated point light source. Figure 3.9 presents the comparisons of these photographs

with the corresponding renderings of the D-BRDF fits to these samples. The high-

lights in the rendered images are a close match to the real photographs validating our

approach.

3.4.1 Rendering with Acquired BRDFs

Once we have acquired the BRDF data using our basis acquisition approach, we need to

to integrate the data into existing rendering systems. In this section we discuss how to

use such data, either encoded in the SH basis representation or as a D-BRDF fit, in real-

time rendering systems and ray-tracing systems for high quality off-line renderings.

Real-time Rendering

Most of the BRDF data acquired using our system is encoded in the SH basis repre-

sentation after undergoing a basis transformation from the acquired zonal basis rep-

resentation. Similar to the approach of Kautz et al. [65], we discretize the exitant

viewing direction (θr,φr) and encode the incident directions corresponding to each ex-

itant direction as SH coefficients ym
l (θr,φr) for run-time efficiency of evaluation of the

reflectance function. During rendering, the reflectance function is reconstructed for ev-

ery discretised exitant direction from the corresponding SH coefficients. The reflected

radiance in the viewing direction Lr for a local lighting model is then given by:

Lr(θr,φr) =
R

Ω
f̂r(ωi,ωr)Li(ωi)dω

=
R

Ω ∑l,m ym
l (θr,φr)Y m

l (ωi)Li(ωi)dω

(3.17)

For real-time rendering on current generation graphics hardware, we need to dis-

cretize both the exitant and the incident directions and pack the coefficients and the

basis functions into an RGBA 3-D float texture. Here, the discretised directions are

indexed as 2-D coordinates within a slice of the 3-D texture and the l,m slices each

correspond a separate SH basis function. Values for arbitrary directions need to be

bilinearly interpolated explicitly within each slice as this is not currently supported in
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Figure 3.10: Real-time rendering of acquired BRDFs. Top row: Metallic teal auto-

motive paint rendered using the SH basis representation. Bottom row: D-BRDF fit

to copper colored LindtT M chocolate wrapping paper. Left column: single directional

light source. Right column: Grace cathedral HDR environment map lighting approxi-

mated with 128 directional lights generated by the Median Cut algorithm.

hardware. For efficiency of packing as well as memory access pattern, we pack the

coefficients ym
l (θr,φr) into the RGB channel and the corresponding SH basis function

value Y m
l (θi,φi) in the alpha channel of the 3-D texture (Figure 3.10, top row). In our

implementation, we have used a resolution of 90×90 for the spherical directions (θ,φ).

For integrating environment map illumination in real-time rendering, one approach

would be to transform the environment map into the SH basis and evaluate the reflected

radiance on the fly as a dot product of the BRDF coefficients and the environment map

coeffients [42, 110]. However, such an approach results in ringing artifacts for high

frequency lighting. For such situations, it is preferable to approximate the environment

map with a number of point lights either using point relaxation [2, 69] or importance
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Figure 3.11: Comparison of importance sampling strategies for acquired BRDF of

copper colored LindtT M chocolate wrapping paper in high frequency HDR lighting of

Grace Cathedral EM. Left : Importance sampling from a cosine lobe (default option in

PBRT). Right : Importance sampling from the extracted half-vector distribution p(ĥ)

of the D-BRDF fit to acquired data. Both images were generated with 100 samples per

pixel in 20 seconds. Note the significant reduction in overall image noise, particularly

around the specular highlights, with sampling according to the extracted distribution.

sampling [98] schemes. In our implementation, we use the simple procedure of the Me-

dian Cut algorithm proposed by Debevec [28] to generate a point light approximation

of the environment map (Figure 3.10, right column).

We use the D-BRDF representation to fit the acquired zonal basis data for highly

specular BRDFs instead of transforming to the SH basis representation. Real-time

rendering with the D-BRDF fit (Figure 3.10, bottom row) involves storing the extracted

2-D half-vector distribution p(ĥ) in graphics hardware as a 2-D float texture indexed

by (θh,φh). In addition, we need to precompute and store the Fresnel term F(k̂ · ĥ)

as a 1-D float texture since the exponentiation involved in evaluating the Fresnel term

(Equation 2.14) is currently not supported in hardware.
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Monte Carlo Ray-tracing

Monte Carlo ray-tracing is often the choice of algorithm for high-quality offline ren-

dering. In this discussion, we will restrict ourselves to rendering with complex direct

illumination in the form of HDR environment maps. Integrating the acquired BRDF

data into a ray-tracing system is fairly straightforward. We have extended the PBRT

raytracing system (in terms of its BxDF class) to incorporate our acquired BRDFs in

the SH representation or as a D-BRDF fit. For the SH representation, we employ the

discretization scheme of Section 3.4.1 over the exitant direction ωr while evaluating

the SH function Y m
l (ωi) for the incident direction ωi at run-time. Similarly, for the

D-BRDF representation we load the half-vector distribution p(ĥ) as a discretised table

over (θh,φh) while evaluating all other terms including the Fresnel term at run-time.

When using acquired BRDFs to describe materials in a scene, a ray-tracing system

needs to be able to sample from the specific BRDF representation. An efficient im-

portance sampling scheme becomes particularly important in the presence of complex

environment map illumination. One way to sample from BRDF data encoded in the

SH basis representation would be to do a convex combination of samples drawn from

individual SH lobes. Such a scheme would involve first choosing an SH lobe to sample

from based on the distribution of the coefficients ym
l for a given exitant direction ωr,

and then generating a sample from that SH lobe using a 2-D CDF inversion method.

This method is further complicated for the SH representation due to the presence of

negative lobes of the SH functions in addition to the positive lobes. We implemented

such a sampling scheme in PBRT and found it to be not very efficient, particularly for

low frequency BRDFs and small sample counts.

Instead, we make the observation that the proposal distribution for importance sam-

pling needs to simply be similar to the BRDF function, and as long as one can effi-

ciently draw samples from the proposal distribution we do not need to use the exact

same BRDF representation for rendering and importance sampling. Hence, we advo-

cate to draw samples from our acquired BRDFs by constructing the underlying half-

vector distribution p(ĥ) from the measured reflectance data in the D-BRDF framework

as discussed in Section 2.1.1. At rune-time, we sample a half-vector direction (θh,φh)
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using a 2-D CDF inversion scheme, reflect the view vector ωr about this sampled half-

vector ĥ to obtain the sampling direction ωi. The final step is to appropriately nor-

malize the importance sampling weight p according to Equation 2.30. Figure 3.11

demonstrates the benefit of importance sampling from the corresponding D-BRDF dis-

tribution of the acquired data over sampling from a cosine lobe, which is the default

option for BRDFs in PBRT.

3.5 Discussion

In this chapter, we have presented a novel basis function approach to BRDF measure-

ment. Our contributions include a novel theory for basis function BRDF acquisition,

the development of an orthonormal basis for spherical zones, and the design of an opti-

cal setup that allows for basis function illumination of BRDF samples. We also discuss

how to integrate the acquired BRDF data into real-time and off-line rendering systems.

The dome we use in our prototype setup covers a sufficient percentage of the hemi-

sphere to obtain high quality BRDF measurements with our basis function approach.

To further increase quality by reducing the amount of extrapolation, a dome with a

larger coverage could be used. It would be interesting to look into manufacturing tech-

niques that are able to produce such domes.

Due to the basis function approach and the dispensing of all moving parts, BRDF

measurement with our setup is very fast, reducing the acquisition time to a few minutes

even for high-frequency materials. Moreover, the physical dimensions of the setup are

quite compact, so that the whole apparatus could be enclosed in a box the size of a

small suitcase. Such a variant of the system would be quite mobile, and could be used

on movie sets and in similar settings.



52 Chapter 3. BRDF Acquisition with Basis Illumination

Figure 3.12: Various BRDFs acquired with our prototype setup using zonal basis func-

tions. Top row: from left to right - bright orange paper, red velvet, maroon synthetic

fabric, anisotropic dark blue synthetic fabric, brown leather, red printer toner. Second

row: from left to right - blue printer toner, coated brown paper, glossy red paper, glossy

blue-gray paper, LindtT M chocolate box paper, magenta plastic with grain finish. Third

row: from left to right - retro-reflective plastic, dark brown plastic coffee lid, KrylonT M

banner red paint, KrylonT M true blue paint, metallic teal automotive paint, chrome gold

dust automotive paint. Fourth row: from left to right - purple anisotropic silk fabric,

blue anisotropic silk fabric, shiny blue paper, shiny golden paper, red KitKatT M wrap-

ping paper, copper colored LindtT M chocolate wrapping paper. Bottom row: from left

to right - glossy succulent plant leaf, blue rubber band, red wax, anisotropic plastic

guitar pick, anisotropic copper coin, anisotropic red satin.
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Figure 3.13: The Audi-TT model rendered with acquired BRDFs of 2 different paint
samples. The BRDFs were acquired using 25 4th order basis functions as defined in
this chapter, and then rendered with a basis transformation into spherical harmonics.
Top: Metallic teal automotive paint. Bottom: KrylonT M true blue paint. In each case,
the time taken for the entire BRDF measurement process including data capture and
re-projection into the spherical harmonic basis was about one minute.
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Chapter 4

Sampling Techniques for Direct

Illumination

In Chapter 3 we described a novel method for efficient image-based acquisition of

BRDFs, and a way to integrate the acquired reflectance data into both real-time as well

as offline rendering systems. Besides requiring such realistic representations of day-

to-day materials, a rendering system also requires realistic representation of complex

real-world illumination. In recent years, image-based representations for illumination

such as high dynamic range (HDR) environment maps, textured area lights, and light

fields have received considerable attention because images can capture complex real-

world illumination that is difficult to represent in other forms. In this chapter, we focus

on high quality offline rendering with such complex direct illumination using Monte

Carlo ray-tracing.

When integrating image-based lighting such as environment maps into a rendering

system, the use of a good sampling strategy for illumination is paramount. While

several researchers have recently worked on this problem, the approach taken in most

of that work is an importance sampling strategy based on the energy distribution in the

image. Unfortunately, such an approach performs poorly for highly specular surfaces,

since samples chosen this way have a low probability of residing within the specular

lobe. Similarly, if importance sampling is based solely on the BRDF of the surface,

then the sampling will not perform well for high frequency illumination. In either

case, costly visibility tests are required for directions that contribute little to the surface

illumination for a particular viewpoint.

We introduce bidirectional importance sampling in Section 4.2, a method that sam-
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ples visibility according to an importance derived from the product of BRDF and envi-

ronment map illumination [13]. The advantage of this approach is that costly visibility

tests are restricted to directions that can contribute significantly to the illumination. The

number of visibility tests required for high quality rendering can be reduced drastically

as a result.

The reduced visibility tests from bidirectional sampling, however, result in noise in

partially occluded regions as these samples do not take visibility into account. Hence,

we introduce correlated visibility sampling in Section 4.3, a method that additionally

takes visibility into account in the sampling process for partially occluded regions,

thereby improving the quality of the shadowed regions [47]. We first introduce some

preliminaries of importance sampling of direct illumination before we discuss our tech-

niques.

4.1 Importance Sampling of Direct Illumination

The direct illumination at a point for a given observer direction ωr is given by Kajiya’s

rendering equation [61] as the following integral:

Lr(ωr) =
Z

Ω

fr(ωi → ωr)cosθiLi(ωi)V (ωi)dωi, (4.1)

with Li denoting the incident illumination from an environment map, fr represent-

ing the BRDF, and V being the binary visibility term. Note that we treat Li and fr as

scalar-valued functions here and throughout the text. In practice, Li and fr are color-

valued functions, from which we derive the scalar-valued ones by averaging the color

channels.

In order to estimate the reflected radiance Lr, conventional approaches perform

importance sampling either solely from the intensity in the lighting or solely from the

BRDF. In the former case, we get the importance function

qL(ωi) :=
Li(ωi)R

Ω
Li(ωi)dωi

(4.2)
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with the corresponding Monte Carlo estimator:

LN,L(ωr) =
1
N

N

∑
j=1

fr(ωi, j → ωr)cosθi, jLi(ωi, j)V (ωi, j)
qL(ωi, j)

=
R

Ω
Li(ωi)dωi

N

N

∑
j=1

fr(ωi, j → ωr)cosθi, jV (ωi, j).

The variance of this estimator ωi, j ∼ qL(ωi) can then be computed using standard

results for importance sampling (e.g. [121]) as:

var(LN,L) =
R

Li
2

N
var( fr(ωi → ωr)cosθiV (ωi)).

In other words, when proposing samples from the environment only, the resulting

variance is proportional to the variance in the BRDF. Similarly, when proposing solely

from the BRDF, variance is proportional to the lights. Either approach will produce

significant noise if both the BRDF and the illumination contain any high frequency

information. The solution of Veach and Guibas [136] was to combine samples drawn

exclusively from either the lights or the BRDF. However, a mix of samples still suffers

from dependence on the variances of the individual techniques. Ideally, we would like

to directly sample from the product of the BRDF and the illumination which, given

that the visibility function in generally unknown, is the target distribution for the direct

illumination integral.

Figure 4.1 shows angular plots of the probability densities corresponding to the

various proposal distributions. The top image depicts samples drawn from a Phong

BRDF overlaid onto the energy distribution of an environment map. It is obvious that

sampling from the BRDF alone misses the bright lights in the environment. The center

image shows samples drawn from an environment map, rendered into the importance

function for the Phong BRDF at a specific viewing direction. It can be seen that most

of these samples are placed outside the specular lobe of the BRDF. Finally, the bottom

image represents samples drawn form the product distribution, as well as the product

distribution itself. With this method, all samples reside on bright spots of the environ-

ment map but also inside the specular lobe.
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Figure 4.1: From top to bottom: angular plots of the importance function of the Grace
Cathedral EM, a specular Phong BRDF of exponent 50, and their product. Samples
(red discs) drawn solely from the BRDF or the environment vastly undersample the
product distribution. The sample set in the bottom image was generated with our SIR
technique (described in Section 4.2.2).

4.2 Bidirectional Importance Sampling

We propose a bidirectional importance sampling approach for direct illumination in

which both the energy distribution in the environment map and the reflectance of the

BRDF are taken into account. This is a two-step approach: we initially create samples

according to only either the BRDF or the environment map, and then adjust these

samples to be proportional to the product distribution. The adjusted samples are then
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used for visibility testing.

Our approach is to perform importance sampling using the product of the incident

light distribution and the BRDF as the importance function:

p(ωi) :=
fr(ωi → ωr)cosθiLi(ωi)R

Ω
fr(ωi → ωr)cosθiLi(ωi)dωi

. (4.3)

Observe that the normalization term in the denominator is the direct illumination

integral with the visibility term V (ωi) omitted. In other words, this term is the exitant

radiance in the absence of shadows. We refer to it as Lns (“radiance, no shadows”):

Lns :=
Z

Ω

fr(ωi → ωr)cosθiLi(ωi)dωi. (4.4)

If we draw sample directions ωi, j ∼ p(ωi) according to the product distribution in

Equation 4.3, we can estimate Equation 4.1 with LN,p, where

LN,p(ωr) =
1
N

N

∑
j=1

fr(ωi, j → ωr)cosθi, jLi(ωi, j)V (ωi, j)
p(ωi, j)

;

=
Lns

N

N

∑
j=1

V (ωi, j). (4.5)

We refer to LN,p as the bidirectional estimator for the direct illumination integral.

The evaluation of Equation 4.5 can be interpreted as taking the unoccluded reflected

radiance Lns and scaling it by the average result of N visibility tests performed along

directions that contribute most significantly to the radiance. Note that the variance of

the bidirectional estimator is now independent of the variance in the illumination and

the BRDF.

We have developed two solutions for generation of samples according to the bidi-

rectional importance, one based on rejection sampling and the other on the sampling-

importance resampling (SIR) algorithm. We now describe our two realizations of bidi-

rectional importance sampling in the following two sections.

4.2.1 Sample Generation through Rejection

Our first approach for sampling from the product distribution is through rejection sam-

pling. To create samples ωi, j ∼ p(ωi), we can approximate p(ωi) with a PDF q(ωi),
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such that p(ωi) < c ·q(ωi) for some constant c and all directions ωi. We then generate

random samples ωi, j ∼ q(ωi) and accept them with a probability of p(ωi, j)/(c ·q(ωi, j)).

Figure 4.2: Sample generation by rejection sampling. A sample xi ∼ qL(x) is accepted
as being a valid sample of the target distribution p(x) if a uniform sample in [0, fmax ·
qL(x)) falls under the product distribution p(xi).

In our particular case, a simple way of bounding p(ωi) from Equation 4.3 is to use

qL, the energy distribution of the light sources (Equation 4.2), as the approximation.

The bounding constant in this case is fmax := maxωiq f (ωi), the largest value of the

BRDF distribution over all incident light directions but for a given fixed exitant direc-

tion. Clearly, p(ωi) < fmax ·qL(ωi). Figure 4.2 illustrates rejection sampling using this

approach.

In order to accept N visibility samples, on average we have to create M ≈ fmax ·N

environment map samples ωi, j through importance sampling, and then accept each

sample individually with probability

p(ωi, j)
fmax ·qL(ωi, j)

=
fr(ωi, j)cosθi, j ·

R
Ω

Li(ωi)dωi

fmax ·Lns
.

Both this formula and the final radiance estimate from Equation 4.5 require the nor-

malization term Lns from Equation 4.4. We can estimate this term with the M samples

drawn from the environment map during rejection sampling.

In general, we should draw the initial samples in such a way that the bounding

constant is minimized. That is, if fmax < Lmax we should importance sample from
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the environment map; otherwise, we importance sample from the BRDF. One inherent

downside of using rejection sampling is that one cannot guarantee bounds on the ex-

ecution time for creating a new sample. If the area between c · q(ωi, j) and p(ωi, j) is

large, the probability of sample acceptance will be low.

One way of dealing with this is to choose a maximum number of sample attempts

in the rejection sampling. If no samples are accepted, a possible strategy could be

to test visibility for a random subset. A less expensive but biased possibility is to

use the unoccluded illumination wherever visibility has not been tested at all. The

rationale behind this approach is that the rejection process will fail mostly in very dark

areas, where the product of illumination and BRDF is very small. In these areas, the

visibility term will not have significant impact anyway. In practice, we have not found

it necessary to resort to these biased methods, since the rejection sampling acceptance

probability has been sufficiently high even in the presence of highly specular BRDFs

and complex environments.

4.2.2 Sample Generation through SIR

Figure 4.3: Sampling-importance resampling (SIR). First, M samples are proposed
from q f , the PDF of the BRDF. The candidate directions are then resampled based on
the incoming light along those directions, producing N samples for visibility testing. N
is generally much less than M.

Our second method from sampling the product distribution does not suffer from the

unbounded execution time of the rejection sampling. This method uses the so-called

sampling-importance resampling (SIR) algorithm [43, 125, 131].
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SIR first draws a set of M samples X = {x1, . . . ,xM} from a simple distribution

q(x). The actual target distribution p(x) is evaluated at these M samples, and the re-

sulting values are used to approximate p. In a second step, a smaller set of N samples

Y = {y1, . . . ,yN} is drawn from X with sample probabilities w(xi) proportional to their

importance ratio p(xi)/q(xi). As the number of first-round samples M approaches in-

finity, the sample set Y can be shown to have been drawn directly from p. The closer q

approximates p, the faster the method converges.

We can apply SIR to the problem of drawing samples from the bidirectional distri-

bution. We can use either qL (i.e., sampling from the light sources) or q f (i.e., sampling

from the BRDF) for the first stage. As in the rejection sampling approach, starting with

qL is advantageous if the illumination contains higher frequencies than the BRDF and

vice versa, since the higher frequency factor better approximates the shape of the prod-

uct distribution.

Figure 4.3 summarizes the approach. The total number of samples generated for

each pixel is exactly M + N. This is an improvement over rejection sampling for two

reasons. First, execution time is tightly bounded. We no longer have to wait an inde-

terminate time for the rejection criterion to accept a sample. Using the SIR algorithm,

samples can be drawn directly from the product distribution in constant time.

The second improvement over rejection sampling is that the sample sizes M and N

can be chosen freely, yielding fine control over the tradeoff between quality and time.

The sample size M dictates the quality of the estimate of Lns, and hence the quality

of unoccluded regions. Also, it is possible to directly select N — the target number

of visibility rays traced per pixel — based on, for example, scene complexity. Typical

values of M are one to two orders of magnitude larger than N. Note that conventional

importance sampling from either the BRDF or the illumination alone are just special

cases of the SIR technique where M = N = 1.

4.2.3 Bidirectional Sampling Results

In the following, we compare the results of our bidirectional sampling techniques with

previous sampling strategies for rendering from environment maps. Our comparisons
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examine the output quality of the various rendering algorithms for a fixed amount of

computing time. We performed these tests on a 3.0 GHz P4 running Linux.

Figure 4.4: Quality comparison between our two proposed bidirectional sampling
methods. Left: Rejection sampling. Right: Sampling-importance resampling (SIR).
176×248 images computed in 13.0 seconds using 15/800 rejection and SIR samples.

Figures 4.4 and 4.6 contain images of Michelangelo’s David in the Grace Cathe-

dral environment. We use the version of David with 700k-triangles acquired from the

Digital Michaelangelo Project [126]. In our implementation, intersecting a ray with

the David model takes, on average, 6.1 µs on our test machine. The Grace Cathedral

environment is a 1024×512 HDR map with a contrast ratio of 107 : 1. In all tests, each

algorithm was given 13.0 seconds to render a 176×248 image.

In a first test, we compared rejection sampling and SIR (Figure 4.4). Both the

algorithms produced images of indistinguishable quality at the same computing time

for a variety of combinations of materials and environment maps.

Figure 4.6 compares bidirectional sampling to earlier methods: sampling only from

either the lights or BRDFs, and Veach&Guibas’ multiple importance sampling [136].

In the latter case, the weights for choosing between lights and BRDF were optimized

manually through trial and error. For bidirectional importance sampling, we used SIR

with M = 800 primary samples and N = 15 final samples for which visibility was

tested.

The first row of the figure uses a glossy Phong BRDF with an exponent of 10. In

this case, sampling from the environment map only (left column) is still preferable to

sampling from the BRDF (center left), since the environment map contains higher fre-
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quencies than BRDF. Even so, sampling from the environment map only results in vis-

ible noise. Multiple importance sampling produces a result comparable to environment

map sampling, while bidirectional sampling clearly outperforms all other methods.

The second row of Figure 4.6 shows the same scene with a shinier BRDF (Phong

exponent of 50). Now, sampling from the BRDF produces better results than sampling

from the environment map. Multiple importance sampling further improves on this

result. However, bidirectional sampling again outperforms all other methods. In the last

row of the figure, we added a diffuse component. This significantly lowers the quality

of BRDF sampling. Again, bidirectional sampling is superior to the other strategies

without having to adjust weights as in the case of multiple importance sampling.

Finally in Figure 4.5, we present a comparison of the convergence in terms of

RMS errors for importance sampling and bidirectional sampling. The plot here was

computed for the David model (Phong exponent 50, ks = 0.5,kd = 0.5) in the Grace

Cathedral environment, with first round sampling from the illumination and resampling

based on the BRDF. It is clear from the figure that the RMS error converges faster for

bidirectional sampling. We found similar behavior for other materials and environment

maps.

Figure 4.5: Convergence plots of RMS errors for importance sampling and bidirec-
tional sampling. Note how the RMS error reduces faster for bidirectional sampling.
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Figure 4.6: David in Grace Cathedral – 176× 248 images rendered in 13.0 seconds.
Left column: Importance sampling purely from the illumination (100 samples). Center
left: Importance sampling purely from the BRDF (75 samples). Center right: Com-
bined sampling (Veach&Guibas) with manually fine-tuned weights. Right: Bidirec-
tional importance sampling with SIR (15/800 samples). Top row: Phong exponent 10,
ks = 1.0,kd = 0.0. Center: Phong exponent 50, ks = 1.0,kd = 0.0. Bottom row: Phong
exponent 50, ks = 0.5,kd = 0.5.

4.3 Correlated Visibility Sampling

The variance of the bidirectional estimator for the reflected radiance is proportional

to the variance in the visibility function (Equation 4.5). This is an improvement over

sampling techniques that only consider either the illumination or the BRDF in the sam-
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Figure 4.7: Buddha model (Phong BRDF s = 50, ks = kd = 0.5) in Grace Cathedral
EM. Left: Bidirectional importance sampling, 20 samples/pixel. Right: Correlated
visibility sampling, 16 bidirectional samples (1st pass) and 16 Metropolis samples per
unoccluded sample (2nd pass). Rendering times are identical (24 seconds).

pling process. This is because the variance of these techniques depends in addition

on the variance in the function that they do not sample from, BRDF or illumination

respectively. However in regions with complex visibility, estimates with bidirectional

sampling will still suffer from considerable variance (Figure 4.7, left).

In this section we introduce correlated visibility sampling, a method that addition-

ally takes visibility into account in the sampling process for partially occluded regions,

thereby improving the quality of the shadowed regions (Figure 4.7, right). The aim of

this technique is to develop an efficient means of drawing samples from the triple prod-

uct of the incident illumination, BRDF and visibility, which we achieve by employing

the Metropolis-Hastings (MH) algorithm [88]. We describe two variants of the method,

one which is unbiased, and a more efficient one that is consistent, but may exhibit a

small amount of bias. Note that in our work on sampling the direct illumination, we

make the assumption that the visibility function is binary. In general, for scenes with

semi-transparent objects, visibility can be continuous. However, it should be noted

that binary visibility is the worst case scenario for a sampling algorithm as it results in

a very high frequency function at the shadow boundaries and our visibility sampling

approach is equally applicable to scenes with continuous visibility.

Our solution is a two-step approach. In the first step, energy estimates for each pixel
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Figure 4.8: Visibility masks for the images presented in Figures 4.7 and 4.11. The
white pixels correspond to unoccluded pixels at the end of first round of bidirectional
sampling while the black pixels correspond to the partially occluded pixels.

are created using samples drawn from the bidirectional importance (product distribu-

tion) of the incident illumination and the surface BRDF. This estimate is built using the

sampling-importance resampling (SIR) algorithm, as discussed in Section 4.2.2. We

create a visibility mask and mark pixels for which one or more of the visibility tests

failed, i.e., pixels which are partially occluded (Figure 4.8). If desired, any image-

space operation such as dilation can be applied to the visibility mask. In the second

step, Metropolis sampling is started for the partially occluded pixels in order to locally

explore the shadowed regions more extensively. Metropolis sampling is only started

for the partially occluded pixels, thereby avoiding unnecessary visibility tests in unoc-

cluded regions.

Given a non-negative function f , the MH algorithm generates a series of samples

X = {x1,x2, ...,xn} from a distribution proportional to f , which is also referred to as

the target distribution, without requiring to normalize f and invert the resulting PDF. It

is thus applicable to a wide variety of sampling problems and was first applied in com-

puter graphics by Veach & Guibas [137] to the problem of image synthesis. Given a

current sample x, the next sample x′ in the sequence is generated by randomly mutating

x and then accepting or rejecting the mutation. The mutations are accepted or rejected

in such a way that the samples converge to the target distribution. For a description of
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the MH algorithm, we refer the reader to the chapter on Metropolis Sampling by Pharr

in the SIGGRAPH 2004 course notes [37].

The MH algorithm generally suffers from a startup bias as the initial samples in

the sequence are not drawn according to the target distribution and thus need to be

discarded. Despite the startup bias, integral estimates according to the MH algorithm

are asymptotically unbiased as long as detailed balance is maintained [137]. Detailed

balance defines an acceptance probability of a mutation strategy:

a(x → x′) = min{1,
f (x′) ·T (x′→ x)
f (x) ·T (x → x′)

}, (4.6)

where x is the current sample and x′ is the mutated sample, f (x) is the function being

integrated and T (x → x′) is the cumulative transition probability of mutating from x

to x′. Note that the acceptance probability accounts for changes in surface orientation

and surface BRDF from one pixel to another, for example between the diffuse ground

plane and the specular Buddha model in Figure 4.7.

Since we begin our Metropolis sampling from an unbiased Monte Carlo estimate,

our method does not suffer from startup bias. However, in general, a small amount of

bias may originate from using samples in unoccluded regions for both estimating the

direct illumination, and for making a decision about entering the correlated sampling

stage. This issue is discussed in more detail in Section 4.3.1

We employ lens perturbation as the mutation strategy for our algorithm. Since

there is correlation in the visibility of points in neighboring pixels, using this strategy

to transfer energy of samples ωi,x to neighboring pixels x′ can be an effective means of

reducing variance. We partition the image plane into 5× 5 tiles (Figure 4.9) for lens

perturbation and carry out mutations only between the partially occluded pixels within

each tile. First a mutation of a valid unoccluded sample (obtained from first round of

bidirectional sampling) is proposed. Visibility is then sampled in the same direction

(for environment map illumination) for the pixel that the sample gets mutated to. If the

visibility test passes, the mutation is accepted with a probability a, else it is rejected. If

the mutation is accepted, energy is transfered from pixel coordinate x to x′.

In our case, the cumulative transition probability T (x → x′) needs to account for
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Figure 4.9: Lens perturbation within a 5×5 transition tile. Left: The source (orange)
pixel selects two other (yellow) pixels within the transition tile for energy transfer.
Right: Only one pixel is selected for energy transfer based on visibility test in the same
direction. Green arrows refer to unoccluded light directions, red arrows to occluded
ones.

both the probability of choosing a neighboring pixel x′ for transition from pixel x, which

we will call t(x → x′), and for the probability of choosing the same sample direction

ωi to sample illumination at the two pixels according to bidirectional importance p:

T (x → x′) = t(x → x′) · p(ωi,x′)

By restricting mutations to happen only within 5× 5 tiles, we ensure that every

partially occluded pixel has the same number of neighbors for energy transfer. This

ensures that t(x → x′) = t(x′→ x).

However, imposing fixed transition tiles could potentially lead to block artifacts

at the tile boundaries. Hence, in practice we employ a moving tile mechanism for

transition centered around the current pixel x. For example, instead of performing

C = 16 path mutations on a single tile, we chose 16 different partitions of the image

plane into 5×5 tiles with different offsets, and perform one mutation each. Following

the argument from above, this yields an estimate for every pixel and each of the C

tile offsets. The total estimate for one pixel is then computed as an average of N ·C

transitions from the individual tile offsets, which does not introduce bias.
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The acceptance probability of the above mutation strategy then reduces to:

a(x → x′) = min{1,
f (x′) · p(ωi,x)
f (x) · p(ωi,x′)

}, (4.7)

where

f (x) = fr(ωi,x → ωr,x)cosθi,xLi(ωi,x),

since the visibility term V (ωi,x) = 1, and

p(ωi,x) = fr(ωi,x → ωr,x)cosθi,xLi(ωi,x)/Lns,x,

where Lns,x is the unoccluded radiance in the viewing direction given in Equation 4.4.

The numerator of p(ωi,x) cancels out with f (x) in Equation 4.7, further reducing the

equation to

a(x → x′) = min{1,
Lns,x′

Lns,x
}. (4.8)

Lns,x can be estimated from the first phase of bidirectional sampling for each pixel

and hence does not need to be recomputed during the correlated sampling phase.

The reflected radiance at each partially occluded pixel is then estimated as

Lvis(ωr) =
1

N ·C

N

∑
j=1

C

∑
k=1

V (ω( j)
i,x )Lns,x′a(ω( j)

i,x′ → ω
( j)
i,x ), (4.9)

where Lvis is the visibility estimator in the viewing direction ωr, Lns,x′a(ω( j)
i,x′ → ω

( j)
i,x )

is the fraction of energy received at pixel x from a neighboring pixel x′ during each

transition, N is the number of bidirectional samples chosen from first round sampling,

and C is the number of energy transitions (Markov chains of length 1) employed in the

second round to spread the energy of unoccluded samples, i.e., the valid samples of the

target distribution.

4.3.1 Bias

As we have introduced the method this far, it produces results consistent with the true

illumination, but it may exhibit a small amount of bias for finite sample sizes. We use

samples for both estimating the direct illumination, and for deciding whether to start

Metropolis mutations in partially occluded regions. Such dual use results in a bias, as
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Figure 4.10: Visual comparison of the biased (left) and the unbiased version (right) of
our method. Note that the highlights are crisper in the unbiased solution.

pointed out by Kirk and Arvo [67], although the bias is typically small – it is less than

the standard deviation of the Monte Carlo estimate in the first stage.

In practice, we find this bias to be small enough to be accepted, but if deemed

necessary, we can derive a unbiased variant of our method by splitting the MC sample

set form the first phase into two partitions: one for deciding whether to apply the

Metropolis algorithm, and one used for estimating the illumination in case Metropolis

is not necessary. Since we are now using a smaller set of samples to estimate visibility

in partially occluded regions, we have to use slightly larger sample chains to achieve

the same quality of results. Since the number of visibility tests remains the same, this

can be done at low additional cost. Figure 4.10 shows a comparison of the biased and

the unbiased version of the algorithm.

4.3.2 Correlated Sampling Results

In this section we compare the results of our correlated visibility sampling with bidi-

rectional importance sampling for rendering from HDR environment maps. Images

were generated with a reasonably well-optimized ray tracer using a voxel grid as the

acceleration data structure for intersection queries. Our comparisons examine the out-

put quality of the two discussed rendering algorithms for a fixed amount of computing
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Figure 4.11: Buddha model (Phong BRDF s = 50, ks = kd = 0.5) in an indoor HDR
EM. Left: Importance sampling from EM, 200 samples/pixel. Center Left: Multi-
ple importance sampling from EM (140 samples/pixel) and BRDF (40 samples/pixel).
Center Right: Bidirectional importance sampling, 20 samples/pixel. Right: Correlated
visibility sampling, 16 bidirectional samples (1st pass) and 16 Metropolis samples per
unoccluded sample (2nd pass). Rendering times are identical (16 seconds).

time. We performed these tests on a 3.0 GHz Xeon running Linux SuSE 9.0.

Figure 4.8 presents the visibility masks obtained from first round bidirectional sam-

pling for the images in Figures 4.7 and 4.11. The white pixels represent unoccluded

pixels which would not be processed in our second round of sampling. The gray pixels

correspond to the background environment map. Finally, the black pixels correspond to

those where one or more visibility samples were occluded during first round of bidirec-

tional sampling. These pixels are deemed partially occluded and are processed during

our second round of correlated visibility sampling.

Figure 4.7 presents a complex visibility scenario with the Buddha model in the

Grace Cathedral Environment. The Buddha model has 300K triangles, while the Grace

Cathedral environment is a 1024× 512 HDR map with a contrast ratio of 107 : 1. In

this test, both the bidirectional sampling and the correlated sampling algorithms were

given 24 seconds to render one 176×248 image each. The time budget was chosen so

as to allow good quality in unoccluded regions. For bidirectional sampling, this time

budget allowed for visibility to be tested with N = 20 samples, and these N samples

were chosen after resampling from a larger set of M = 800 samples. Note how the

shadows between Buddha’s feet as well on the ground-plane are noisy with bidirec-

tional sampling. For the same compute time, the partially occluded regions are very
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smooth with our correlated sampling approach. Here, we used N = 16 first round bidi-

rectional samples for the unoccluded regions, and then C = 16 Metropolis samples to

spread the energy of the unoccluded samples in our second round of sampling. The

un-occluded reflected radiance Lns was estimated using fewer samples (M=725) with

our correlated sampling approach. Hence, our algorithm produces slightly noisier re-

sults in these un-occluded regions. However, the overall tradeoff is better with this

approach. The RMS error compared to a converged image reduced from 0.066 when

using bidirectional sampling to 0.058 when using the correlated sampling approach for

Figure 4.7. And visually, the image rendered with correlated sampling are much more

pleasing due to lower noise in the shadowed regions.

Figure 4.11 presents a scene with visibility not as complex as that of Figure 4.7

and with lower frequency illumination. Here we compare the performance of our cor-

related sampling approach with standard importance sampling from EM, multiple im-

portance sampling from EM and BRDF, as well as bidirectional sampling. Due to high

frequencies in both the EM and the BRDF, multiple importance sampling has better

performance than sampling only according to the EM. Bidirectional sampling does

better than both these approaches in reducing image noise as it samples according to

the product distribution. Even then, our correlated sampling approach is more effective

than bidirectional sampling in reducing noise in partially occluded regions such as the

inside of Buddha’s arms and regions around the face and chest.

Figure 4.13 presents another visibility situation with the Dragon model (870K tri-

angles) in the Grace Cathedral environment. Here, the regions on the Dragon’s neck

underneath the head as well as on the body are partially occluded by other parts of the

Dragon’s body. Again, our correlated sampling approach nicely cleans up the shad-

owed regions that remain noisy with the bidirectional sampling approach. Figure 4.12

presents the visibility masks for the images in Figure 4.13. The mask on the left shows

many pixels in generally unoccluded areas on the Dragon’s body as well as its head

are marked as partially occluded after first round of sampling. The mask on the right

is obtained after applying a simple dilation operation with a 3× 3 kernel to the origi-

nal mask and is better representative of the visibility situation. The dilation operation

reduces the variance in the penumbra region, and reproduces sharper shadow bound-
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Figure 4.12: Visibility mask for the images in Figure 4.13. Left: Undilated mask.
Right: Dilated mask.

aries in regions that are generally unoccluded such as the Dragon’s head (Figure 4.13,

bottom).

The implementation of our correlated sampling approach involves the usual time

vs. memory tradeoff. Compared to the bidirectional sampling approach that processes

each pixel independently, the correlated sampling approach needs to store information

about neighboring pixels and the visibility mask at the end of the first stage of sampling.

For efficiency, we store the N bidirectional samples for each pixel obtained from first

stage sampling as well as the estimate of Lns for each pixel. In addition, in order to

prevent having to trace primary rays for every transition during correlated sampling, we

also store the information corresponding to primary rays such as vertex position, vertex

normal and view vector for every pixel. Thus our implementation incurs an additional

memory overhead of ∼W ×H ×N × Sample, where W ×H is the resolution of the

image plane and Sample is a triple of floats used for storing a sample/position/normal.

With these memory overheads, our correlated sampling stage only required an ad-

ditional 5− 10% computation time after the first stage bidirectional sampling. This

additional time was mostly spent in areas with high occlusion such as ground planes

occluded by geometry in Figure 4.7.

4.4 Discussion

In this chapter, we discussed the problem of sampling the direct illumination, espe-

cially in the presence of HDR environment maps. We demonstrate how sampling only
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from the distribution of illumination or only the BRDF can be sub-optimal in this sce-

nario. We proposed a bidirectional importance sampling approach for sampling from

the product distribution of the illumination and BRDF in Section 4.2, and described

two Monte Carlo techniques for realizing bidirectional sampling. While this approach

makes the sample selection process more expensive, we drastically reduce the number

of visibility tests required to obtain good image quality. As a consequence, we achieve

significant quality improvements over previous sampling strategies for the same com-

pute time.

In Section 4.3, we extended bidirectional sampling to also account for the visibility

function. In this case, we employed the Metropolis-Hastings algorithm for establishing

a correlation in the energy estimates of neighboring pixels, thereby reducing noise in

partially occluded regions. To our knowledge, this is the first proposed solution for

sampling the direct illumination integral according to the triple product distribution

that does not require any precomputation of visibility.

The correlated sampling method incurs additional memory overheads for storing

samples generated from first round of bidirectional sampling. However, this overhead

is linear in the number of pixels in the image, and hence is not that significant. Given

this small memory overhead, the correlated sampling stage reduces noise in shadowed

regions with complex visibility with a small (5− 10%) additional computation time.

For this extra computation time, our method of employing Metropolis sampling after

an initial phase of Monte Carlo sampling provides much greater benefit in terms of

image quality in shadowed regions compared to pure Monte Carlo sampling.
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Figure 4.13: Dragon model (Phong BRDF s = 50, ks = kd = 0.5) in the Grace Cathe-
dral HDR EM. Top: Bidirectional importance sampling, 20 samples/pixel. Center
and Bottom: Correlated visibility sampling, 16 bidirectional samples (1st pass) and
16 Metropolis samples per unoccluded sample (2nd pass). Center: Undilated visibility
mask. Bottom: Dilated visibility mask. Rendering times are identical (16 seconds).
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Chapter 5

Sequential Sampling of

Environment Maps

As discussed in Chapter 4, realistic rendering with complex direct illumination has

received significant attention in recent years with major applications in realistic re-

lighting. The best known techniques for direct illumination sample from the product of

the incident illumination and the surface reflectance [13, 16, 129]. With advancements

in HDR acquisition technologies, HDR video environments are becoming increasingly

available. This availability has spawned recent work on sampling dynamic illumination

from such HDR video sequences [56, 139]. However, these techniques only take the

dynamic importance of the illumination into account while proposing samples for the

video sequence. Such techniques are problematic in the presence of high frequencies

in both the illumination as well as the surface BRDFs. While one can produce noise-

free images by using one set of samples for all surface locations, doing so eliminates

the impact of dimmer light sources, which should dominate the reflection for certain

surface orientations.

In this chapter, we aim to efficiently sample from the product distribution of the

illumination and the BRDF in a video sequence with dynamic illumination using a

Sequential Monte Carlo (SMC) sampling strategy [46]. The basic idea is to gener-

ate samples according to the product distribution in the first frame of the sequence,

and thereafter to filter these samples (particles) in the subsequent frames according to

the dynamic product distribution. This sequential sampling mechanism is more effi-

cient than independently re-regenerating the samples for every time step (Figure 5.1),

especially for scenes with high frequencies in both the dynamic illumination and the
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Figure 5.1: Quality comparison of our SMC sampling algorithm with bidirectional
importance sampling for a sky probe sequence. Left: 1st frame rendered using bidi-
rectional importance sampling in 8 seconds. Center: 5th frame of sequence rendered
using SMC sampling in 4 seconds. Right: Comparison image for 5th frame generated
using bidirectional importance sampling in 4 seconds.

BRDF. At the same time, our method avoids systematic under-estimation of reflections

at certain angles, which is common to dynamic importance methods generating point

light approximations of the environment. Another very important benefit of the SMC

approach for rendering a video sequence is the temporal coherence of the sampling pat-

tern that results in significant reduction of sparkling noise in an animation compared to

independent sampling.

Our solution to sampling from the dynamic product distribution is a two-step ap-

proach. We assume that we have already obtained a sample set according to the product

distribution of the previous frame. For the first frame of the animation, we generate this

sample set with bidirectional importance sampling (Section 4.2). In the first step of our

algorithm, samples distributed according to the product distribution of the previous

time step are propagated in time using sequential importance sampling. The product

distribution at the new time step is incrementally estimated using the weights of the

sequential importance. The second step extends the path of each of these samples us-

ing a Markov Chain Monte Carlo (MCMC) kernel whose invariant distribution is the

target distribution at the current time step. The MCMC kernel is implemented using
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the Metropolis-Hastings (MH) algorithm [88]. No visibility tests are performed during

either of the two steps. Visibility is finally tested at the end of the second step in or-

der to obtain a Monte Carlo estimate of the direct illumination. This approach has the

following benefits:

• We need to propagate only a small number of samples in time to estimate the

direct illumination as these samples are distributed according to the target distri-

bution at each time step. This makes sample propagation very efficient.

• The normalization constant for the product distribution at each time step can

be incrementally computed using the sequential importance weights. Thus, the

normalization constant, i.e., the un-occluded reflected radiance at each time step,

can be estimated very efficiently without drawing a large number of samples.

• Sample generation cost at each time step is independent of the cost of sampling

from the BRDF representation since the algorithm only requires to evaluate the

BRDF but does not require to sample from it. Thus, any complex BRDF repre-

sentation can be used without impacting sample generation cost.

• The method creates samples on the fly and does not require any expensive pre-

computation.

5.1 Sequential Monte Carlo Sampling

As already mentioned, we propose a sequential Monte Carlo (SMC) sampling algo-

rithm for sampling according to the dynamic product distribution of the illumination

and the surface reflectance during an animation sequence. Traditional SMC algorithms

in the literature deal with the case where the target distribution of interest at time n,

defined on Ωn, is of a higher dimension than the target distribution at time n−1 [33].

A classical example of this is an SMC algorithm applied to sequential Bayesian infer-

ence. In our case, the target distribution at every time step, i.e., the direct illumination

integral, is defined on a common space of the hemisphere of directions Ω. Hence, we

employ a class of SMC samplers recently developed for a common domain [31] to the
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problem of sampling from the product distribution of incident illumination and BRDF

in the presence of dynamic illumination.

Symbol Description

ω
( j)
i jth sample (incident direction)

W ( j)
n Weight for jth sample in frame n

w̃( j)
n Unnormalized weight for jth sample in frame n

N Number of samples per pixel
pn Target PDF for frame n
p̃n Unnormalized importance (product of illumination and BRDF)
qn Proposal distribution at time n

pk/P
n−1:n The kth of P intermediate distributions between frame n−1 and frame n

Table 5.1: Summary of notation used in this chapter.

Our SMC sampling algorithm is a two-step approach: we start with samples created

according to the product distribution in the previous time step, and propagate them in

time using sequential importance sampling followed by a possible resampling step.

We then employ an appropriate MCMC transition kernel to redistribute the samples

according to the product distribution at the new time step. Thereafter these samples,

now distributed according to the new target distribution, are used for visibility testing.

Once again, consider the direct illumination at a point for a given observer direction

ωr:

Lr(ωr) =
Z

Ω

fr(ωi → ωr)cosθiLi(ωi)V (ωi)dωi, (5.1)

with Li denoting the incident illumination from an environment map, fr representing

the BRDF, and V being the binary visibility term.

The target distribution of interest for direct illumination is the product distribution

p of incident illumination and the BRDF:

p(ωi) :=
fr(ωi → ωr)cosθiLi(ωi)R

Ω
fr(ωi → ωr)cosθiLi(ωi)dωi

=
p̃(ωi)
Lns

. (5.2)

Here, p̃(ωi) = fr(ωi → ωr)cosθiLi(ωi) is the un-normalized importance function,

and Lns =
R

Ω
fr(ωi → ωr)cosθiLi(ωi)dωi is the un-occluded reflected radiance in the
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viewing direction and is the normalization constant of the target distribution. Following

the convention of Section 4.2, we refer to Lns as ”radiance, no-shadows”.

Our SMC algorithm works as follows: we start with samples ω
( j)
i,n−1 and weights

W ( j)
n−1, j = 1, ...,N, such that the weighted samples are proportional to the product distri-

bution of BRDF and illumination in frame n−1. These samples represent the incident

light directions for one surface point, that is, the point visible at a specific pixel. For the

first frame, these samples are obtained by bidirectional importance sampling, and all

weights are 1/N. The two steps of our method are then sample propagation followed

by MCMC transition to adjust the samples to the product distribution in the next frame.

Step 1: Sample Propagation: We propagate the samples ω
( j)
i,n−1 in time using sequen-

tial importance sampling. The un-normalized incremental weight w̃n of every sample

for sequential importance at time n is given by the following ratio:

w̃( j)
n =

p̃n(ω
( j)
i,n−1)

p̃n−1(ω
( j)
i,n−1)

, (5.3)

This weight is just the ratio of the target function evaluated at the sample point at

time n to that evaluated at time n− 1 for the same point, and represents the change

in weighting of a sample due to changes in the target distribution. The normalized

weights for the N samples at time n are then given by:

W ( j)
n =

W ( j)
n−1 · w̃

( j)
n

∑
N
k=1 W (k)

n−1 · w̃
(k)
n

. (5.4)

This tracking of weights to represent evolving target distributions is called Sequen-

tial Monte Carlo Sampling, or SMC for short [31]. Note that we can use the SMC

mechanism for sampling from a dynamic sequence even if we use a different proposal

distribution q instead of p for the first frame. The only difference here would be that

we would have to appropriately weight the samples of the first frame for sequential

importance. The un-normalized weights w̃( j)
1 would then need to be computed as:

w̃( j)
1 =

p̃1(ω
( j)
i,1 )

q̃1(ω
( j)
i,1 )

,

and then normalized to obtained W ( j)
1 .
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Step 1a: Resampling. As the variance between the proposal distribution qn and the

target distribution pn tends to increase with n, the variance of the un-normalized im-

portance weights tends to increase resulting in a potential degeneracy of the particle

approximation. This degeneracy can be measured using the criterion of effective sam-

ple size (ESS) (∑N
j=1(W

( j)
n )2)−1 [78]. The ESS takes values between 1 and N. If the

ESS is below a pre-specified threshold, say N/2, we resample the N samples according

to the weights W ( j)
n and set the weights of the resampled samples equal to 1/N. This re-

sampling step discards samples with low weights while copying the samples with high

weights multiple times, thus keeping the samples according to the target distribution.

Note that the mutations in the next step make sure we do not keep multiple identical

samples.

Step 2: MCMC Transitions. After sample propagation and potential resampling, we

apply an MCMC kernel Kn(ωi,ω
′
i) of invariant distribution pn to every sample ω

( j)
i,n−1

in order to obtain new samples ω
( j)
i,n . The new samples ωi,n are marginally distributed

according to

pn(ω′
i) =

Z
Ω

pn−1(ωi)Kn(ωi,ω
′
i)dωi. (5.5)

We employ the Metropolis-Hastings algorithm (MH) for these transitions, with a

mix of local random walk moves and independent proposal moves. When using the

MH algorithm, the MCMC kernel Kn of invariant distribution pn is described in terms

of an acceptance probability of a proposed transition:

a(ω( j)
i → ω

′( j)
i ) = min{1,

p̃n(ω
′( j)
i )q(ω′( j)

i → ω
( j)
i )

p̃n(ω
( j)
i )q(ω( j)

i → ω
′( j)
i )

}, (5.6)

where ω
( j)
i is the current sample, ω

′( j)
i is the proposed sample using the transition kernel

q, and a is the acceptance probability of the proposed transition.

We mix local walk moves with independent proposal moves as these independent

moves are required to prevent the SMC samples from getting stuck in local possi-

bly narrow modes of the target distribution. For high frequency dynamic lighting, we

choose local walk moves with uniform random directional perturbations of up to a few

degrees of the samples, while choosing samples from the environment map (EM) for
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the independent proposal moves. When using local random walk moves, there is an

equal probability of transition between ω
( j)
i and ω

′( j)
i , i.e., q(ω( j)

i →ω
′( j)
i ) = q(ω′( j)

i →

ω
( j)
i ). Thus, the acceptance probability alocal of the local walk moves is given by:

alocal(ω
( j)
i → ω

′( j)
i ) = min{1,

p̃n(ω
′( j)
i )

p̃n(ω
( j)
i )

}. (5.7)

When using independent proposal moves from the EM, the transition probability

of the proposed sample is given by q(ω( j)
i →ω

′( j)
i ) = Li,n(ω

′( j)
i )/

R
Ω

Li,ndωi. Hence the

acceptance probability of the independent move is given by:

aEM(ω( j)
i → ω

′( j)
i ) = min{1,

p̃n(ω′( j)
i )Li,n(ω( j)

i )/
R

Ω Li,ndωi

p̃n(ω( j)
i )Li,n(ω′( j)

i )/
R

Ω Li,ndωi
}

= min{1,
fr(ω

′( j)
i →ωr)cosθ

′( j)
i

fr(ω
( j)
i →ωr)cosθ

( j)
i

}.

(5.8)

In practice, we propose several MCMC moves per sample for good exploration of

the target distribution.

Note the SMC algorithm as described above is unbiased: Step 1 corresponds to an

importance sampling step, which produces the correct distribution at time n using the

distribution at time n− 1 as importance. The variance of this distribution is reduced

by applying the MCMC algorithm in Step 2. Since MCMC algorithm works on an

unbiased distribution, startup-bias is avoided. A formal argument can be found in [31].

5.1.1 Direct Illumination Estimate

With the sample sets and weights derived above, we can now estimate the reflected

radiance at a surface location as

LN,n,smc(ωr) = Lns,n

N

∑
j=1

W ( j)
n ·V (ω( j)

i,n ). (5.9)

Equation 5.9 can be interpreted as the scaling of the un-occluded reflected radiance

Lns,n by the weighted average of N visibility tests performed along the directions con-

tributing most significantly to the radiance at time n. Here, the normalization constant
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Lns,n at time n can be incrementally estimated as

Lns,n

Lns,n−1
=

R
Ω

p̃n(ωi,n−1)dωi,n−1R
Ω

p̃n−1(ωi,n−1)dωi,n−1
≈

N

∑
j=1

W ( j)
n−1 · w̃

( j)
n . (5.10)

The derivation of this result is given in Appendix C. It is worth pointing out that

this incremental estimate of the normalization constant Lns,n at time n according to

Equation 5.10 provides the crucial advantage for the SMC algorithm in terms of com-

putational expense over a pure MC approach such as bidirectional sampling where

the proper estimate of Lns requires drawing large number of samples. To estimate

Lns,n/Lns,1, one can use the product of estimates given by Equation 5.10 from time

t = 2 to n. Lns,1 is estimated in our case during bidirectional sampling for the first time

step.

A summary of the method can be found in Algorithm 1. The complexity of this

algorithm is in O(N).
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Algorithm 1 SMC Sampling for Dynamic Illumination

1: INITIALIZATION

• Set n = 1.

• For j = 1, ...,N draw ω
( j)
i,1 ∼ p1 using bidirectional sampling and set W ( j)

1 =

1/N.

Iterate steps 2 and 3:

2: WEIGHTING AND RESAMPLING

• Set n = n+1.

• Compute new weights W ( j)
n according to Equations 5.3 and 5.4.

• If ESS < T hreshold, resample and set W ( j)
n = 1/N.

3: SAMPLING

• For j = 1, ...,N draw ω
( j)
i,n ∼ Kn(ωi,n−1,ωi,n).

• Estimate Lns,n according to Equation 5.10.

• Estimate reflected radiance according to Equation 5.9.

5.2 Variance Reduction with Intermediate

Distributions

The aim of the SMC sampling algorithm as discussed in Section 5.1 is to “smoothly”

move samples from the target distribution at time n−1 to the target distribution at time

n. More formally, we have samples

ω
( j)
i,n−1 ∼ pn−1(ωi) =

p̃n−1(ωi)
Lns,n−1

,

and we want to move towards samples
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ω
( j)
i,n ∼ pn(ωi) =

p̃n(ωi)
Lns,n

.

This transition is smooth under the assumption that pn−1 ≈ pn. However, this may

not be true in practice, especially in the case where the dynamic illumination is in

the form of a high frequency HDR video environment. If the discrepancy between

the two successive distributions is too high, this will result in high variance in the un-

normalized incremental weights w̃( j)
n , and thus indirectly result in high variance in the

normalized weights W ( j)
n . The variance in W ( j)

n can be countered with the resampling

step after sequential importance sampling, resulting in good estimates of the posterior

p̃n. However, the resampling step does not affect the variance in the un-normalized

weights w̃( j)
n , which can lead to high variance in the incremental estimate of the nor-

malization constant Lns,n according to Equation 5.10.

In this scenario, we introduce a sequence of intermediate distributions [44] between

the original distribution pn−1 and the new one pn in order to select a smooth transition

that the sample can follow. These intermediate distributions are blends of the original

distributions:

pγ

n−1:n(ωi) ∝ p̃γ

n−1:n(ωi) = [p̃n−1(ωi)]1−γ[p̃n(ωi)]γ, (5.11)

such that

p0
n−1:n(ωi) = pn−1(ωi), p1

n−1:n(ωi) = pn(ωi).

In practice, we introduce P discrete intermediate distributions: pk/P
n−1:n(ωi), where

k = 1, ...,P. We can use these new distributions to reduce variance with little additional

cost. The idea is to reduce the variance in the incremental weights w̃n by computing

them as a product of P incremental weights w̃k of these intermediate distributions. The

consecutive intermediate distributions pk/P
n−1:n(ωi) and p(k−1)/P

n−1:n (ωi) are closer to each

other by construction than pn−1(ωi) is to pn(ωi), resulting in flatter weights w̃k, as

compared to w̃n.

The SMC algorithm with P intermediate distributions requires slight modifications

to the algorithm discussed in Section 5.1. Instead of first computing the un-normalized
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weights w̃( j)
n and the normalized weights W ( j) and then doing the MCMC transitions,

the algorithm for P intermediate distributions computes the un-normalized weights

w̃( j)
n as a product of P intermediate un-normalized weights w̃k,( j) that each involve an

MCMC kernel of invariant distribution pk/P
n−1:n. Here, the intermediate un-normalized

weights w̃k,( j) are computed as:

w̃k,( j) =
p̃k/P

n−1:n(ω
k−1,( j)
i )

p̃(k−1)/P
n−1:n (ωk−1,( j)

i )
. (5.12)

Assuming we have samples {W ( j)
n−1, ω

( j)
i,n−1} approximating pn−1. The algorithm

then proceeds as follows:

Algorithm 2 SMC with Intermediate Distributions

1: INITIALIZATION:

• We write ω
0,( j)
i = ω

( j)
i,n−1 and set w̃( j)

n = 1.

2: ITERATION: for k = 1, ...,P

• Compute w̃k,( j) according to Equation 5.12.

• Set w̃( j)
n = w̃( j)

n · w̃k,( j).

• Sample ω
k,( j)
i ∼ Kk(ω

k−1,( j)
i ,ω

′k−1,( j)
i ) of invariant distribution pk/P

n−1:n(ωi).

At the end of the P iterations of intermediate distributions, the normalized weights

W ( j)
n are still computed according to Equation 5.4, and resampled if the ESS is below

the pre-specified threshold. Finally, the normalization constant Lns,n and the direct

illumination estimate are computed according to Equations 5.10 and 5.9 respectively.

In general, there is greater benefit in terms of variance reduction in the estimate

of the target distribution with the introduction of a sequence of P intermediate distri-

butions involving one MCMC move each than with a single distribution involving P

MCMC moves, while being only a slightly more expensive in terms of computation

time (Figure 4.5 in the results section). This benefit is because a sequence of interme-
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diate distributions simultaneously reduces the variance in the un-normalized weights

w̃( j)
n while exploring the target distribution at time n.

5.3 Unoccluded Illumination Estimate with Path

Sampling

In this section, we explore an alternative estimate for the unoccluded radiance Lns,

which can be used in place of the method described in Section 5.1.1. We obtain this

alternate solution by path sampling [44]. In the statistics literature, the path of a sample

is defined as the continuous trajectory of a sample over time. It should not be confused

with light paths in classical global illumination literature. With this definition of path,

path sampling refers to smoothly moving samples from one distribution to the next.

Considering a continuous path of distributions

pγ

n−1:n(ωi) =
p̃γ

n−1:n(ωi)

Lγ

ns,n−1:n
,

the following path sampling identity holds [44]:

log(
Lns,n

Lns,n−1
) =

Z 1

0

Z d log(p̃γ

n−1:n(ωi))
dγ

pγ

n−1:n(ωi)dωidγ. (5.13)

In our case, the logarithm of the target function p̃ is given by

log(p̃γ

n−1:n(ωi)) = (1− γ) log(p̃n−1(ωi))+ γ log(p̃n(ωi))

according to Equation 5.11.

Thus, the derivative of the logarithm of the function is

d log(p̃γ

n−1:n(ωi))
dγ

= log(
p̃n(ωi)

p̃n−1(ωi)
). (5.14)

When considering a discrete path of P intermediate distribution, we can approxi-
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mate Equation 5.13 with

log( Lns,n
Lns,n−1

) = 1
P ∑

P
k=1

R
log( p̃n(ωi)

p̃n−1(ωi)
)pk/P

n−1:n(ωi)dωi

≈ 1
P ∑

P
k=1 ∑

N
j=1 W k,( j) log( p̃n(ωk,( j)

i )

p̃n−1(ωk,( j)
i )

).

(5.15)

Note that Equation 5.15 involves computing the normalized weights W k,( j) for ev-

ery intermediate distribution pk/P
n−1:n, which is not required when using the standard

form of the intermediate distributions. The un-normalized intermediate weights w̃k,( j)

are still computed according to Equation 5.12.

When using path sampling, we can also obtain an estimate of log(Lns/Lns,1) as

follows

log(
Lns,n

Lns,1
) =

n

∑
t=2

log(
Lns,t

Lns,t−1
). (5.16)

Computing the normalization constant using path sampling is a bit more expensive

than the standard introduction of the P intermediate distributions as discussed in Sec-

tion 5.2. However, the estimate of Lns according to Equation 5.15 generally has lower

variance than using P intermediate distributions with the standard ratio according to

Equation 5.10.

5.4 Implementation

We have implemented the algorithm described above in a system that offers two ren-

dering modes: a relighting mode, and a mode that allows for free camera movement.

Relighting. In relighting mode, the camera and object are in fixed locations, and only

the environment can change. The initial frame is rendered using bidirectional impor-

tance sampling. For all subsequent frames, the samples for each pixel are propagated

and mutated as described above, and form the sample set for the same pixel in the next

frame (Figures 5.4 and 5.5).

Free camera movement. Once the camera is allowed to move freely, a surface point

will project to different pixels in different frames. We take this into account by tracking
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the motion of the surface points at which the samples were generated. When we ray-

trace a sample for one frame, we also store the corresponding information into the

next frame. To this end, we compute which pixel the surface point will project to at

the next time step, and store all samples from the current frame into that pixel. The

memory requirement for this procedure is about 300 Bytes/pixel. When we want to

compute the illumination for the next frame, most pixels will therefore have a sample

set from the previous frame associated with them. We propagate and mutate those as

discussed. Other pixels might not have a sample set due to dis-occlusion, or differences

in sampling rate. We start bidirectional importance sampling for these pixels only

(Figure 5.6).

General object movements can be dealt with the same way as camera movements:

by knowing where object points will be located in the next time step, we can store

sample information at the appropriate pixel locations. Currently, our implementation

does not support this kind of object motion.

5.5 Results

In this section we compare the results of our unbiased SMC sampling algorithm with

bidirectional importance sampling for rendering from HDR video environments. Im-

ages were generated with a reasonably well-optimized ray tracer using a voxel grid as

the acceleration data structure for intersection queries. Our comparisons examine the

output quality of the two rendering algorithms for a fixed amount of computing time.

We performed these tests on a 3.6 GHz Xeon running Linux SuSE 9.0.

Figure 5.1 presents a comparison of our SMC algorithm with bidirectional impor-

tance sampling for a sequence of the sky probe gallery [127]. The image on the left is

the first frame of the sequence rendered at a high quality using bidirectional sampling

(N = 16, M = 800) in 8 seconds. The image in the center is the 5th frame of the se-

quence rendered using our SMC algorithm (N = 16, P = 5) with path sampling in 4

seconds. The BRDF of the David model in these images has a high specular exponent

(Phong s = 50) and no diffuse component. Under these conditions of high frequency
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Figure 5.2: Quality comparison of single distribution vs sequence of intermediate dis-
tributions with David model (Phong BRDF s = 50, ks = kd = 0.5) in Grace Cathedral
HDR EM. Left: Single distribution with 10 MCMC moves. Center: 10 intermediate
distributions with Lns computed with standard ratio. Right: 10 intermediate distribu-
tions with Lns computed with path sampling. Rendering times are identical (5 seconds).

lighting and highly specular BRDF, our SMC algorithm does much better than bidi-

rectional importance sampling for the same computation time of 4 seconds. In this

case, bidirectional sampling could only use a smaller number of samples (M = 200) to

estimate Lns for the same compute time (right).

Figure 5.2 presents the quality comparison of renderings produced with our SMC

algorithm when using a single distribution (left) versus when using a sequence of in-

termediate distributions with standard ratio (center) and path sampling (right). These

images correspond to the first frame rendered by our SMC algorithm after rotating the

EM by 1.5◦ along the radial direction simulating a small change in the HDR illumina-

tion of the Grace Cathedral. The sequence of intermediate distributions greatly help in

reducing the variance in the incremental computation of Lns compared to a single distri-

bution, while path sampling improves the quality of the estimate a bit more. Here, the

BRDF of the David model has a significant diffuse component. Hence, the incremental

estimate of the Lns has higher variance compared to Figure 5.1 as the SMC algorithm

uses only a very small number of samples to approximate the Lns.

In Figure 5.3, we present a comparison of the convergence in terms of RMS errors
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Figure 5.3: Convergence plots of RMS errors for single distribution with multiple
MCMC moves and sequence of intermediate distributions with one MCMC move each.
Note how the RMS error reduces fast when using a sequence of intermediate distribu-
tions while the error does not really reduce much with just one distribution.

for a single distribution with multiple MCMC moves and a sequence of intermediate

distributions with path sampling. The RMS error plot was computed for same frame

rendered in Figure 5.2 with our SMC algorithm. It is clear from the plot that multiple

MCMC moves for a single distribution do not help much in reducing the variance in the

incremental computation of Lns, though they may help in exploring the target function

p̃. A sequence of intermediate distributions with 1 MCMC move per distribution, on

the other hand, is effective in reducing the variance in the computation of Lns.

The introduction of a sequence of intermediate distributions also helps in reducing

the degeneracy of the samples. We tracked the sample degeneracy, in terms of ESS,
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Figure 5.4: Quality comparison between bidirectional sampling and our SMC sam-
pling algorithm for a specular BRDF in the sky probe gallery sequence. Top row:
Bidirectional sampling (N = 16, M = 200). Bottom row: SMC sampling (N = 16,
P = 5, path sampling). All images took the same compute time of 4 seconds.

for sequence of 100 frames while rendering the David model (Phong BRDF s = 50,

ks = kd = 0.5) in the Grace Cathedral HDR EM with rotations to the EM by 1.5◦

per frame. We observed that, on an average, the samples corresponding to 36% of

the pixels required resampling when using a single distribution with 5 MCMC moves

per sample. This fraction reduced to 18% when using a sequence of 5 intermediate

distributions and 1 MCMC move per sample with path sampling. Hence, the additional

cost of computing a sequence of intermediate distributions is offset to an extent by

having to resample fewer samples. In practice, we used only up to 5−7 intermediate

distributions as this was enough to reduce the variance of most pixels. However, in

order to maintain the quality of the renderings over time, we tracked the incremental

estimate of Lns and explicitly computed Lns,n using a large number of samples whenever

the ratio Lns,n/Lns,1 altered significantly.
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Figure 5.5: Quality comparison between bidirectional sampling and our SMC sam-
pling algorithm for a BRDF with a diffuse component in the sky probe gallery se-
quence. Top row: Bidirectional sampling (N = 16, M = 200). Bottom row: SMC
sampling (N = 16, P = 5, path sampling). All images took the same compute time of
4 seconds.

Figure 5.4 presents the quality comparison between bidirectional sampling and our

SMC sampling algorithm for a dynamic environment sequence from dawn to dusk

from the sky probe gallery [127]. We used the sample HDR sky probe images from the

gallery that have been captured at 10 minute intervals as key frames of our sequence

and interpolated to create 3 additional frames between each key frame. The David

model in these images has the same highly specular BRDF as in Figure 5.1, and in

this situation, our SMC algorithm performs much better than bidirectional importance

sampling for the same computation time of 4 seconds. The SMC samples also have a

lot more temporal coherence, greatly reducing flickering in the resulting animation.

Figure 5.5 presents the quality comparison between bidirectional sampling and our

SMC sampling algorithm for the same sky probe sequence from sunrise to sunset,
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Figure 5.6: SMC sampling for a camera animation sequence with the David model in
the Grace Cathedral EM. Top row: Images rendered with SMC sampling for dynamic
viewpoints. Bottom row: False color visualization of bidirectional samples (red) and
SMC samples (green).

except that the BRDF of the David model now has a significant diffuse component

(Phong BRDF s = 50, ks = kd = 0.5). In this case, the difference in the quality of

renderings produced by the two algorithms is not much as the SMC algorithm needs

to estimate the reflected radiance due to a wider lobe with a small number of samples.

However, the images corresponding to the SMC algorithm still have lower variance

than bidirectional sampling wherever the specular contribution is high.

In Figure 5.6, we present example renderings with our SMC sampling algorithm

adapted for changing viewpoint as discussed in Section 5.4. We rendered a sequence

with the camera moving from right to left of the David model with 2◦ rotation of the

camera between every frame. The images in the bottom row are false color visualiza-

tions of the pixels corresponding to re-projected points that used SMC sampling (green)

and new exposed pixels that used bidirectional sampling (red) for the two viewpoints.
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As shown here, in a sequence involving a slowly moving camera, most pixels can ef-

fectively use samples propagated from neighboring pixels in subsequent frames.

The speedup that we get in the case of moving cameras is lower than the speedup

for relighting, since we cannot use SMC for all pixels due to occlusion, and since the

reprojection of samples into the next frame consumes time. While we find a speedup of

about a factor of 2 for relighting, the speedup for moving cameras is only 1.6. Note that

a moving camera is in some sense the worst case scenario, since all points in the scene

move. In general scenes with only few objects moving, one would expect a speedup

somewhere between the extremes of relighting and the camera movement.

5.6 Discussion

In this chapter, we have introduced the use of sequential Monte Carlo methods for

efficiently computing direct illumination in the presence of both high frequency Illu-

mination and BRDF. By propagating samples over time, the method makes efficient

use of coherence across frames. We demonstrate that this approach results in signifi-

cantly reduced variance for the same compute time compared to other state-of-the- art

methods.

Sequential Monte Carlo samplers have been the focus of recent research activities

in statistics and machine learning. The sampling strategies used in this work are at the

leading edge of methods developed in those areas. We believe that these methods are

promising for solving other sampling problems in computer graphics, for example for

global illumination with path tracing or photon mapping.
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Chapter 6

Real-time Rendering for HDR

Displays

Up until now, we have discussed novel approaches towards photo-realistic rendering

with acquisition of reflectance properties of real materials (Chapter 3), and rendering

scenes with complex direct illumination in the form of environment maps (Chapters 4

and 5). We now shift our focus to the display end of the image-synthesis pipeline where

the goal is to translate the photo-realistic reproduction of a scene by the acquisition

and rendering stages of the pipeline into a perceptually realistic, possibly non-linear,

reproduction on a display device. Perceptually realistic rendering is mainly concerned

with algorithms that aim to recreate the visceral experience of a real scene for a human

observer. A major factor affecting this visceral experience is the dynamic range of

display technology and its capacity for representing the full range of dark and light

intensities found in the real world.

The dynamic range of many real-world environments exceeds the capabilities of

current display technology by several orders of magnitude. Tone mapping operators

alleviate the problem of limited dynamic range of conventional display devices to an

extent by simulating the non-linearity of the human visual system, but are unable to

compensate fully for these shortcomings [76]. Recently, Seetzen et al. [119] described

two alternative designs for high dynamic range (HDR) display systems that are capable

of displaying images with a dynamic range much more similar to that encountered in

the real world.

Both display designs are based on the fundamental idea of using an LCD panel as

an optical filter of programmable transparency to modulate a high intensity but low



98 Chapter 6. Real-time Rendering for HDR Displays

Figure 6.1: Two alternative designs for HDR displays. Left: Projector-based display.
Right: LED-based display.

resolution image from a second display. If the first display has a contrast range of c1 : 1

between the darkest and the brightest producible color, and if we now put an LCD panel

with a contrast ratio of c2 : 1 in front of the first one, then in principle, the contrast of

the combined system is (c1 · c2) : 1. Based on this principle, Seetzen et al. derived

two alternative designs for the HDR displays, one based on a digital light projection

(DLP) technology for the backlighting and the second design replacing the projector

with a matrix of ultra-bright LEDs. While the DLP-based design is easier to drive, the

LED-based design is more suitable for commercial applications due to factors such as

significantly smaller form factor and power consumption of the LED-based displays.

Prototypes of the two displays are shown in Figure 6.1. The two displays have dynamic

ranges well beyond 50,000 : 1, and a maximum luminous intensity of 2700cd/m2 and

8500cd/m2, respectively. This compares to a dynamic range of about 300 : 1, and a

maximum intensity of about 300cd/m2 for a typical desktop display.

In this chapter, we describe the real-time rendering algorithm that we developed for

driving the projector-based HDR display [119], while briefly describing the algorithm

for the LED-based design for completeness. We first review some relevant issues on

human contrast perception in Section 6.1 before describing the rendering algorithms for

the HDR displays. We also present a few possible applications for the projector-based

display in Section 6.4.
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6.1 Human Contrast Perception

The human visual system has tremendous capabilities but also some limitations. Some

of these limitations are an integral part of the theory underlying the HDR displays. In

general, the human eye has evolved to deal with the vast dynamic range available in

the daily environment, ranging from starlight to sunlight over at least an eight order of

magnitude luminance range. To cope with this range, the eye uses a complex adapta-

tion system that mainly works at two time scales: mechanisms working at time scale of

the order of minutes and those with a shorter time scale. The adaptation mechanisms

at shorter time scales are very interesting from the point of view of HDR display de-

velopment as they are the primary reason why current displays cannot provide realistic

representations of real world HDR scenes. The eye can capture approximately 5 orders

of magnitude of dynamic range effectively simultaneously. No conventional display

technology comes close to this. Yet, there are limitations to this capability as described

below.

6.1.1 Local Contrast Perception

While we can see a vast dynamic range across a scene, we are unable to see more than

a small portion of it locally in small regions (corresponding to small angles). Different

researchers report different values for the threshold past which we cannot make out

high contrast boundaries, but most agree that the maximum perceivable contrast is

somewhere around 150 : 1 [138]. Scene contrast boundaries above this threshold appear

blurry and indistinct, and the eye is unable to judge the relative magnitudes of the

adjacent regions.

This inherent limitation can be explained by the scattering properties of the eye.

From Moon&Spencer’s original work on glare [90], we know that any high contrast

boundary will scatter at least 4% of its energy on the retina to the darker side of the

boundary, obscuring the visibility of the edge and details within a few degrees of it

(Figure 6.2). If the contrast of an edge is 25 : 1, then details on the darker side will

be competing with an equal amount of light scattered from the brighter side, reducing

visible contrast by a factor of 2 in the darker region. When the edge contrast reaches
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Figure 6.2: The point spread function of the human eye according to
Moon&Spencer [90].

a value of 150 : 1, the visible contrast on the dark side is reduced by a factor of 12,

rendering details indistinct or invisible.

The HDR display technology exploits this inability of humans to see detail in the

immediate vicinity of a high-contrast boundary. It maintains relative (and even abso-

lute) brightnesses, and reproduces edges exactly when they are below the maximum

contrast of the front display - about 400 : 1 in the prototypes described in [119]. Only

when this range is exceeded is some fidelity lost near high contrast boundaries. But

this effect is well below the detectable threshold of the eye, as has been verified in user

experiments [120].

6.2 Driving the Projector Display

To correctly render HDR images on the projector-based display, we need to analyze

the image formation process of the system. Let us assume for the moment that both the
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Figure 6.3: Response function of both the LCD panel and the DLP projector in the
projector-based display.

projector and the LCD panel are perfectly linear, and that both have the same dynamic

range. Under these assumptions, we can achieve the target intensity by scaling the HDR

image to the range of 0 . . .1, and using the square root of this normalized intensity to

drive both the projector and the LCD panel. This even split between pixel values on the

projector and the LCD panel is preferable to a scenario where one value is very large

and the other is very small, since quantization artifacts are relatively larger for small

values.

In reality, neither the projector nor the LCD have a linear response (Figure 6.3).

Also, although the projector-based HDR display provides mechanisms for alignment of

the DLP (backlight) and LCD (front-panel) pixels, a sub-pixel match is hard to achieve

and almost impossible to maintain. To avoid moire patterns and alignment artifacts

associated with even a minor misalignment, we have to deliberately blur the projector

image and compensate for the blur in the LCD image. We do this in the following

way: we choose a simple estimate of what the projector intensity should be, and then
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Figure 6.4: Rendering algorithm for the projector-based display.

simulate the effect of response function and blurring. Finally, the pixel values of the

LCD panel are chosen such that they compensate for these effects.

The complete rendering algorithm then works as follows (also see Figure 6.4): we

take square root of the original HDR image with intensity I (1). The resulting image (2)

represents the target intensity
√

I for the projector. We map these intensities into pro-

jector pixel values by applying the inverse of the projector’s response function r1 (3).

The projector now produces an image of intensity r1(r−1
1 (

√
I)) =

√
I, except that the

image is actually blurred according to p1, the projector’s point spread function (PSF).

To simulate this blurring, we convolve the projector intensities with the PSF (4) and

divide the result out from the original HDR image to get the target LCD transparency

(5). For the final pixel values of the LCD, we apply the inverse of the panel’s response

function r2 (6).

Figure 6.5: Point spread function of the projector.

An exposure sequence of the PSF p1 is depicted in Figure 6.5. Note the vertical

lines visible in images with larger exposure times. These are the RGB subpixels of the

LCD panel. In order to speed up the computation, we do not use the measured PSF

directly, but fit a tensor-product Gaussian of standard deviation of 2−3.5 pixels to p1,
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Figure 6.6: Factoring an HDR photograph for projector-based display. Left: square
root of the intensity. Center: blurred image which is predicted to be the image gener-
ated by the de-focused projector. Right: edge enhanced LCD panel image that corrects
for the blurriness of the projector image.

so that we can use a 2D separable filter of width 13 for the convolution.

These image processing steps are possible both completely in software and using

recent programmable graphics hardware. The convolution, with the 2D separable ap-

proximation, can be readily implemented as a pixel shader on both the latest ATI and

NVIDIA chips. We achieve real-time frame rates on graphics hardware with this ap-

proach.

Figure 6.6 shows the results of this image factorization on a portion of Debevec’s

Stanford Memorial Church HDR photograph. On the left is shown a grayscale image

that corresponds to the square root of the original intensity values. Convolving that

image with the PSF of the projector yields the center image. This is the predicted

image that will be produced by the projector. Finally, the right image is the color LCD

panel image that corrects for the blurriness of the projector. It is interesting to note

that the LCD panel image is essentially an edge-enhanced image with low frequency

components attenuated or removed. This is particularly noticeable for the widths of the

window frames. Thus, the algorithm that we apply here is very similar in principle to a

local tone mapping operator for the LCD panel image.

6.3 Driving the LED Display

In this section, we briefly describe the rendering algorithm for the LED-based HDR

displays. For a detailed analysis of the rendering algorithms for the LED-based dis-



104 Chapter 6. Real-time Rendering for HDR Displays

Figure 6.7: Rendering algorithm for the LED-based display.

plays, we refer the reader to Trentacoste’s Master’s thesis [134]. The principal render-

ing algorithm for the LED-based system is quite similar to that for the projector-based

display, as shown in Figure 6.7. The primary difference between the two display sys-

tems from a rendering perspective is that the PSF of an LED has a much wider support

than the one for a pixel of the projector. Also of importance is the fact that the LEDs

are arranged on a hexagonal grid rather than a rectangular grid. These differences have

two consequences. Firstly, because of the wider support of the PSF, it is advisable to

come up with a better way to choose the LED values. Since the supports of the PSFs

for neighboring LEDs overlap, determining the optimal LED value is essentially a de-

convolution problem, as explained below. Secondly, because of both the hexagonal

geometry and wider support of the PSF, the convolution (4) has to be implemented

differently.

The first issue is addressed by adding an additional stage (2a) to derive the target

intensities IL for every individual LED. To this end, the image is first down-sampled to

the resolution of the LED array, and then we need to solve for the values, taking the

overlap of the PSFs into account. This is essentially a de-convolution problem, the full

solution of which would require solving a sparse linear equation system with as many

unknowns as there are LEDs. This de-convolution is not an option for interactive appli-

cations. We therefore simply choose the intensity of every LED as a simple weighted

sum of the neighboring pixels in the down-sampled image.

As before, we rely on the LCD panel to compensate for any differences between the

LED values and the target image. To this end, we need to forward-simulate the low-
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Figure 6.8: Factorization of an HDR photograph for the LED-based display. Left:
LED contribution as a result of convolving LED values with the LED point spread
function. Right: edge enhanced LCD panel image that corrects for the blurriness of the
LED image.

frequency image (4) generated by the LED panel in order to derive the LCD pixel

values. We use a splatting approach to do this on graphics hardware. We simply

draw screen aligned quadrilaterals with textures of the PSF into the framebuffer. Alpha

blending is then used to accumulate the results.

Figure 6.8 shows the factorization of an HDR image into LED component and

LCD panel component. Due to the wider support of the PSF of the LEDs compared to

the PSF of a projector pixel in the first setup, the LED image is even more low-pass

filtered than before. As a result, the compensation performed in the LCD panel is more

significant, and is visible in the right image.

6.4 Applications

We have developed a few simple applications to test our projector-based display algo-

rithm, and to demonstrate its potential in a number of application domains. The first

one is a simple HDR image viewer (Figure 6.10, top). It allows the user to load an HDR

image and view it while interactively adjusting the exposure settings (i.e., the absolute

scale of intensity). This application was also used to generate the images in Figure 6.9.

The three images to the right of that figure show a color-coded comparison of an origi-

nal radiance map, an HDR photograph taken off the projector-based display, and finally

a photograph taken off a standard LCD screen. The intensities of the photograph from

the HDR display are similar but not identical to the values in the original radiance map.
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Figure 6.9: From left to right: our projector-based display showing an HDR im-
age; a color-coded original HDR image; HDR photograph taken off the screen of our
projector-based system; HDR photograph taken off a conventional monitor displaying
the tone-mapped image.

The differences are mostly due to imperfections in both the calibration of the display

to absolute intensities, and in the image acquisition process. Clearly both intensity and

dynamic range of the HDR display are vastly superior to the standard monitor.

The second application we developed is related to interactive photorealistic render-

ing. We modified a DirectX application for displaying BRDFs measured with linear

light source reflectometry [41], and replaced its tone mapping step with the rendering

algorithm for the HDR display (Figures 6.10, center). Other interactive applications

that can render into floating point buffers can easily be modified in a similar fashion.

Based on a similar principle, we built a simple volume ray-caster that runs on a

GPU (Figure 6.10, bottom). It allows for operations such as rotation, slicing, and ad-

justments to the transfer function. Both the actual volume rendering algorithm and the

processing for the projector-based display is implemented in a single Cg shader [83].

This has been extended to automatic transfer function generation for volume rendering

with HDR displays [48].

6.5 Discussion

The dynamic range issue of display devices for perceptually realistic display has re-

cently been addressed by the HDR display devices. In this chapter, we discuss the

basis principle of image formation for the HDR displays and describe in detail the
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real-time rendering algorithm for the projector-based design. We also develop a few

simple applications to test and validate our rendering algorithm. We believe these ap-

plications demonstrate the potential application areas for the HDR displays including

photo-realistic rendering and scientific visualization.

It should be noted that the rendering algorithm for the LED-based display, as de-

scribed in Section 6.3, is computationally more demanding than the algorithm for the

projector-based display due to the larger support of the PSF. However, the latest gener-

ation GPUs have support for floating point blending and bilinear interpolation. Hence,

a fullscreen image factorization into LCD and LED components can be carried out in

real-time on these chips. The commercial versions of the LED-based HDR displays

from Brightside Technologies [132] now have custom firmware on the displays for

real-time processing of HDR images, thereby off-loading this computationally inten-

sive task from the graphics cards.
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Figure 6.10: Screen photographs of the different applications we implemented. The

exposure times of the two images in each pair differ by 4 stops. Top: HDR image

viewer. Center: interactive rendering of measured BRDFs. Bottom: volume rendering.
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Chapter 7

Real Illumination from Virtual

Environments

Creation of a sense of presence and immersion in a virtual environment has been a ma-

jor theme for graphics research targeting perceptual realism. As discussed in Chapter 6,

the high dynamic range (HDR) display technology goes a long way to achieve this goal

by matching the intensity and contrast range of many real world scenes. Apart from the

dynamic range issue of display devices, another major factor affecting perceptual real-

ism is that the viewing conditions for a virtual scene are largely unknown. This means

that parameters such as the viewer’s light and color adaptation cannot be considered in

the image generation process.

It is our hypothesis that the HDR display behaves like a window into a virtual

world. However, this sense of realism and immersion in a virtual environment is lost

outside this window as the HDR display cannot account for the viewing conditions. A

true sense of immersion can only be achieved if the illumination levels in the real and

virtual world are compatible. A night driving simulation, for example, should happen

in a darkened room, while the same application in a daylight setting should take place

in a bright room. Ideally, it would be possible to adjust the room illumination over time

to simulate, for example, the car entering or leaving a tunnel.

In this chapter, we propose to actively control the illumination in a room so that it is

consistent with a virtual world (see Figure 7.11) [49]. In combination with an HDR dis-

play, the system produces both uniform and directional illumination at intensity levels

covering a wide range of real-world environments. It thereby allows natural adaptation

processes of the human visual system to take place, for example when moving between
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bright and dark environments. In addition to enhancing the sense of immersion in the

virtual environment, the directional illumination provides additional information in the

user’s peripheral field of view. This is the main concept behind our approach.

To evaluate the potential for the proposed method in an entertainment setting, we

conducted a survey of user preference. All participants of the survey preferred the

system with dynamic, directional illumination over a room of constant brightness. The

participants also believed that the additional cues provided by directional illumination

helped them keep track of orientation in the virtual world.

In the following sections, we first describe the system, including hardware, cal-

ibration, and rendering algorithms (Section 7.1). We then describe several ways to

acquire the relevant lighting information for both virtual worlds and film sequences

(Section 7.2). Finally, in Section 7.3, we discuss the user survey that we performed to

test the concept.

7.1 Method

In our prototype implementation, we use computer-controlled LED lights that are dis-

tributed throughout the room. All lights are individually programmable to a 24 bit

RGB color. The computer-controlled lights are programmed such that, for a specific

real-world viewing position, the room illumination resembles a blurred environment

map for the virtual world at the virtual viewing position.

Our method has three major components: the physical setup of the light sources in

a room, calibration methods, and rendering algorithms. These aspects are discussed in

the following sections.

7.1.1 Physical Setup

We assembled our prototype system in a separate room, approximately 15.5’ long, 9’

wide, and 9.5’ high. The room remained as-is: the walls were kept in the original pastel

color, and specular objects such as a whiteboard and the reflectors of the houselights

were left in place. A window cover was used to block out daylight (Figure 7.11, left).
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Figure 7.1: Room layout: additional lights are mounted below the ceiling, pointing
upwards.

The room contained several pieces of furniture, including two tables and several chairs.

One of the tables was located at one end of the room and held the computer console. We

used both an 18” LED HDR display [119] and a standard 18” flatpanel (NEC Multisync

LCD 1850e) for our experiments.

The lighting system consists of 24 RGB LED lights (ColorKinetics iColor Cove),

each of which can be individually programmed to a 24-bit RGB color value. Instead

of pointing the light sources directly at the viewer, which would create high intensity

illumination from very specific directions, we aimed the lights at the walls in order to

diffuse the light output over a large range of directions. This corresponds to our goal of

creating a lighting system that can produce a low-frequency version of the illumination

in the virtual world.

We used seven poles with stands to mount the 24 light sources. The lights were

positioned and oriented such that they predominantly illuminated the ceiling, as well

as the walls to the left, right and in front of the viewer (see Figure 7.1). Experiments

quickly confirmed our intuition that illumination from behind has only a comparatively

small impact, and hence we used only a few light sources for those directions. No il-

luminators were aimed towards the floor for similar reasons. Our arrangement roughly

mimics the change in photoreceptor density in the retina from foveal to peripheral view.
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Figure 7.2: Left: light pattern generated by a single iColor Cove light. Note the narrow
light spot and color banding. Right: pattern generated using a diffuser.

However, it might be interesting future work to design the physical setup by formally

taking into account the resolution of the human eye [22].

To create a smoothly varying illumination pattern we used strong diffusers at the

light sources, which also reduce color separation of the RGB elements (Figure 7.2).

The diffuser for each light consist of 2” diameter transparent acrylic tubing that was cut

in half along its axis, and spray-painted lightly on the outside with white plastic paint

(KrylonT MFusion for plastic). To avoid internal reflection losses we used reflective

film to coat the inside of the light source.

Figure 7.3: Left: opened iColor Cove light source. The left side of the circuit board
is already covered with reflective foil. Center: clear cover for the light source. Right:
diffuser built from acrylic tubing and white spray-paint.
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Figure 7.4: Light probe images acquired for each of the 24 light sources at the intended
viewing position.

The typical light output of each light is specified as 52.4 lumens for full white. This

is not bright enough to match the top intensity of the HDR display, but since every light

is set to an average intensity over a moderately large cone of directions, this limited top

intensity has not been an issue1. It should also be noted that brighter LEDs than the

ones we use are readily available. We chose the iColor Cove system primarily because

it includes off-the-shelf electronics for computer control.

7.1.2 Calibration

Some calibration steps are necessary in order to control the system in a way consistent

with the virtual world and the image shown on the display. Geometric calibration is

necessary to determine the positions of the light sources relative to the viewer, and

their spread, which is modeled as a Gaussian. Photometric calibration is subsequently

performed to match white points and illumination levels between the light sources and

the display.

Light Position. The rendering algorithm, as described below, requires information

about the impact of every individual light on the illumination as seen from the location

of the viewer. To obtain this information, we place a reflective ball at the intended

1Typical HDR scenes have only a few small bright regions (corresponding to windows or skylights) that

are to full white. Experiments we conducted with the HDR display indicate that overall light output is

typically less than 10% of peak intensity.
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viewer position to act as a light probe. We take photographs with a web camera (Cre-

ative NX Ultra) while switching on one light at a time. The resulting environment maps

appear in Figure 7.4.

We then model the impact of every light source by fitting a Gaussian to the environ-

ment map. It is centered around the direction corresponding to the brightest point in the

environment map, and its standard deviation is chosen such as to minimize the RMS

error. Other directional bases such as cosine lobes could be used instead of Gaussians.

However, we found Gaussians to be convenient, since they can capture more distant

contributions caused by indirect illumination, while smoothing over high frequency

details such as object boundaries.

White Point and Intensity Calibration. An important part of the calibration step is

to match the white points of the display and the lighting system. At the same time, we

need to establish the relative intensities of light sources and display. For both tasks,

we use an 18% gray card commonly used in photography. Under the assumption of

uniform hemispherical illumination (Li(ωi) = const,ωi ∈ Ω), the reflected radiance of

a (diffuse!) 18% gray card is

Lo(ωo) =
Z

Ω

Li ·
0.18

π
cosθidωi = 0.18 ·Li.

Since uniform hemispherical illumination can be approximated by setting all our

lights to the same intensity, the calibration task is implemented as a uniform adaptation

of the intensity of the lights until the gray card reflection matches an 18% monitor

gray. Note that the response function of the display needs to be taken into account,

i.e., the monitor color is set to 18% of the top intensity, not 18% of the top pixel value.

The color matching can be automated by using the same web cam as above. We cover

one half of the screen with the gray card, and show 18% red on the other half of the

display. We then adjust the red intensity of the light sources using binary search until

the camera observes the same intensities for both the monitor image and the gray card.

The same steps are repeated for the green and blue channels.

From this procedure we recover the relative scaling factors for the light sources
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that correspond to the full intensity of the individual color channels on the display.

During rendering, these can either be used directly to adjust the light intensities, or

their reciprocals can be applied to the image shown on the display. If an absolute white

point calibration is desired, the former method should be used, and the monitor should

be calibrated with standard tools.

Since the lighting setup is indirect, the color of the walls and other large objects

does influence the color temperature of the illumination. If the walls or other large

objects in the room show a great variation in color temperature, then the effective con-

tributions of the individual lights have a different color. In that case, the color difference

for the individual lights needs to be calibrated first by sequentially switching them on,

and comparing the color of the resulting illumination on the grey card. Only then can

the intensity be calibrated as described above. Note that the white point and intensity

calibration should ideally be repeated every time a light source moves, or even when

large, colored objects get moved around in the room. Fortunately, all calibration steps

are automated and can be completed within a few minutes.

7.1.3 Rendering

There are two algorithms for driving the calibrated lighting system during rendering.

The first option is to uniformly adjust the light source intensity to the average intensity

of the scene. The second option is to drive every light source individually by sampling

the scene’s illumination in the region affected by the light. In both cases, we use

an environment map for the location of the viewer as a representation of the scene

illumination. This is a convenient choice, since many realtime graphics applications

already create those maps for shading objects near the viewer. It also does not require

any scene geometry, and could therefore easily be painted by an artist to augment old

footage (see Section 7.3). Ideally, the environment map should be in high dynamic

range format, but low dynamic range information can also be used, especially if the

environment map is split into different layers. This is discussed further in Section 7.2.

In the case of uniform illumination, we simply integrate the intensities in the envi-

ronment map, and use the resulting value to drive all light sources.
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Figure 7.5: Left: room lighting corresponding to a passing street lamp on the left side
in the driving game NFS Underground 2. Right: lighting corresponding to overhead
lights and lights on the walls inside a tunnel in the game.

In the case of directional illumination, we precompute an importance sampling pat-

tern for the Gaussians that we fit to every light in the calibration process (Section 7.1.2).

For every frame, we then sample the illumination from these patterns, and use the re-

sulting integral to drive the light sources. We can also blend uniform and directional

illumination to control the degree of directional dependence.

7.2 Content Creation

We can create the environment maps required to control the light sources in a number

of ways depending upon the application.

Synthetic Environments: The system is easy to integrate into fully synthetic scenes,

such as in computer games or animated films. Many games already generate these

environment maps for shading objects in the scene [59]. Future games will likely

generate these environment maps in an HDR format. Current games typically use low-

dynamic-range representations due to the lack of support for floating point textures

and framebuffers in older graphics hardware. However, the environments are often

split into multiple layers, corresponding to different parts of the scene. This layered

information can be used to reconstruct HDR lighting information.

For our experiments we used footage from Electronic Arts’ racing game “Need

for Speed Underground 2” (Figure 7.5), which features a particularly wide range of
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Figure 7.6: Left: uniform lighting corresponding to direct daylight outside a tunnel in
the HDR driving video. Right: uniform room lighting corresponding to lighting inside
the tunnel.

differently illuminated environments. We used captured environment maps generated

by the existing shading system. The layers of the environment map, which correspond

to lights, sky, and objects in the scene, were scaled by different factors and added up.

The resulting HDR information was used to program the lighting system.

Legacy Film and Video Footage: For some applications it is interesting to retro-

fit conventionally shot film and video material with environment lighting information.

Sometimes it might be possible to automatically extract the required information from

the image sequences themselves. For example, Nishino and Nayar’s approach for ex-

tracting environment maps from reflections in eyes [95] might be used for sequences

in which human or animal faces are visible at a high enough resolution.

In other cases, the required information can be generated manually, since only ap-

proximate low-resolution lighting information is necessary. A uniform brightness can

be estimated for a set of key frames and interpolated across the sequence. The gen-

eration of directional information is more tedious, but as shown by Sloan et al. [123],

artists can control lighting in a scene by painting spherical environment maps. This

could be done for a set of key frames, and the resulting environments could then be

interpolated using a method similar to the one proposed by Cabral et al. [14]. We leave

this for future work.

For our experiments we manually created environment map information for HDR

video footage of a car ride, and played it back on an 18” LED HDR display [119].
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Figure 7.7: Left: directional lighting corresponding to the bright windows in the Grace
Cathedral HDR environment. Right: directional lighting corresponding to the alter in
the Grace Cathedral.

The video was shot with an HDR camera (HDRC CamCube from IMS Vision), and

compressed using the method described by Mantiuk et al. [82]. It features both direct

daylight and a dark tunnel (Figure 7.6). We augmented this video with environment

lighting information by uniformly adjusting the brightness level for every frame. We

mostly used two brightness values, one for the inside of the tunnel and one for the day-

light part. At the entrance and exit of the tunnel, we interpolated the uniform intensity

linearly over a few seconds.

Filming New Footage: When shooting new films, a light probe can be used to cap-

ture the surrounding environment. Unlike in relighting applications [27, 30], the en-

vironment maps for our system (Figure 7.7) should ideally be centered at the viewer

position, that is, the main camera used for filming the scene. This should make it

feasible to record a light-probe video with all additional components outside the field-

of-view of that of the main camera. In some cases it might be necessary or desirable to

post-process the sequences to account for specific lighting effects.

7.3 Experiments

To test the concept, we conducted a user survey with a set of three experiments. As the

evaluation criterion, we chose user preference rather than other possible criteria such as

perceived realism. This choice was made due to our primary interest in entertainment
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applications for the current system; ultimately the proposed method can be successful

for these applications if and only if potential users like the results independent of how

realistic they believe those are. This means that other, more formal studies with a

different aim are required before the system could be used, for example, for design

purposes.

The first experiment focused on the impact of uniform changes in room illumina-

tion, while the second one emphasized the directional aspects of our approach. The

third experiment was designed to test whether the lighting system could also be useful

in combination with conventional low-dynamic-range displays. The participants were

12 graduate and undergraduate students, none of whom work in computer graphics or

related areas. All participants had normal or corrected-to-normal vision. The partici-

pants entered the room at least 5 minutes before the start of the actual experiments in

order to allow them to adapt to a slightly dimmed environment. Questions were asked

after individual experiments. After all experiments had been completed, the partici-

pants had the opportunity to provide additional comments.

Uniform Illumination. We designed the first experiment to test whether the partic-

ipants would prefer a dynamic, but directionally uniform illumination level over con-

stant room illumination. To this end, the participants were shown the HDR driving

video (see Section 7.2) on the HDR display once in a dark room, and once with a uni-

form brightness change generated by the lighting system. The participants were then

asked to indicate their preference for either the constant or the dynamic illumination

on a 5-level scale (strong preference for the dark room, weak preference for the dark

room, undecided, weak preference for dynamic lighting, and strong preference for dy-

namic lighting). The same experiment was repeated for a room illuminated at normal

brightness levels. Again, both variants were shown back-to-back, and the participants

were asked to state their preference.

The answers given by the participants are summarized in Figure 7.8. All partici-

pants preferred or strongly preferred dynamic illumination over a constant brightness

level. In general, the preference was even stronger in the comparison with a dark room,

although one participant was undecided. This stronger preference can be explained by
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Figure 7.8: User preferences regarding constant or uniform dynamic illumination for
HDR video.

the ability of the HDR display to produce light levels that start to be uncomfortable in

very dark environments. From this results we can conclude a significant preference of

the participants for dynamic illumination compared to a constant light level.

Directional Illumination. The second set of experiments tested whether the users

would prefer directionally localized illumination changes over uniform brightness changes.

This experiment was based on using a simple viewer similar to Quicktime VR [15]: the

program loads an HDR panorama, shows it on the HDR display, and lets the user look

around with a simple mouse interface for rotation (see Figure 7.7). Note that a ‘dy-

namic’ illumination approach with uniform intensities for all lights would result in

a constant illumination pattern for this application, since total brightness would not

change under rotations of the viewing direction.

The participant was then asked to use the rotation interface to locate the brightest

point in the panorama. The application was run 20 times, and each time a different

panorama was selected at random. The application also randomly decided whether

or not to use the lighting system to create directional information (if not, the lights
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Figure 7.9: User preferences for directional vs. uniform illumination in an HDR
panorama viewer.

were switched to a medium intensity). After 20 runs, the participants were asked two

questions: first, whether they felt that the directional illumination helped them with

orientation (on a scale from strongly disagree to strongly agree), and second whether

they preferred the directional or the uniform illumination.

Figure 7.9 shows the answers for both questions. All participants preferred or

strongly preferred the directional illumination over the uniform one. With one ex-

ception, all participants answered the question regarding an improved sense of orien-

tation identically to the way they answered the question for overall preference. One

participant was uncertain whether the directional lighting had improved his sense of

orientation, but nonetheless preferred directional over uniform lighting.

From the results of this experiment, it is clear that dynamic directional illumination

is preferable over both constant and uniform adaptive lighting (note again, that the

latter would have produced constant illumination as well in this application).

Low-Dynamic-Range Footage. Finally, we also wanted to determine whether the

lighting system is useful in combination with conventional low-dynamic-range dis-
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Figure 7.10: User preferences for directional vs. uniform illumination when watching
low-dynamic-range video game footage.

plays. To this end, the participants were shown the footage from “Need for Speed

Underground 2” (see Section 7.2) on a conventional display. The segment contained a

tunnel sequence, in which widely spaced street lights caused the scene to get brighter

and darker at regular intervals. First, we showed the segment under constant illumi-

nation, and then with the dynamic, directional illumination, and the participants were

asked for their preference.

In this experiment, the preference for directional dynamic illumination was very

strong, as indicated in Figure 7.9. One participant was undecided, as also revealed in

his written comment: “[I] did not like the flickering lights [when passing by the street

lights in Need for Speed] – very realistic, but very annoying (it’s distracting enough

when you’re driving in real life). [It is] more annoying in real life. [I] really enjoyed

the feeling of motion”. This subject did not express similar concerns in the directional

experiment using the HDR display, where he strongly preferred the directional illumi-

nation. We believe that this ambivalence is in some sense caused by the lighting system

overpowering the conventional display, which cannot produce the same intensities as

the HDR display.
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Based on the overwhelmingly positive response of the other participants, we do be-

lieve that the system has potential even in a low-dynamic-range setting. However, more

studies are required to determine how the lights should be controlled in this scenario to

avoid irritations for some users.

Other comments from participants not attributed to a specific experiment included

the following: “The dynamic lighting immerses you in the experience”, “[Dynamic

lighting] makes you really feel like you’re there, especially in light-dark transitions”,

and “One day, this will be in the movies!”

7.4 Discussion

In this chapter, we have introduced an approach for actively controlling the lighting in

a room to match illumination in a virtual world. In doing so, we are able to reproduce

illumination levels similar to the ones we experience every day in the real world. This

triggers natural adaptation processes in the human visual system, for example, when

moving between bright and dark environments. In addition, we can generate directional

illumination patterns, such as light that appears to come from the sides or from behind.

We believe that when used in conjunction with an HDR display, such a system greatly

enhances the perceptual realism of a virtual scene.

Our user survey shows overwhelming support for this concept in combination with

an HDR display: all of our participants preferred the lighting system over constant

room illumination. We believe that this combination of HDR display and lighting

system comprises the best setup, since it makes it possible to create similar brightnesses

both on the display and in the surrounding room.

Even in combination with a conventional low-dynamic-range display, the partici-

pants were predominantly positive about the lighting system. With the display dimmer

than the light sources, one subject was irritated by the dynamic illumination, although

he strongly preferred the system in combination with an HDR display. This indicates

that, while the lighting system is promising even in combination with conventional dis-

plays, the algorithms for driving the system in such a setting require more research.
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One solution could be the use of a tone mapping operator for the light sources.

On the hardware side, several variants of the current system are possible. At the

moment, we use 24 individually packaged LED light sources. One could easily imagine

repackaging those lights into a single housing with multiple independently controllable

spotlights, to be hung from the ceiling. Such a package could also contain light sensors

for the calibration, eliminating the need for an external camera. Since LED lights are

becoming more and more popular as standard room illumination, one could also imag-

ine directly plugging into an existing home automation system to control those light

sources. We envision that such systems could be used in home theaters and gaming en-

vironments, while screening rooms and higher end systems would use dedicated light

sources such as in our system.
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Figure 7.11: Top: photograph of the room housing our system, with all lights switched

on. Center: illumination programmed to resemble the Grace Cathedral environment.

Bottom: A user viewing the Grace Cathedral environment on an HDR display in a

room illuminated by our system. Note how the room illumination is consistent with the

virtual environment shown on the screen.
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Chapter 8

Conclusions

In this dissertation, we focus on the domain of realistic image synthesis in computer

graphics while targeting both photo-realistic as well as perceptually realistic rendering.

We identify the principal stages of the image synthesis pipeline - acquisition, rendering

and display, and have developed novel techniques and algorithms addressing various

problems at every stage of the pipeline.

An interesting observation is that all techniques discussed have one thing in com-

mon: they are specially designed for dealing with high dynamic range (HDR) data. In

Chapter 3, the acquisition of BRDF response to basis functions relies on HDR imag-

ing. HDR environment maps are used as representations of realistic direct illumination

in Chapters 4 and 5. The Monte Carlo sampling techniques developed in these chap-

ters are specially designed for high frequencies in lighting and BRDFs as captured by

HDR imaging. Chapter 6 discusses how to process HDR images, either produced by

rendering algorithms or directly acquired from the real world, in real-time for driving

the HDR displays while Chapter 7 describes a technique for extending the displayed

dynamic range on to the real viewing environment for a sense of immersion in a virtual

environment.

Also related is the dissertation’s focus on realistic rendering with complex direct

and directional illumination effects from static as well as dynamic HDR environment

maps. This is in accordance with the increasing popularity of image based rendering

techniques for realistic image synthesis, particularly for representing complex real-

world illumination that is difficult to model in other forms. Here, we focus on effi-

ciently computing the local lighting in a virtual (or real) environment for both real-

time rendering applications (Chapters 3 and 7) and high quality off-line rendering with
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ray-tracing (Chapters 3, 4 and 5).

Chapter 3 describes a novel technique for the acquisition of surface reflectance

properties of every-day materials. Unlike existing work on BRDF acquisition that mea-

sure impulse responses to point lights approximating Dirac peaks, the distinguishing

characteristic of our measurement system is that it captures the response of the surface

to illumination in the form of smooth basis functions. This speeds up acquisition time

by an order of magnitude from a few hours to just a few minutes. The required opti-

cal setup for our approach has the side benefit of being compact and not having any

moving parts, hence making it portable.

Our optical setup, in principle, enables sampling over 98% of the hemisphere with

high sampling density even close to grazing angles. However, our choice of manu-

facturing process with electroforming for the required free-form surface of the dome

limited our measurements to a smaller subset of directions. It would be interesting to

investigate other moderate cost manufacturing processes for such concave holes. An-

other design option would be to optimize over the hemispherical coverage for a concave

hemispherical dome that can be electroformed easily.

It would also be interesting to look at alternative basis functions for acquisition of

specular materials. A hierarchical wavelet-based acquisition would be suitable for this

purpose in principle, as wavelets localize well in both spatial and frequency domain.

However, the wavelet bases would not be very suitable for extrapolation of the data

in the zone of missing measurements due to their localized support. While we can

take advantage of reciprocity to fill in a subset of the missing values, the data extrap-

olation problem is particularly tricky when both the incident light direction as well as

the viewing direction are outside the measurement zone. Other possible approaches

can include experimenting with non-linear non-orthogonal basis functions such as a

mixture of Phong lobes [40, 71] or Gaussians [130], although extrapolation of the re-

flectance function in the zone of missing measurements with such bases would also be

non-trivial. Another interesting approach would be to optically fit the BRDF to an ana-

lytical model as a basis function. An advantage of such an approach over using a linear

zonal basis function is that the choice of basis is data-driven, thus making the encoding

efficient. Most BRDF models, however, are not easily separated into a structured illu-
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mination basis and a reflected light basis, which presents a challenge for deriving the

appropriate basis illumination. However, we believe that this may be an excellent area

for future research.

High quality off-line rendering with realistic materials and complex direct illumina-

tion has major applications in realistic relighting for motion pictures and architectural

design. Hence, as part of this dissertation, we introduce several state-of-the-art Monte

Carlo sampling techniques from statistics and machine learning literature to efficiently

compute the direct illumination integral. Note that, in general, the proper simulation

of global illumination is very important for realistic rendering. However, we focus on

direct illumination in this thesis because it is a required component of all global illu-

mination renderers, and direct illumination computation can be computationally more

expensive than global illumination in the presence of complex illumination models. In

Chapter 4, we demonstrate how sampling for Monte Carlo ray-tracing only from the

distribution of illumination or only the BRDF can be sub-optimal in scenarios where

both are high frequency functions. We propose a bidirectional importance sampling ap-

proach for sampling from the product distribution of the illumination and BRDF, which

is the target distribution for sampling in the absence of visibility information. We de-

scribe two alternative Monte Carlo strategies for bidirectional sampling, one based on

rejection sampling and the another based on sampling-importance resampling.

One downside of both these strategies is that sample selection process is more ex-

pensive compared to sampling from individual distributions, as well as compared to

another simultaneously developed approach to product distribution sampling based on

wavelets [16]. However, sampling from the product distribution drastically reduces the

number of visibility tests required to obtain good image quality compared to impor-

tance sampling from a single distribution. And unlike wavelet importance sampling,

our bidirectional sampling strategy requires no pre-computation of the environment

map making it suitable for rendering a video sequence with high resolution environ-

ment maps, and scenes with spatially-varying BRDFs.

In Section 4.3, we extend bidirectional sampling to also efficiently account for

the visibility function. In this case, we employ the Metropolis-Hastings algorithm for

establishing a correlation in the energy estimates of neighboring pixels on the image-
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plane, thereby reducing noise in partially occluded regions. To our knowledge, this is

the first proposed solution for sampling the direct illumination integral according to the

triple product distribution that does not require any precomputation of visibility. Simi-

lar to the work by Cline et al. [18], we demonstrate how Metropolis sampling after an

initial phase of Monte Carlo sampling is an effective technique for variance reduction.

Such a hybrid algorithm also overcomes the startup-bias of Metropolis sampling [137],

and hence demonstrates fast convergence.

We extend product distribution sampling in the temporal domain in Chapter 5 with

our proposed sequential Monte Carlo mechanism for sampling dynamic illumination.

By propagating samples over time, the method makes efficient use of coherence across

frames. The method is very general, requires no precomputation, and the sample prop-

agation process is much more efficient than selecting samples from scratch every frame

using Monte Carlo sampling. We believe that such SMC methods are also promising

for solving other sampling problems in computer graphics, for example for global illu-

mination with path tracing or photon mapping, or for rendering motion blur effects.

The dissertation also contributes to the display end of the image-synthesis pipeline

where the goal is to translate the photo-realistic reproduction of a scene by the acqui-

sition and rendering stages of the pipeline into a perceptually realistic reproduction on

a display device. Perceptually realistic rendering is mainly concerned with recreating

the visceral experience of a real scene for a human observer and a major factor af-

fecting this visceral experience is the dynamic range of display technology. Here, we

develop an algorithm for processing HDR images in real-time for driving the projector-

based HDR displays [119], and demonstrate its application in several domains includ-

ing photo-realistic rendering and scientific visualization. The real-time rendering algo-

rithm for driving the commercially developed LED-based HDR displays [132, 134] is

very similar in principle, albeit more computationally intensive.

Apart from the dynamic range issue of display devices, another major factor affect-

ing perceptual realism is the unknown viewing conditions for a virtual scene. Hence,

in Chapter 7, we propose to actively control the illumination in a room so that it is

consistent with a virtual world. This triggers natural adaptation responses in the hu-

man visual system, thereby enhancing the sense of realism and immersion in a virtual
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environment. The method provides directional control over the room illumination and

hence goes further than related commercially available systems [104]. We have con-

ducted an informal user preference survey in order to verify this concept. Our partici-

pants overwhelmingly supported this concept, especially in combination with an HDR

display.

We believe that the work presented here also creates a variety of promising direc-

tions for future research. One important area is artistic tools for content creation, in

particular for augmenting existing film material with information about directional il-

lumination for driving the room lights. We have described some ideas on this topic in

Section 7.2, but more sophisticated approaches such as optical flow and particle filter-

ing should be possible. At the moment, we focus on entertainment-style applications,

where user preference is arguably all that matters. An interesting topic for future work

is to analyze whether the system can also be helpful in task-oriented applications, for

example ones that require navigation in space. Our user survey indicates that this might

be possible since the dynamic illumination can help with orientation. However, more

studies are required to fully assess the potential of the proposed method in such ap-

plications. This dissertation also does not explicitly look into the role played by color

in the perceptually realistic representation of a scene. Thus, there is scope for more

formal investigation into the relative importance of luminance and color for visual and

perceptual realism, especially in high dynamic range settings.

To conclude, this dissertation takes both the aspects of realism, photo-realism and

perceptual realism, into account while targeting real-time rendering applications as

well as high-quality offline renderings with realistic materials and illumination envi-

ronments. Most of the techniques developed here are very general and should be appli-

cable to other problems in computer graphics. For example, the Monte Carlo sampling

techniques developed in this dissertation can be readily applied to global illumina-

tion algorithms. Similarly, the concept of acquisition of material reflectance with basis

functions can potentially be extended to acquisition of light fields and reflectance fields.

Researchers are already experimenting with optical setups for such applications [102].
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portance sampling: Efficiently evalutating products of complex functions. ACM

Transactions on Graphics (Proc. SIGGRAPH), 24(3):1166–1175, August 2005.

[17] D. Cline, P.K. Egbert, J.F. Talbot, and D.L. Cardon. Two stage importance

sampling of direct lighting. In Proc. of Eurographics Symposium on Rendering,

pages 103–113, June 2006.

[18] D. Cline, J. Talbot, and P.K. Egbert. Energy redistribution path tracing. ACM

Transactions on Graphics (Proc. SIGGRAPH), 24(3):1186–1195, August 2005.

[19] J. Cohen and P. Debevec. Light-gen. HDRshop plugin, 2001.

http://www.ict.usc.edu/j̃cohen/lightgen/lightgen.html.

[20] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics.

ACM Transactions on Graphics, 1(1):7–24, 1982.



Bibliography 135

[21] Cornell. CORNELL light measurement laboratory, 2005.

http://www.graphics.cornell.edu/research/measure/.

[22] C. A. Crucio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson. Human pho-

toreceptor topography. J. of Comparative Neurology, 292:497–523, 1990.

[23] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen projection-

based virtual reality: The design and implementation of the CAVE. In Proc. of

ACM SIGGRAPH ’93, pages 135–142, 1993.

[24] CUReT. CUReT: Columbia-Utrech Reflectance and Texture, 1999.

http://www.cs.columbia.edu/CAVE/curet/.

[25] K. Dana. BRDF/BTF measurement device. In ICCV, pages 460–466, 2001.

[26] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderink. Reflectance and

texture of real world surfaces. ACM Transactions on Graphics, 18(1):1–34,

1999.

[27] P. Debevec. Rendering synthetic objects into real scenes: Bridging traditional

and image-based graphics with global illumination and high dynamic range pho-

tography. In Proc. of ACM SIGGRAPH ’98, pages 189–198, July 1998.

[28] P. Debevec. A median cut algorithm for light probe sampling, 2005. SIGGRAPH

2005 Poster.

[29] P. Debevec and J. Malik. Recovering high dynamic range radiance maps from

photographs. In Proc. of ACM SIGGRAPH ’97, pages 369–378, 1997.

[30] P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese, and T. Hawkins. A

lighting reproduction approach to live-action compositing. ACM Transactions

on Graphics (Proc. of SIGGRAPH ’02), 21(3):547–556, 2002.

[31] P. del Moral, A. Doucet, and A. Jasra. Sequential monte carlo samplers. J. Royal

Statist. Soc. B, 68(3):1–26, 2006.



136 Bibliography

[32] L. E. DeMarsh. Optimum telecine transfer characteristics. J. of the SMPTE,

81(10):784–787, October 1972.

[33] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in

Practice. Springer-Verlag, New York, 2001.

[34] F. Durand and J. Dorsey. Interactive tone mapping. In Eurographics Workshop

on Rendering, pages 219–230, 2000.

[35] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-

range images. ACM Transactions on Graphics (Proc. of SIGGRAPH 2002),

21(3):257–266, 2002.
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Appendix A

Radiometric and Photometric

Terms

In computer graphics, the interaction of light with matter is often modeled geometri-

cally using ray-optics. In this section we provide a brief description of some of the

radiometric terms used in this thesis.

Radiant Energy, denoted by Q, is the most basic radiometric unit, measured in Joules

[J]. For a photon of wavelength λ, the particle model of light gives the energy Q in

terms of Planck’s constant h and speed of light in vacuum c, as

Q =
hc
λ

(A.1)

Radiant Flux (or Radiant Power), denoted by φ, is the energy flowing through a surface

per unit time and is measure in Watts [W ].

φ =
dQ
dt

(A.2)

Radiant Flux Area Density, denoted by u, is a measure of energy flow given by radiant

flux per unit area, measured in [W/m2].

u =
dφ

dA
(A.3)

If the energy flow is toward the surface, it is referred to as irradiance (denoted by E)

and if the energy flow is away from the surface, it is referred to as radiosity or radiant

exitance (denoted by B).

Intensity, I, is the measure of flux with respect to solid angle instead of area and is

measured in [W/sr]

I =
dφ

d~ω
(A.4)
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This is useful in describing point light sources, since the area goes to zero.

Radiance, denoted by L, is a measure of radiant flux per unit projected area per unit

solid angle. Its unit is [W/m2sr].

L =
d2φ

dA dω cosθ
(A.5)

where θ is the angle between the normal N of the surface area element dA and the

direction of the flux φ. The cosine term represents the foreshortening with respect to

the flux direction. Spectral radiance is the radiance per unit wavelength interval and is

measured in [W/m3sr] units.

For each radiometric quantity, there exists a photometric quantity where the different

light frequencies are weighted by the luminous efficiency function, i.e., the relative

perceived brightness of light with the same power at different frequencies. Some of

these quantities and their units are listed below:

Luminous Flux is the flux weighted by the luminous efficiency function and is mea-

sured in Lumens [lm].

Illuminance and Luminosity are luminous flux densities, and correspond to irradiance

and radiosity, respectively. They are measured in Lux [lx = lm/m2].

Luminance is luminous flux density per solid angle, and therefore corresponds to ra-

diance. It is measured in Candela [cd = lm/m2sr = lx/sr].

Luminous Intensity is the photometric quantity corresponding to intensity and it is

measured in cd/m2.

For a more details, please refer to Glassner [50].
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Appendix B

Zonal Basis Function Plots

Our proposed reflectance measurement setup, in principle, allows measurement of re-

flectance in the interval θ∈ [π/20,π/2], i.e. 9◦, ..,90◦ from the surface normal. Angular

plots of the first few ZB functions defined over this measurement space are provided in

the Figure B.1.

Z0
0

Z−1
1 Z0

1 Z1
1

Z−2
2 Z−1

2 Z0
2 Z1

2 Z2
2

Figure B.1: The plots of zonal basis functions Zm
l defined over the measurement space

[π/20,π/2]× [0,2π], for l ≤ 2.
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Appendix C

Normalization Constant

The sequential normalization constant Lns,n at time n of the direct illumination integral

can be incrementally estimated according to Equation 5.10 in Section 5.1.1. This result

can be explained as follows: the weighted empirical distribution {W ( j)
n−1,ω

( j)
i,n−1:n} ob-

tained after the MCMC sampling step is an approximation of pn−1(ωi,n−1)Kn(ωi,n−1,ωi,n)

according to Equation 5.5. The expectation E(w̃n) of the incremental weights w̃n with

respect to this joint distribution pn−1 ·Kn is

E(w̃n)

=
Z

Ω

Z
Ω

w̃n pn−1(ωi,n−1)Kn(ωi,n−1,ωi,n) dωi,n dωi,n−1

=
Z

Ω

Z
Ω

p̃n(ωi,n−1)
p̃n−1(ωi,n−1)

pn−1(ωi,n−1)Kn(ωi,n−1,ωi,n) dωi,n dωi,n−1

=
1

Lns,n−1

Z
Ω

Z
Ω

p̃n(ωi,n−1)Kn(ωi,n−1,ωi,n) dωi,n dωi,n−1

=
1

Lns,n−1

Z
Ω

p̃n(ωi,n−1) dωi,n−1

=
Lns,n

Lns,n−1
.

The Monte Carlo estimate of this expectation is given by

E(w̃n)≈
N

∑
j=1

W ( j)
n−1 · w̃

( j)
n . (C.1)
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