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While modern digital cameras incorporate sophisticated engineering, in terms of their core

functionality, cameras have changed remarkably little in more than a hundred years. In partic-

ular, from a given viewpoint, conventional photography essentially remains limited to manipu-

lating a basic set of controls: exposure time, focus setting, and aperture setting.

In this dissertation we present three new methods in this domain, each based on captur-

ing multiple photos with di�erent camera settings. In each case, we show how defocus can be

exploited to achieve di�erent goals, extending what is possible with conventional photography.

�ese methods are closely connected, in that all rely on analyzing changes in aperture.

First, we present a 3D reconstruction method especially suited for scenes with high geo-

metric complexity, for which obtaining a detailed model is di�cult using previous approaches.

We show that by controlling both the focus and aperture setting, it is possible compute depth

for each pixel independently. To achieve this, we introduce the “confocal constancy” property,

which states that as aperture setting varies, the pixel intensity of an in-focus scene point will

vary in a scene-independent way that can be predicted by prior calibration.

Second, we describe amethod for synthesizing photos with adjusted camera settings in post-

capture, to achieve changes in exposure, focus setting, etc. from very few input photos. To do

this, we capture photos with varying aperture and other settings �xed, then recover the under-

lying scene representation best reproducing the input. �e key to the approach is our layered

formulation, which handles occlusion e�ects but is tractable to invert. �is method works with

the built-in “aperture bracketing” mode found on most digital cameras.
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Finally, we develop a “light-e�cient” method for capturing an in-focus photograph in the

shortest time, or with the highest quality for a given time budget. While the standard approach

involves reducing the aperture until the desired region is in-focus, we show that by “spanning”

the regionwithmultiple large-aperture photos, we can reduce the total capture time and generate

the in-focus photo synthetically. Beyond more e�cient capture, our method provides 3D shape

at no additional cost.
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Chapter 1

Introduction

A photograph is a secret about a secret. �e more it tells you the
less you know.

Diane Arbus (1923–1971)

I believe in equality for everyone, except reporters and
photographers.

Mahatma Gandhi (1869–1948)

At the basic optical and functional level, the cameras we use today are very similar to the

cameras from more than a hundred years ago. �e most signi�cant change has been the tight

integration of computation in all aspects of photography, from color processing at the sensor

level, to the automatic control of all camera parameters, to the integration of face-detection

algorithms to ensure that the subject is focused and well-exposed.

�ough modern cameras o�er advanced features that can be of assistance to the photogra-

pher, all these features are in support of a fundamental question that hasn’t changed since the

early days of photography—what camera settings should I use?

As experienced photographers know, conventional cameras of all varieties share the same

set of basic controls, accessible in “manual” mode: exposure time, focus setting, and aperture

setting. So for a given framing of the scene, provided by the viewpoint and zoom setting, our

choices for photography are e�ectively limited to manipulating just three controls. �us, we can

regard any photograph as a point lying in the 3D space de�ned by the controls for conventional

photography (Fig. 1.1).

�is model has begun to change in recent years, with the development of new prototype

camera designs that try to extend the capabilities of traditional photography. �ese new designs

rely on various strategies such as using ensembles of multiple cameras [48, 61, 74, 77], trading

1
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exposure
time

focus
setting

aperture
setting

photo

Figure 1.1: Basic controls for conventional photography. For a given viewpoint and zoom setting, every
photograph we capture with our camera can be thought of as a point in the 3D space of camera settings.

sensor resolution for measurements along new dimensions [9, 47, 49, 73, 75, 85, 115], introducing

coded patterns into the optics [32, 36, 58, 69, 96, 103, 115], changing the optics themselves [8, 28,

33, 44, 138], and controlling the environment with projected illumination [34, 79, 93].

While some of this recent work is very exciting, in this dissertation we revisit the domain of

conventional photography, and advocate taking multiple photographs from a �xed viewpoint.

We will see that when camera settings are chosen appropriately, conventional photographs can

reveal deep structure about the scene, and that limitations usually attributed to the conventional

camera design can be overcome. An obvious advantage of restricting ourselves to standard cam-

eras is that the methods we propose can be put into immediate practice.

Despite its apparent simplicity, we will demonstrate how conventional photography can be

used to address a wide variety of fundamental questions:

• How can we resolve �ne 3D structure for scenes with complex geometry?

• How can we capture a small number of photos that enable us to manipulate camera pa-
rameters synthetically, a�er the capture session?

• How do we capture an in-focus and well-exposed photo of a subject in the least amount
of time?

• How do we capture the best possible photo of a subject within a restricted time budget?

Beyond our speci�c contributions in these areas, the insights we develop can be applied more

broadly, and guide the development of general camera designs as well.

Ourwork follows awell-established strategy in computer vision of capturingmultiple photos

from the same viewpoint with di�erent camera settings. Most of the work along these lines has

concentrated on combining di�erently focused images, for the purpose of computing depth

[30, 43, 60, 64, 80, 92, 111, 120, 129], or for restoring the underlying in-focus scene [10, 130]. We
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(a) (b)

Figure 1.2: Varying the exposure time. (a) A short exposure time (0.1 s) leads to a dark, relatively noisy
image. (b) With a longer exposure time (0.4 s), the image is brighter, but su�ers from blur due to the
motion of the camera over the exposure interval. �e same scene is shown in Fig. 1.5 without motion
blur. © dpreview.com

review this work in Chapter 2. Other methods in this domain have explored varying exposure

time to increase the dynamic range [31, 78], and capturing multiple reduced-exposure images to

address motion blur [20, 113, 131]. We discuss these related methods later, as they relate to our

speci�c approaches.

Collectively, we refer to our work as variable-aperture photography, because a connecting

feature is that all of our methods rely on analyzing changes in aperture—a camera control that

hasn’t received much attention until lately. Our methods are based on three basic principles:

taking multiple photographs with di�erent camera settings, analyzing properties of defocus in

detail, and maximizing the light-gathering ability of the camera.

1.1 Controls for Photography

To put our methods in context, we �rst give a high-level overview the basic camera controls

(Fig. 1.1) and the tradeo�s that they impose. �is discussion should be familiar to technically-

minded photographers, who face the practical challenge of manipulating these controls to cap-

ture compelling images of their subjects.

ExposureTime. �e simplest camera control is exposure time, which determines the amount

of time that the shutter remains open and admits light into the camera. Clearly, longer exposure

times allow the sensor to collect more light, leading to brighter images (Fig. 1.2). Exposure time

does not depend on any mechanical lens adjustments, nor even the presence of a lens.

�e advantage of brighter images is that up to the saturation limit of the sensor, brighter

pixels have relatively lower noise levels [56, 76]. In practice, the exposure time must be chosen
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(a) (b)

Figure 1.3: Varying focus setting, from (a) closer to the camera, to (b) further from the camera. �e
intervals illustrate the depth of �eld, which can also be observed along the ruler. �e further away that a
region of the scene lies from the depth of �eld, the more detail is lost due to defocus. © dpreview.com

carefully to avoid excessive saturation, because wherever the subject is over-exposed, all infor-

mation is lost except for a lower bound on brightness.

While exposure time is a key mechanism for selecting image brightness, it also presents us

with an important tradeo�. In particular, the long exposures necessary to obtain bright images

open the possibility that the image will be degraded due to motion over the capture (Fig. 1.2b).

Both subject motion and motion of the camera are potential sources of this blurring, so all else

being equal we would prefer to keep the shutter open as brie�y as possible [20, 113, 131].

Focus Setting. While the focus setting does not a�ect brightness, it controls the distance

in the scene at which the scene appears at its sharpest (Fig. 1.3). In contrast to the idealized

pinhole model, in which every pixel on the sensor plane corresponds to a single ray of light

(Sec. 2.2.1), integration over the lens means that only light from certain 3D points in the scene

will be perfectly focused to the sensor plane.

In theory, each focus setting de�nes a unique distance from which scene points are brought

into perfect focus. In practice, however, there is a whole range of distances known as the depth of

�eld (DOF) for which the degree of blur is negligible. On a practical level, if we want the subject

to be sharp, it must lie within the depth of �eld. �e further away we get from the depth of �eld,

the more detail will be lost due to defocus.

Note that since focus setting is controlled bymodifying the e�ective lens-to-sensor distance,

it typically has the side-e�ect of magnifying the image and producing more subtle geometric

distortions as well (Sec. 2.2.3).
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f/16 f/5.6 f/1.8
(3.1mm) (8.9mm) (27.8mm)

Figure 1.4: Non-circular variation in aperture for a real 50mm SLR lens.

(a) (b)

Figure 1.5: Varying the aperture setting in “aperture-priority” mode, which adjusts the exposure time to
keep image brightness roughly constant. (a) A small aperture (f/8) yields a large depth of �eld, with most
of the scene “acceptably” in focus, whereas (b) a larger aperture (f/1.4) yields a shallower depth of �eld,
with a more restricted region of the scene in focus. © dpreview.com

Aperture Setting �e �nal and most complex camera control is aperture setting, which af-

fects the diameter of a variable-size opening in the lens (Fig. 1.4) that lets light enter the camera.

Changing aperture is particularly interesting because it has two interconnected e�ects. First,

larger apertures collect more light, so in the same exposure time, photos taken with a larger

aperture will be more brightly exposed. Secondly, larger apertures increase the level of defocus

for every point in the scene, leading to a reduction in the depth of �eld (Fig. 1.5).

�e light-gathering ability of large apertures is useful in two ways: it can lead to brighter

images with lower noise levels, and it can also lead to faster exposure times for reduced motion

blur. �e important tradeo� of using wide apertures is that a greater portion of the scene will

appear defocused.

By convention, aperture setting is written using the special notation f/α. �is corresponds

to an e�ective aperture diameter of ϝ/α, where ϝ is the focal length of the lens (see Sec. 2.2.1),

and α is known as the f-number of the lens. In modern auto-focus lenses, the aperture is usually

discretized so that its e�ective area doubles with every three discrete steps.

Changing the aperture setting also leads to secondary radiometric e�ects, most notably in-
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creased vignetting, or relative darkening at the corners of the image (Sec. 2.2.3).

Space of Conventional Photographs. In summary, by manipulating the three basic cam-

era controls, we can capture photographs that vary in terms of their brightness level and defocus

characteristics. Motion blur will be more severe with longer exposure times—if motion is con-

stant over the exposure interval, its magnitude will be roughly proportional to exposure time.

Both image brightness and defocus depend on the interaction of two camera controls. On

one hand, image brightness is directly related to the combination of exposure time and aperture

area. On the other hand, defocus depends on the combination of aperture and focus setting, but

in orthogonal ways—the aperture setting controls the extent of the depth of �eld, whereas the

focus setting controls its distance from the camera. Together, the aperture and focus settings

fully determine how defocus varies with depth.

1.2 Overview

A�er presenting background material on the analysis of defocus (Chapter 2), we describe three

newmethods for variable-aperture photography based on applying computation to conventional

photographs. Despite our seemingly restrictive domain—manipulating basic camera controls

from a �xed viewpoint—we show that identifying the right structure in the space of photographs

allows us to achieve gains in 3D reconstruction, in resynthesis, and in e�ciency (Fig. 1.6).

Confocal Stereo. In our �rst method, we show that by varying both aperture and focus

setting—holding image brightness roughly constant—it is possible compute depth for each pixel

independently (Chapter 3). �is allows us to reconstruct scenes with very high geometric com-

plexity or �ne-scale texture, for which obtaining a detailed model is di�cult using existing 3D

reconstruction methods.

�e key to our approach is a property that we introduce called “confocal constancy”. �is

property states that we can radiometrically calibrate the lens so that under mild assumptions,

the color and intensity of an in-focus point projecting to a single pixel will be unchanged as we

vary the aperture of the lens.

To exploit this property for reconstruction, we vary the focus setting of the lens and, for

each focus setting, capture photos at multiple aperture settings. In practice, these photos must

be “aligned” to account for the geometric and radiometric distortions as aperture and focus

varies. Because our method is designed for very high-resolution photos, we develop detailed
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exposure
time

focus
setting

aperture
setting

exposure
time

focus
setting

aperture
setting

exposure
time

focus
setting

aperture
setting

pixel-level 3D shape
for complex scenes

(Chapter 3)

refocusing in
high dynamic range

(Chapter 4)

faster, more
efficient capture
(Chapters 5-6)

1 3 5 7 9 11 13 15

5.31 15.9 26.6 37.2 47.8 58.4 69.1 79.7

100

300

500
675

944

1500

Confocal Stereo Multiple-Aperture Photography Light-E�cient Photography

Figure 1.6: High-level overview. �is dissertation explores what can be accomplished by manipulating
basic camera controls (Fig. 1.1) and combiningmultiple photos from the same viewpoint. We develop new
methods in this domain that contribute to three di�erent areas: capturing highly detailed 3D geometry,
enabling post-capture resynthesis, and reducing the time required to capture an in-focus photo.

calibration methods to achieve this alignment.

�e other important idea of our approach is that we can organize the aligned photos into a

set of aperture-focus images (AFIs), one for each pixel, that describe how an individual pixel’s

appearance varies across aperture and focus. In this representation, computing the depth of a

pixel is reduced to processing its AFI to �nd the focus setting most consistent with confocal

constancy.

Together, these ideas lead to an algorithm we call confocal stereo that computes depth for

each pixel’s AFI independently. �is lets us reconstruct scenes of high geometric complexity,

with more detail than existing defocus-based methods.
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Multiple-Aperture Photography. �e next method we describe lies at the other end of the

spectrum in terms of the number of input photos required. We show that by capturing several

photos with varying aperture and keeping other settings �xed, we can recover a scene represen-

tation with increased dynamic range that also allows us to synthesize new photos with adjusted

camera settings (Chapter 4). �is method greatly increases the photographer’s �exibility, since

decisions about exposure, focus setting, and depth of �eld can be deferred until a�er the capture

session.

Ourmethod, that we callmultiple-aperture photography, can be thought of as an extension of

standard high dynamic range photography [31, 78], since it uses the samenumber of input photos

with similar variation in image brightness. As we show, by analyzing defocus across photos with

di�erent aperture settings, not only can we recover the in-focus high dynamic range image, but

also an approximate depth map. It is this richer representation of in-focus radiance plus depth

that lets us synthesize new images with modi�ed camera settings.

�e key to the success of our approach is the layered formulation we propose, which handles

defocus at occlusion boundaries, but is computationally e�cient to invert. �is model lets us

accurately account for the input images, even at depth discontinuities, and makes it tractable to

recover an underlying scene representation that simultaneously accounts for brightness, defo-

cus, and noise.

On a practical level, another bene�t of thismethod is that we can capture the input photos by

taking advantage of the one-button “aperture bracketing” feature foundonmanydigital cameras.

Light-Efficient Photography. �e last method we describe addresses the question of how

we capture an in-focus and well-exposed photograph in the shortest time possible (Chapter 5).

We show that by “spanning” the desired depth of �eld with multiple large-aperture photos, we

can reduce the total capture time compared to the basic single-photo approach, without sacri-

�cing image noise. Under this approach, we generate the desired in-focus photo synthetically,

by applying compositing techniques to our input. Beyond more e�cient capture, this has the

important bene�t of providing approximate 3D shape at no additional acquisition cost.

�is method, which we call light-e�cient photography, starts from a simple observation that

large apertures are generally more e�cient than small ones, in the sense that their increased

light-gathering ability more than compensates for their reduced depth of �eld. We formalize

this idea for lenses both with continuously-variable apertures and with discrete apertures, with

all photos captured at the same optimal exposure level. Our analysis provides us with the prov-

ably time-optimal capture sequence spanning a given depth of �eld, for a given level of camera
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overhead.

In a recent extension to this work, we have also analyzed the related problem of capturing

the highest-quality in-focus photo when we are constrained to a time budget (Chapter 6). �e

analysis in this case is more complex, since we can no longer assume that exposure level is �xed

at the optimal level, therefore wemust also consider tradeo�s between image noise and defocus.

To do this in a principled way, we propose a detailed imagingmodel that allows us to predict the

expected reconstruction error for a given capture strategy. Our preliminary results show that the

previous solution, spanning the depth of �eld with wide-aperture photos, is generally optimal

in these terms as well, provided that the time budget is not overly constrained (i.e., that we have

on the order of 1/300-th or more of the previous time budget). For severely constrained time

budgets, it is more bene�cial to span the depth of �eld incompletely and accept some defocus

in expectation.
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Chapter 2

Lenses and Defocus

You cannot depend on your eyes when your imagination is out of
focus.

A Connecticut Yankee in King Arthur’s Court
Mark Twain (1835–1910)

In classical optics, the convergence of light to a sharp point, or focus, has been studied for

hundreds of years [105]. While photographers and artists commonly use defocus for expressive

e�ect, in image analysis, defocus is typically regarded as a form of degradation, corrupting the

ideal pinhole image. Indeed, the �ne image detail lost to defocus cannot be recovered in general,

without prior knowledge about the underlying scene.

Although defocus can be thought of as a form of degradation, it also has a particular struc-

ture that encodes information about the scene not present in an ideal pinhole image. In partic-

ular, the depth of a given point in the scene is related to its degree of defocus.

Using a stationary camera with varying settings to measure defocus is particularly well-

suited to reconstructing scenes with large appearance variation over viewpoint. Practical ex-

amples include scenes that are highly specular (crystals), �nely detailed (steel wool), or possess

complex self-occlusion relationships (tangled hair). For this reason, 3D reconstruction meth-

ods from defocused images hold great potential for common scenes for which obtaining de-

tailed models may be beyond the state of the art [57, 132, 133, 136, 137]. A further advantage of

reconstruction methods using defocus is the ability to detect camou�aged objects, which allows

segmentation of the scene based on shape rather than texture cues [39].

In this chapter, we reviewmodels for lenses and defocus used in computer vision, and survey

previous defocus-based methods used for 3D reconstruction [30, 43, 60, 64, 80, 92, 111, 120, 129],

or for synthesizing new images from the recovered underlying scene [10, 54, 87, 130, 135].

11
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(a) (b)

Figure 2.1: (a) Cut-away view of a real zoom lens, the Panasonic Lumix DMC-FZ30, reveals 14 lens el-
ements arranged in 10 groups. In response to user-applied focus and zoom settings, some of the lens
groups translate along the optical axis by di�erent amounts. © Panasonic. (b) Screenshot of Optis Solid-
Works computer-aided design so�ware [1], which allows lens designs to be modeled using physically-
based ray-tracing. © OPTIS.

2.1 Parameters for Real Lenses

�e minimalist design for a photographic lens consists of a single refractive lens element, at

a controllable distance from the sensor plane, with a controllable aperture in front [105]. By

contrast, modern commercially available SLR lenses are signi�cantly more complex devices,

designed to balance a variety of distortions (Sec. 2.2.2) throughout their range of operation.

Modern lenses are typically composed of 5 or more lens elements, and up to 25 elements is

not uncommon for a telephoto zoom lens [2] (Fig. 2.1a). In practice, these lens elements are

arranged in �xed groups, whose axial spacing controls the behavior of the lens. Compared to

zoom lenses, �xed focal length or prime lenses require fewer elements.

�e most common lens element shape is the spherical segment, because of its �rst-order

ideal focusing property [105], and the ease withwhich it can bemachined precisely. Modern lens

designs o�en include several aspheric, or non-spherical, lens elements as well, which provide

greater �exibility but are more demanding to manufacture.

Despite their complexity, modern SLR lenses are controlled using a set of three basic pa-

rameters. We already described two of these parameters, focus setting and aperture setting,

in Sec. 1.1. �e remaining lens parameter, zoom setting, is only applicable to so-called zoom

lenses.1 Note that from the photographer’s point of view, these basic lens parameters are the

1More specialized lens designs, such as tilt-shi� lenses, o�er additional controls, but such lenses are outside
the scope of this work.
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(a) (b)

Figure 2.2: Changing the zoom setting from (a) telephoto (100mm), to (b) wide-angle (28mm), but
moving the camera to keep the �gurine roughly constant-size in the image. With this compensation
the depth of �eld remains nearly constant, despite popular belief to the contrary. Note how �attened
perspective in the telephoto case causes the background to be relatively magni�ed. © dpreview.com

only way to control how the scene is focused onto the image plane. We will discuss these lens

parameters more concretely in Sec. 2.2.1, by describing analytic lens models explicitly de�ned in

terms of these parameters.

Zoom lenses. While zoom setting is typically held �xed in the context of analyzing defocus,

we describe its e�ects for completeness. On a zoom lens, the zoom setting controls the e�ective

focal length, which in turn determines its focusing power, or degree to which incoming light is

redirected.

�e main e�ect of changing the zoom setting is to change the �eld of view and magni�-

cation. Another notable side-e�ect of changing the zoom setting is the apparent perspective

distortion when the subject is kept at a constant size in the frame (Fig. 2.2). Large (telephoto)

focal lengths correspond to a narrow �eld of view, high magni�cation, and apparently �attened

depth variation. By contrast, small (wide angle) focal lengths correspond to a wide �eld of view,

low magni�cation, and apparently exaggerated depth variation.

�e zoom setting has a subtle e�ect on the focusing behavior of a lens [17]. While telephoto

lenses appear to create a shallower depth of �eld, this e�ect is primarily due tomagni�cation and

perspective �attening, which causes the background to be relativelymagni�edwithout resolving

any additional detail. If we compensate for the magni�cation of a given subject, i.e., by moving

the camera and adjusting the focus accordingly, the depth of �eld remains nearly constant across

focal length (Fig. 2.2), however slight di�erences still remain.

Mechanical implementation. Most lens designs realize the three lens parameters in stan-

dard ways. For example, the lens aperture is usually formed using a set of 5–12 opaque mechan-



14 Chapter 2. Lenses and Defocus

ical blades that pinwheel around to block o� the opening (Fig. 1.4). While arbitrary aperture

masks can be implemented in theory, e.g., using specially designed �lters [36], standard cam-

eras use a nested set of approximately circular openings. Note that lenses e�ectively have internal

apertures that block the incoming light as well (see Sec. 2.2.2), but these apertures are not directly

controllable.

Changes to the focus setting can be realized by translating the entire assembly of lens ele-

ments together, in an axial direction perpendicular to the sensor plane. In practice, changing

the focus setting adjusts the inter-element spacing as well, to compensate for distortions. Note

that theminimum focusing distance is limited by engineering constraints such as themaximum

physical extension of the lens.

Similarly, changes to the zoom setting are e�ected by modifying the relative spacing of var-

ious groups of lens elements. Because zoom lenses must compensate for distortions over wider

ranges of focal lengths, they require more lens elements and are more mechanically complex

than �xed focal length lenses.

2.2 Lens Models and Calibration

Any particular lens model needs to specify two things: (1) geometric properties, or how in-

coming light is redirected, and (2) radiometric properties, or how light from di�erent incoming

rays is blocked or attenuated. Specifying such a model completely de�nes the image formation

process, and allows us to apply the lens model synthetically to a particular description of the

scene.

In practice, simple analytic models (Sec. 2.2.1) are typically used to approximate the behav-

ior of the lens, a�er factoring out the e�ects of various geometric and radiometric distortions

(Sec. 2.2.2). �e parameters of these analytic models may be provided by the lens manufacturer,

but more o�en are �t empirically using a calibration procedure (Sec. 2.2.3).

�e most detailed lens models available consist of physical simulations of the optics, given

a complete description of the lens design [1, 84] (Fig. 2.1b). Unfortunately, designs for commer-

cially available SLR lenses are proprietary, and are not provided with su�cient detail to be used

for this purpose. �erefore, to achieve a high level of accuracy one typicallymust resort to empir-

ical models based on calibration (Sec. 2.2.3). In practice, such empirical models may be valuable

for describing individual lenses, which may not be manufactured exactly to speci�cation.

By contrast, some methods such as depth-from-focus (Sec. 2.6) require no explicit lens

model whatsoever. �ese methods instead exploit generic lens properties such as perfect fo-
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Figure 2.3: Geometry of the thin lens model, represented in 2D. When the sensor plane is positioned at
an axial distance of v from the lens, the set of in-focus points lie on a corresponding equifocal plane at
an axial distance of d, as given by Eq. (2.1). As shown, the rays converging on a particular point on the
sensor plane, X, originate from a corresponding in-focus scene point, P. When the scene surface and P

do not coincide, X is defocused and integrates light from a cone, whose projected diameter, σ , is given
by Eq. (2.4). Note that the principal ray passing through the lens center, C, is unde�ected. �e aperture
has diameter D = ϝ/α, where ϝ is the focal length.

cusing, or “confocal constancy” in the case of confocal stereo (Chapter 3).

2.2.1 Basic analytic models

Pinholemodel. �e simplest lens model available is the pinhole model, representing an ide-

alized perspective camera where everything is in-focus. In practice, very small apertures such

as f/22 can approximate the pinhole model, however di�raction limits the sharpness that can be

achieved with small apertures [105]. Another limitation of small apertures is that they gather

less light, meaning that they require long exposure times or strong external lighting.

�e pinhole model is speci�ed by its center of projection, C, which is coincident with the

in�nitesimal pinhole aperture (Fig. 2.3). �is geometry implies that every point,X, on the sensor

plane corresponds to a single ray from the scene,
Ð→
PC, therefore the entire image will be in-focus.

Photometrically, the image irradiance, E, depends only on the radiance, L, associated with the

corresponding ray. Assuming a linear sensor response, we have E(X) ∝ L(Ð→PC).
Note that the pinhole does not redirect light from the scene, but simply restricts which rays

reach the sensor. �erefore, an alternate way of thinking about a pinhole lens is as a mechanism

to select a 2D image slice from the 4D light �eld of the scene [48, 74].

Although aperture and zoom setting have no meaningful interpretation for a pinhole, the

distance from the pinhole to the sensor plane, v, can be interpreted as a degenerate form of

focus setting (Fig. 2.3). For any such distance, the pinhole model will still achieve perfect focus,

however, moving the sensor plane has the side-e�ect of magnifying the image.



16 Chapter 2. Lenses and Defocus

Thin lensmodel. �e thin lens model is a simple, widely used classical model accounting for

lenses with variable aperture, focus setting, and focal length (Fig. 2.3). In physical terms, the thin

lens model consists of spherical refracting surfaces with negligible separation, and assumes a

�rst-order approximation of geometric optics, where the trigonometric functions are linearized

as sin(x) ≈ x and cos(x) ≈ 1. For an in�nitesimal aperture, the thin lens model reduces to the

pinhole model.

�e thin lens model is based on a distinguished line known as the optical axis. �e optical

axis is perpendicular to the sensor plane, passes through the lens center, C, and is normal to

both refracting surfaces (Fig. 2.3). According to �rst-order optics, the angle between a ray and

the optical axis is negligible. �is approximation, also known as the paraxial assumption [105],

provides invariance to transversal shi� perpendicular to the optical axis.

An important consequence of the paraxial assumption is that for a given focus setting, spec-

i�ed by the lens-to-sensor distance, v, the surface de�ning the corresponding set of perfectly

focused scene points is a plane parallel to the sensor plane. In other words, the “equifocal” sur-

faces for the thin lens model are fronto-parallel planes.

Under the paraxial assumption, a spherical refracting surface can be shown to focus incident

rays of light to a common point. �en, using basic geometry, we can derive the classic focusing

relationship between points on either side of the lens, also known as the thin lens law:

1

v
+ 1

d
=

1

ϝ
, (2.1)

where v is the axial distance from a point on the sensor plane to the lens, d is the axial distance

from the lens to the corresponding in-focus scene point, and ϝ is the focal length (see Sec. 2.1).

Note that under the thin lens model, the focal length also corresponds to the distance behind

the lens at which the rays parallel to the optical axis, i.e., from an in�nitely distant scene point,

will converge.

For a given point on the sensor plane, X, the ray passing through the lens center,
Ð→
XC, also

known as the principal ray, will not be refracted. �is follows from the paraxial assumption,

which views the principal ray in the same way as the optical axis. By de�nition, the correspond-

ing in-focus scene point, P, must lie on the principal ray, giving rise to the following explicit
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construction,

v = ∥C −X∥ cos θ (2.2)

P = X + d + v
v
(C −X) , (2.3)

where θ is the angle between the principal ray and the optical axis (Fig. 2.3), and the scene-side

axial distance d may be computed according to Eq. (2.1).

If the closest scene point along the principal ray, P′, lies on the equifocal plane, i.e., if P′ =

P, then the corresponding pixel on the sensor plane, X, is perfectly in-focus. Otherwise, X

integrates light from some region of the scene.

From simple geometry, this domain of integration is a cone whose cross-section is the shape

of the aperture. At the point where the principal ray meets the scene, we de�ne a “blur circle”

describing the extent of defocus, as the intersection of the integration cone with a plane parallel

the sensor. By similar triangles, the diameter, σ , of this blur circle satis�es

σ = D
∣d′ − d∣

d
, (2.4)

where D = ϝ/α is the aperture diameter, and d′ is the axial distance of P′ from the lens. By

rearranging this equation, we obtain:

d′ = d (1 ± σ

D
) , (2.5)

which expresses the depth of the scene, d′, in terms of the degree to which pixel X is defocused,

as represented by the blur diameter, σ . �is is the basic idea that enables depth-from-defocus

methods (Sec. 2.7).

�e image irradiance under the thin lensmodel depends not only on the radiance associated

with the corresponding cone, but also on geometric factors causing fallo� over the sensor plane.

Assuming a linear sensor response, the thin lens irradiance can be derived as [11, 105]:

E(X) ∝ Acos4 θ

v2
L(Ð→PC) , (2.6)

where A = 1
4
πD2 is the area of the aperture, and the radiance from P is assumed to be constant

over the cone of integration. �e angle from the optical axis, θ, e�ectively foreshortens both the

aperture and the scene; it also appears in the inverse-squared fallo�, which is de�ned according
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to the distance to the sensor plane, v/ cos θ.
Note that the thin lens formula is an idealization, satis�ed only for an aberration-free lens

near the optical axis, so that the paraxial assumption holds. In practice, the model is still a

reasonable approximation for many lenses, however calibrating its parameters is non-trivial

(Sec. 2.2.3). For additional accuracy, more detailed empirical calibration may be used to fac-

tor out residual geometric and radiometric distortions, to reduce the behavior of a real lens to

the thin lens model.

Thick lensmodel. Another classical imaging model favored by some authors is the thick (or

Gaussian) lens model [64, 109, 111]. �e thick lens model de�nes two distinct refracting surfaces

with �xed separation, where axial distance d and vmeasured with respect to those planes. How-

ever this can easily be reduced to the thin lens model, provided that the medium, e.g., air, is the

same on both sides of the lens. In any case, the “thickness” of the lens model has no physical

meaning for real multi-element lenses.

Pupil-centric model. As Aggarwal and Ahuja note [11], the thin lens model assumes that

position of the aperture is coincident with the e�ective scene-side refractive surface, however

real lens designs o�en violate this assumption. To address this de�ciency, they propose a richer

analytic model, called the pupil-centricmodel, which incorporates the positions of entrance and

exit pupil, and possibly the tilt of the sensor plane relative to the optical axis.

For a given setting of the lens parameters, the pupil-centric model reduces to an instance

of the thin lens model, whose e�ective parameters could be calibrated empirically. �e real ad-

vantage of the pupil-centric model is that it provides a more accurate analytic model across all

lens settings, from a small number of extra model parameters. �ese pupil-centric parameters

may be �t empirically through calibration, though the authors suggest measuring some of them

directly, using a second camera to perform depth-from-focus (Sec. 2.6) on the internal compo-

nents of the lens.

2.2.2 Distortions in real lenses

Analytic imaging models, like the thin lens model, serve as a useful �rst approximation to the

behavior of real lenses. In practice, however, real lenses su�er from signi�cant geometric and

radiometric distortions from those basic models, also known as aberrations. �e bulk of these

distortions are due to fundamental limitations in the analytic model, i.e., the approximate �rst-

order model of optics assumed by the thin lens model. However, physical design constraints,
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such as aperture placement, as well as limited manufacturing tolerances can also contribute to

these distortions.

Seidel aberrations. �e �rst category of distortions we consider are geometric distortions

from the �rst-order paraxial model of optics, which prevent rays from the scene from focusing

perfectly on the sensor, or from focusing at the expected location. Five common types of geo-

metric distortions, known as Seidel aberrations, may be accounted for by considering a richer

third-order model of optics [105]:

• Spherical aberration A spherical lens is not the ideal shape for focusing, since rays at
the margins of the lens are refracted to relatively closer positions, preventing all rays from
converging perfectly at a point on the sensor plane.

• Coma For large apertures, o�-axis scene points will be defocused in a characteristic comet
shape, whose scale increases with the angle from the optical axis.

• Astigmatism From the point of view of an o�-axis scene point, the lens is e�ectively
tilted with respect to the principal ray. �is causes foreshortening and leads to focusing
di�erences in the radial and tangential directions.

• Field curvature Evenusing a perfectly focusing aspheric lens element, the resulting equifo-
cal surfaces in the scene may be slightly curved. �is incompatibility between the curved
shape of the equifocal surfaces and the planar sensor causes fronto-planar objects to be
radially defocused.

• Radial distortion If the aperture is displaced from the front of the lens, rays through
center of the aperture will be refracted, leading to radially symmetricmagni�cationwhich
depends on the angle of the incoming ray, giving straight lines in the scene the appearance
of being curved.

Algebraically, third-order optics involves adding an extra Taylor series term to the trigonometric

functions, to obtain sin(x) ≈ x − 1
3!
x3 and cos(x) ≈ 1 − 1

2!
x2.

Chromaticaberrations. Another fundamental type of distortion stems from the dependence

of refractive index on the wavelength of light, according to the same physical principle which

causes blue light to be more refracted than red light through a prism [105]. In addition to re-

ducing the overall sharpness of the image, chromatic aberrations can also lead to color fringing

artifacts at high-contrast edges.

One component to chromatic aberration is axial, which prevents the lens from focusing

simultaneously on di�erent colored rays originating from the same scene point. Chromatic
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aberration also has a lateral component, causing o�-axis scene points to be focused with mag-

ni�cation that is dependent on their color, leading to prism-like dispersion e�ects. In practice,

systems using multiple lens elements with special spacing or di�erent refractive indexes can

largely eliminate both types of chromatic aberration.

Radiometricdistortions. �e last category of distortions we consider are radiometric distor-

tions, which cause intensity variations on the sensor even when the radiance of every ray in the

scene is constant. �e most common type of radiometric distortion is vignetting, which refers

to darkening, or even complete occlusion, at the periphery of the sensor. �ere are a variety of

sources for vignetting:

• Mechanical vignetting Some light paths are completely blocked by the main aperture,
internal apertures, or external attachments such �lters or lens hoods.

• Natural vignetting Also known as o�-axis illumination, natural vignetting refers to the
cos4 θ fallo� already accounted for by the thin lens model (Sec. 2.2.1), arising from inte-
gration over oblique di�erential solid angles [105].

• Optical vignetting �e displacement of the aperture from the front of the lens causes
portions of the entrance pupil to become e�ectively occluded for oblique rays. �is type
of vignetting leads to characteristic “cat’s eye” defocus, corresponding to the shape of the
aperture becoming eclipsed toward the edges of the image.

Another radiometric distortion related to optical vignetting, known as pupil aberration, is the

nonuniformity of radiometric variation of a scene point across the visible aperture. �is e�ect

may be especially pronounced for small asymmetric apertures whose centroid is o�-axis [12].

As Kang andWeiss showed, it is possible in principle to recover intrinsic camera calibration

by �tting models of vignetting to an image of a di�use white plane [63]. �is demonstrates that

radiometric distortions can not only be accounted for, but even carry useful information about

the imaging system.

2.2.3 Calibrationmethods

To relate images captured at di�erent lens settings, they must be aligned both geometrically

and radiometrically. Any analytic lens model will predict such an alignment, so the simplest

approach to camera calibration is to take these parameters directly from the speci�cations of

the lens [111].

For higher accuracy, however, known calibration patterns may be used to estimate the pa-

rameters of the analytic lens model empirically [15, 30, 53, 66, 124] (Sec. 3.6). Taking this idea
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to an extreme, empirical calibration could theoretically be used to reduce lens calibration to a

pixel-level table look-up, with entries for every image coordinate, at every tuple of lens param-

eters [109].

In the following, we describe geometric and radiometric calibration methods formulated in

terms of in-focus 3D points, or else in terms of the principal ray through the camera center. We

defer discussing the speci�c form of defocus, including methods for its empirical calibration, to

Sec. 2.3.

Geometric calibration. Geometric calibration means that we can locate the projection of

the same 3D point in multiple images taken with di�erent settings. Real lenses, however, map

3D points onto the image plane in a non-linear fashion that cannot be predicted by ordinary

perspective projection. While the main source of these distortions are changes to the focus or

zoom setting, the aperture setting a�ects this distortion in a subtle way as well, by amplifying

certain aberrations which cause small changes to the image magni�cation.

�e single geometric distortion with the largest e�ect is the linear radial image magni�ca-

tion caused by changes to the focus or zoom setting. Such magni�cation follows from the thin

lens model (Sec. 2.2.1), but for greater accuracy the mapping between lens parameters and mag-

ni�cation must be recovered empirically.

For some reconstructionmethods, image magni�cation is not mentioned explicitly [134], or

else is consciously ignored [80, 109, 111]. Since suchmagni�cation is about 5% at the imagemar-

gins, methods that use very low-resolution images or consider large image patches can ignore

these e�ects. Other reconstruction approaches circumvent the image magni�cation problem by

changing the aperture setting instead [91, 92, 109, 111], by moving the object [82], or by changing

the zoom setting to compensate [30, 126].

Another approach for avoiding the imagemagni�cation e�ect is to use image-side telecentric

optics, designed so that the principal ray always emerges parallel to the optical axis [118–120].

�e telecentric lens design has the e�ect of avoiding magni�cation with sensor plane motion,

and has the added bene�t of avoiding the any radiometric fallo� due to the position of the sensor

plane. Telecentric lens designs are realized by placing an additional aperture at an analytically-

derived position, so a tradeo� is their reduced light-gathering ability.

Amore direct approach for handling imagemagni�cation involves �tting thismagni�cation,

either directly [15, 66] or in a prior calibration step [30, 53, 124] (Sec. 3.6), which allows us to

warp and resample the input images to some reference lens setting. However, as Willson and

Shafer note, simply using the center pixel of the sensor is insu�cient for accurately modeling
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magni�cation [127].

Beyond simple image magni�cation with a displaced center, even richer models of geomet-

ric distortion, including radial distortion, have been proposed as well [53, 66, 80, 124] (Sec. 3.6).

Kubota, et al. proposed a hierarchical registration method, analogous to block-based optical

�ow, for geometrically aligning defocused images captured at di�erent lens settings [66]. Will-

son implemented extensive geometric calibration as well, by �tting polynomials in the lens pa-

rameters, to a full parameterization of the 3 × 4 matrix for perspective projection, inferring the

degree of these polynomials automatically [124]. Nair and Stewart suggest correcting for �eld

curvature, by �tting a quadratic surface to a depth map obtained by applying their reconstruc-

tion method to a known fronto-planar scene [80].

Another class of geometric distortion, not accounted for in analytic optical models, is non-

deterministic distortion, caused by random vibrations, both internal and external to the cam-

era [53, 119, 127], hysteresis of the lens mechanism [127], and slight variations in aperture shape

(Sec. 3.6). �ese e�ects can be especially signi�cant for high-resolution images, and can even

occur when the camera is controlled remotely without any change in settings, and is mounted

securely on an optical table. To o�set non-deterministic distortions, a �rst-order translational

model can be �t to subpixel shi�s [53, 119] (Sec. 3.6). Unlike other geometric distortions, which

may be calibrated o�ine, non-deterministic distortion must be recomputed online, in addition

to being accounted for in any o�ine calibration process.

Radiometric calibration. Radiometric calibration means that we can relate the intensity of

the same 3D point in multiple images taken with di�erent settings. While the main source of

radiometric distortion is changes to the aperture setting, the focus and zoom settings a�ect this

distortion in a more subtle way as well, e.g., due to the inverse-squared distance fallo� to the

sensor plane.

Some reconstructionmethods that rely on variable-aperture image comparisons donotmen-

tion radiometric distortion explicitly [91, 92]. �e most common approach to handling radio-

metric distortion is simply to normalize a given image region by its mean brightness [109, 111,

118]. �is normalization provides some invariance to radiometric distortion, provided that the

level of distortion does not vary too much across the image region.

Richer models of radiometric variation may also be �t to images of calibration targets such

as a di�use white plane [53, 54, 63]. One approach is to �t a parametric model of vignetting

to each single image, e.g., o�-axis illumination with a simple linear fallo� with radius [63]. By

contrast, one can use amore direct approach to obtain an empiricalmeasure of variable-aperture
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radiometric variation on a per-pixel level [53, 54] (Secs. 3.5 and 4.7).

Another radiometric distortion that must be accounted for is the camera response function,

whichmaps image irradiance to pixel intensity in a non-linearway [31, 50, 78]. By recovering and

inverting this function (Secs. 3.5 and 4.7), we can compare measured image irradiances directly,

in agreement with the additive nature of light (Sec. 2.2).

2.3 Defocus Models

If the rays incident on the lens from a given 3D scene point do not converge to a unique point on

the sensor plane, the scene point is considered to be defocused, and the extent of its defocus can

be measured according to the footprint of these rays on the sensor plane. Conversely, a point on

the sensor plane is defocused if not all rays that converge to that point originate from a single

3D point lying on the scene surface.

Given a concrete lens model describing how every ray in the scene is redirected and attenu-

ated (Sec. 2.2), defocus will be completely de�ned. But while the analytic lens models we have

described (Sec. 2.2.1) lead directly to simple descriptions of defocus, defocus is o�en treated

separately from other aspects of the imaging model.

Although defocus is overwhelmingly modeled as some form of linear �ltering, this approxi-

mation cannot accurately represent defocus at sharp occlusion boundaries [16, 42]. �e general

issue is that linear �ltering cannot model the contribution of occluded scene points, because the

aperture acts as 2D “baseline” of viewpoints leading to an additive form of self-occlusion [99].

In fact, simulating defocus in its generality requires full knowledge of the light �eld, which adds

signi�cant complexity to the reconstruction problem, even for simple Lambertian scenes. By

properly modeling occlusions, more general models of defocus predict such e�ects as the ability

to see “behind” severely defocused foreground objects [42, 54, 77] (Chapter 4).

To date, only a few focus-based reconstructionmethods have attempted to accurately model

defocus at occluding edges [22, 42, 54, 77]. However, most these methods have been limited by

computational ine�ciency [42], the assumption that depth discontinuities are due to opaque

step edges [22], or the assumption that the scene is composed of two surfaces [22, 42, 77].

For some methods such as depth-from-focus (Sec. 2.6), an explicit model for defocus is not

necessary. For these methods, knowing that defocus causes attenuation of high frequencies is

enough to identify the lens setting for which focus is optimal. While this approach requires

no calibration of defocus, it implicitly assumes that the scene geometry is smooth, otherwise

occluding foreground objects could contaminate the estimation.
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2.3.1 Defocus as linear filtering

In computer vision, the dominant approach to defocus is to model it as a form of linear �ltering

acting on an ideal in-focus version of the image. �is model has the advantage that it allows us

to describe an observed defocused image, I, as a simple convolution,

I = Bσ ∗ Î , (2.7)

where Bσ is the blur kernel, or 2D point-spread function, σ is a parameter corresponding to the

level of defocus, and Î is the ideal pinhole image of the scene. We assume that the blur kernel

is normalized, ∫∫ Bσ(x , y)dx dy = 1, implying that radiometric calibration between I and Î has

been taken into account. �e model of defocus as linear �ltering follows from Fourier analysis

applied to a fronto-parallel scene [105].

�e blur kernel acts as a low-pass �lter, so that as the image is defocused, contrast is lost and

high frequencies are rapidly attenuated. Although the response of the blur kernel need not decay

monotonically for all higher frequencies (i.e., side lobes may exist), in any reasonable physical

system, none of its local frequency maxima are as high as the DC response.

To make the identi�cation of blur tractable, we typically require that the blur kernel may be

parameterized by a single quantity, σ . �is usually involves the further assumption that the blur

kernel Bσ is radially symmetric, and can be parameterized according to its radius of gyration

(Sec. 2.5.1).

2.3.2 Spatially variant filtering

To relax the assumption that the scene consists of a fronto-parallel plane, we can model the

blur parameter as spatially varying, i.e., σ(x , y), corresponding to a scene that is only locally

fronto-parallel [22, 94, 95]. �is results in a more general linear �ltering,

I(x , y) = ∫∫
s,t
Bσ(s,t)(x − s, y − t) ⋅ Î(s, t) ds dt , (2.8)

which can be thought of as independently defocusing every pixel in the pinhole image, Î(x , y),
according to varying levels of blur, and then integrating the results. Note that although this

defocusing model is no longer a simple convolution, it is still linear, since every pixel I(x , y) is
a linear function of Î.

In practice, smoothness priors are o�en introduced on the spatially variant blur, σ(x , y),
corresponding to smoothness priors on the scene geometry [94, 95]. �ese priors help regularize
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the recovery of Î(x , y) from the image formationmodel of Eq. (2.8), and balance reconstruction

�delity against discontinuities in depth.

2.3.3 Windowed linear filtering

In general, the spatially variant �ltering model of Eq. (2.8) means that we can no longer relate

a particular observed defocused pixel, I(x , y), to a single blur parameter, σ . But provided that

σ(x , y) is constantwithin a su�ciently largewindow centered on (x , y), Eq. (2.8) reduces locally
to

I(x , y) = [Bσ(x ,y) ∗ Î] (x , y) . (2.9)

�is observation motivates the popular sliding window model [15, 29, 30, 35, 40, 43, 80, 81, 91,

92, 109, 111, 118, 120], where for a particular pixel, (x , y), we can express defocusing as �ltering

within its local window,

I ⋅W(x ,y) = (Bσ(x ,y) ∗ Î) ⋅W(x ,y) . (2.10)

whereW(x ,y) represents the windowing function centered at (x , y).
�e choice of the window size in this model presents a dilemma. While larger windows

may improve the robustness of depth estimation because they provide more data, they are also

more likely to violate the assumption that the scene is locally fronto-parallel, and lead to a lower

e�ective resolution. �erefore no single window size for a given scenemay lead to both accurate

and precise depth estimates.

Note that strictly speaking, the geometric model implied by a sliding window is inconsis-

tent, in the sense that two nearby pixels assigned to di�erent depths contradict each other’s

assumption that the scene is locally fronto-planar, wherever their windows overlap. �erefore,

the windowed model is only a reasonable approximation if the scene is smooth enough so that

depth within the sliding window can be locally approximated as fronto-parallel.

A problem caused by analyzing overlapping windows in isolation is that blur from points

outside the window may intrude and contaminate the reconstruction [80, 109]. �is problem

can be partiallymitigated using a smooth fallo�, such as a Gaussian, for the windowing function

[43, 92, 109, 111].

2.3.4 Defocus for local tangent planes

To generalize the defocus model beyond spatially variant �ltering, we can further relax the as-

sumption that the scene is locally fronto-parallel. In particular, by estimating the normal at each
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Pr(x , y) Gr(x , y)

F[Pr](ω, ν) F[Gr](ω, ν)
(a) (b)

Figure 2.4: Point-spread functions for two common defocus models, (a) the pillbox, and (b) the isotropic
Gaussian. �e top row corresponds to the spatial domain, and the bottom row to the frequency domain.

point as well as its depth, the scene can be modeled as a set of local tangent planes, accounting

for the e�ects of foreshortening on defocus [62, 129]. Note that local tangent planes are not suf-

�cient to model sharp occlusion boundaries or generic self-occluding scenes.

When the surface at a point is locally modeled by a tangent plane, the defocus parameter

varies across its neighborhood, meaning that the defocus integral can no longer be expressed

using the linear �ltering described in Sec. 2.3.2. To address this issue, the defocus integral can

be linearized by truncating higher-order terms, assuming that the defocus parameter varies suf-

�ciently smoothly [62, 129].

�e local tangent plane model leads to a more complex estimation problem, however it can

lead to more stable and accurate estimates compared to the window-based approach, particu-

larly for tilted scenes [62, 129]. Furthermore, the recovered normal is a useful cue for reliability,

as severe foreshortening o�en corresponds to unstable depth estimation.

2.3.5 Analytic defocus models

Assuming a linear �ltering model of defocus, the two most commonly used analytic models for

the blur kernel Bσ are the pillbox and the isotropic Gaussian (Fig. 2.4).

Pillbox defocusmodel. Starting from the thin lens model, geometric optics predict that the

footprint of a point on the sensor plane, as projected onto a fronto-parallel plane in the scene,
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is just a scaled version of the aperture (Fig. 2.3). So under the idealization that the aperture

is circular, the footprint will be circular as well, leading to a cylindrical, or pillbox, model of

defocus [99, 120]:

Pr(x , y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
πr2

x2 + y2 ≤ r2,

0 otherwise.
(2.11)

⇐⇒ F[Pr](ω, ν) = 2
J1(2πr√ω2 + ν2)
2πr
√
ω2 + ν2

, (2.12)

where r = σ/2 is the radius of blur circle (see Fig. 2.3), F[⋅] is the Fourier transform operator,

and J1 represents the �rst-order Bessel function, of the �rst kind, which produces cylindrical

harmonics that are qualitatively similar to the 1D function sinc(x) = 1
x
sin(x).

Gaussiandefocusmodel. Although �rst-order geometric optics predict that defocus within

the blur circle should be constant, as in the pillbox function, the combined e�ects of such phe-

nomena as di�raction, lens imperfections, and aberrations mean that a 2D circular Gaussian

may be a more accurate model for defocus in practice [43, 92, 109]:

Gr(x , y) = 1

2πr2
e−

x2+y2

2r2 (2.13)

⇐⇒ F[Gr](ω, ν) = e−
1
2
(ω2+ν2)r2 , (2.14)

where r is the standard deviation of the Gaussian. Because the Fourier transform of a Gaussian

is simply an unnormalized Gaussian, this model simpli�es further analysis. In particular, un-

like the pillbox defocus model, the Fourier transform of a Gaussian has no zeros, which makes

it more amenable to deconvolution (Sec. 2.7). Under the thin lens model (Fig. 2.3), the blur

diameter is proportional to the standard deviation, σ ∝ r.

2.3.6 Empirical defocus models

Purely empirical measurements can also be used to recover the blur kernel, with no special

assumptions about its form beyond linearity. In blind deconvolution methods (see Sec. 2.7.1),

the blur kernel is estimated simultaneously with the geometry and radiance of the perfectly-

focused scene.

One common method for calibrating the blur kernel in microscopy applications uses small

�uorescent beads mounted on a fronto-planar surface [117], each projecting to approximately
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one pixel at the in-focus setting. Since the perfectly focused beads approximate the impulse

function, the 2D blur kernel may be recovered directly from the blurred image observed at a

given lens setting. By assuming rotational symmetry, the blur kernel may also be recovered

empirically from the spread across sharp edges or other known patterns such sine gratings.

Favaro and Soatto suggest an alternative method for recovering defocus calibration, using

a more general type of fronto-planar calibration pattern placed at a discretized set of known

depths [43]. For each possible scene depth, they propose using a rank-based approximation to

recover a linear operator relating defocus between several lens settings, while factoring out the

variation due to the underlying radiance.

2.4 Image noise models

Having explored various models of how the optics of the lens focus the light from the scene

into an image, we brie�y review the noisy process by which the sensor measures light [56, 76].

Understanding the sources of noise in the measurement of pixel values can help us estimate the

underlying signal more accurately when analyzing defocused images.

Additive noise. �emost basic model for image noise is additive zero-mean Gaussian noise.

Manymethods in computer vision assume this generic model, becausemodeling image noise in

a more detailed way is not necessarily helpful—in many practical problems, outliers and mod-

eling errors will dwarf any noise due to the sensor. Additive Gaussian noise follows as a conse-

quence of the central limit theorem, and so it is the appropriate model to use in the absence of

any other information. Methods that minimize squared error implicitly assume such a model.

Real image sensors include several sources of noise that can be modeled as additive, namely

the noise from the sensor readout, and the noise from the �nal quantization of the signal [3, 56].

At low exposure levels, these additive noise sources are dominant.

Multiplicative shot noise. �e basic physical process of detecting photons that arrive at

random times corresponds to Poisson-distributed form of noise known as shot noise [56]. Shot

noise is multiplicative since the standard deviation of a Poisson-distributed variable is the mean

of that variable. In practice, shot noise can be well-approximated using a zero-mean Gaussian

noise whose standard deviation is proportional to the raw photon count recorded by the sensor

element [76]

For well-exposed photos, shot noise dominates all additive sources of noise. If shot noise is
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the only source of noise then signal-to-noise ratio (SNR) will be constant over exposure level;

otherwise it will increase for higher exposure levels (see Sec. 5.2).

Thermal noise. �e �nal class of image noise comprises thermal e�ects such as dark current,

so-called because this noise will be present even in the absence of any light from the scene. Dark

current increases according to the exposure time, and also increases with the temperature of the

sensor. �ermal e�ects for a given sensor are strongest in a particular �xed pattern, which can

be mitigated with prior calibration known as dark-frame subtraction [56].

Transformingthenoise. A variety of transformations are applied to the raw imagemeasure-

ment, both as part of the processing within the camera and later on during image processing

(e.g., see Sec. 4.5). �ese transformations have the important e�ect of transforming the asso-

ciated noise as well. A straightforward example is the ISO setting, or gain, which multiplies

both the measured signal and its associated noise by a constant factor, before quantization [56].

Another on-camera transformation is the camera response function, which applies an arbitrary

monotonic function to the raw image measurement, typically a non-linear gamma-like func-

tion function [31, 76]. As a more subtle example, the image processing used for demosaicking

the Bayer pattern has the side-e�ect of introducing spatial correlation to the image noise [76].

2.5 Focus Measures

Even in the absence of an explicit model for defocus, it is still possible to formulate a “focus

measure” with the ability to distinguish the lens setting at which a given point is optimally in-

focus. Such a focus measure is the basis for both image-based auto-focusing [64] and a 3D

reconstructionmethod known as depth-from-focus (Sec. 2.6). We start by analyzing the level of

defocus for a known blur kernel, then discuss a variety of possible focus measures for the blind

case.

2.5.1 Known blur kernel

For a known blur kernel, B(x , y), a widely used measure of defocus is the radius of gyration

[27, 109],

σ = [ ∫∫ (x2 + y2)B(x , y) dx dy]1/2 , (2.15)

where B is assumed to be normalized with zero mean. For an isotropic Gaussian blur kernel,

the radius of gyration is equivalent to the standard deviation. Moreover, as Buzzi and Guichard
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show, under the assumption that defocus corresponds to convolution, the radius of gyration is

the only defocus measure that satis�es additivity and several other natural properties [27].

Buzzi andGuichard also remind us that central moments in the spatial domain are related to

derivatives at the origin in the frequency domain [27]. �is property allows them to reformulate

the analytic measure of defocus, Eq. (2.15), in terms of the Laplacian at the DC component in

the Fourier domain,

σ = (−∇2 F[B(x , y)])∣
(0,0)

. (2.16)

�is implies that defocus can be expressed according to the rate of attenuation at low frequencies,

despite the fact that defocus is usually thought of in terms of the extent towhich high frequencies

are �ltered out. To support their argument, Buzzi and Guichard present the results of a small

perceptual study, involving images blurred with several arti�cial defocus functions constructed

to preserve high frequencies [27].

2.5.2 Blind focus measures

Even when the form of the blur kernel is completely unknown, it may still be possible to detect

the lens setting which brings some portion of the scene into optimal focus. To this end, a vari-

ety of “blind” focus measures have been proposed, all of which essentially function as contrast

detectors within a small spatial window in the image.

�e image processing literature is a rich source of ideas for such contrast sensitive �lters.

One approach is to apply a contrast-detecting �lter, such as the image Laplacian [27, 30, 64, 82]

(Sec. 2.5.1) or the gradient [64, 126], and to sum the magnitude of those �lter responses over the

window.

An alternative approach for contrast measurement is to consider the pixel intensities in the

patch as an unordered set, ignoring their spatial relationship. Various focus measures along

these lines include the raw maximum pixel intensity, the entropy of the binned intensities [64],

the kurtosis of the intensities [134], or their variance [64] (Sec. 3.7). Note that by Parseval’s

theorem, the variance of an image patch is closely related to its total power in the Fourier domain;

both give equivalent results when used as a focus measure.

Averaging the focus measure over a patch can cause interference between multiple peaks

that represent real structure, so several proposed focusmeasures explicitlymodel focus asmulti-

modal [100, 130]. Xu, et al. assume a bimodal intensity distribution for the in-focus scene, and

de�ne ameasure of defocus based on closeness to either of the extreme intensities in the 3D vol-

ume consisting of the image window over all focus settings [130]. �eir bimodal model of inten-
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sity also has the advantage ofmitigating bleeding artifacts across sharp intensity edges (Sec. 2.6).

Similarly, Schechner, et al. propose a voting scheme over the 3D volume, where each pixel votes

individually for local maxima across focus setting, and then votes are aggregated over the win-

dow, weighted by maxima strength [100].

2.6 Depth-from-Focus

Depth-from-focus (DFF) is a straightforward 3D reconstruction method, based on directly ap-

plying a blind focus measure (Sec. 2.5) to a set of di�erently focused photos. For a particular

region of the scene, the focusmeasure determines the focus setting at which the scene is brought

into optimal focus, which can then be related to depth, according to prior calibration (Sec. 2.2).

DFF has the advantage of being simple to implement and not requiring an explicit calibrated

model of defocus (Sec. 2.3).

DFF is most commonly realized by varying the focus setting and holding all other lens set-

tings �xed, which may be thought of as scanning a test surface through the 3D scene volume

and evaluating the degree of focus at di�erent depths [64, 80, 126]. Alternative schemes involve

moving the object relative to the camera [82].

One disadvantage ofDFF is that the scenemust remain stationarywhile a signi�cant number

of images are captured with di�erent lens settings. For an online version of DFF, such as image-

based auto-focusing, we would prefer to minimize the number of images required. As Krotkov

notes, if the focus measure is unimodal and decreases monotonically from its peak, the optimal

algorithm for locating this peak is Fibonacci search [64].

Instead of greedily optimizing the focus measure for each pixel independently, it is also pos-

sible to construct a prior favoring surface smoothness, and instead to solve a regularized version

of DFF, e.g., using graph cuts [130].

2.6.1 Maximizing depth resolution

Tomaximize the depth resolution, DFF should use the largest aperture available, corresponding

to the narrowest depth of �eld [99]. �ismeans that a relatively large number of lens settings (up

to several dozen) may be required to densely sample the range of depths covered by workspace.

A suggested sampling of depths for DFF is at intervals corresponding to the depth of �eld, as

any denser sampling would mean that the highest frequencies may not be detectably in�uenced

by defocus [99]. Note that the optics predict that depth resolution falls o� quadratically with
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depth in the scene, according to the quadratic relationship between depth and depth of �eld

[64].

Although the depth resolution of DFF is limited by both the number of images acquired

and the depth of �eld, it is possible to recover depth at sub-interval resolution by interpolating

the focus measure about the optimal lens setting, for example, by �tting a Gaussian to the peak

[64, 126].

2.6.2 Analysis

For DFF to identify an optimal focus peak, there must be enough radiometric variation within

the window considered by the focus measure. While an obvious failure case for DFF is an un-

textured surface, a linear intensity gradient is a failure case for DFF as well, since any symmet-

ric defocus function integrated about a point on the gradient will produce the same intensity

[38, 114]. Indeed, theory predicts that for DFF to be discriminative, the in-focus radiance must

have non-zero second-order spatial derivatives [37, 38].

Because nearly all blind focus measures (Sec. 2.5.2) are based on spatial image windows,

DFF inherits the problems of assuming a windowed, locally fronto-parallel model of the scene

(Sec. 2.3.3). A notable exception is the method we present in Chapter 3, which operates at the

single-pixel level [53].

Another related problem with DFF is that defocused features from outside the windowmay

contaminate the focus measure and bias the reconstruction to a false peak [80, 109, 130]. �is

problem may be avoided by considering only image windows at least as large as the largest blur

kernel observed over the workspace, but this can severely limit the e�ective resolution when

large blurs are present. Alternatively, Nair and Stewart suggest restricting the DFF computation

to a sparse set of pixels corresponding to su�ciently isolated edges [80]. Modeling the intensity

distribution as bimodal may also mitigate this problem [130]

2.7 Depth-from-Defocus

Depth-from-defocus (DFD) is a 3D reconstruction method based on �tting a model of defocus

to images acquired at di�erent lens settings. In particular, the depth of each pixel can be related

to its recovered level of defocus, based on the lens model (Sec. 2.2), the defocus model (Sec. 2.3),

and the particular lens settings used. In general, DFD requires far less image measurements

than DFF, since just two images are su�cient for DFD. Given a strong enough scene model, 3D
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reconstruction may even be possible from a single image (Sec. 2.7.3), however DFD methods

bene�t from more data.

Note that depth recovery using DFD may be ambiguous, since for a particular pixel there

are two points, one on either side of the in-focus 3D surface, that give rise to the same level of

defocus. For the thin lens model, this e�ect is represented in Eq. (2.5). In practice the ambiguity

may be resolved by combining results from more than two images [111], or by requiring, for

example, that the camera is focused on the nearest scene point in one condition [91].

Because nearly all DFD methods are based on linear models of defocus (Sec. 2.3.1), recov-

ering the defocus function can be viewed as a form of inverse �ltering, or deconvolution. In

particular, DFD is equivalent to recovering Bσ(x ,y) from Eq. (2.8), or in the simpli�ed case, Bσ

from Eq. (2.10).

DFD methods can be broken into several broad categories. �e most straightforward ap-

proach is to tackle the deconvolution problem directly, seeking the scene radiance and defocus

parameters best reproducing two or more input images acquired at di�erent camera settings.

Alternatively, we can factor out the radiance of the underlying scene by estimating the relative

defocus between the input images instead. Finally, if our prior knowledge of the scene is strong

enough, we can directly evaluate di�erent defocus hypotheses using as little as a single image.

2.7.1 Image restoration

�e most direct approach to DFD is to formulate an image restoration problem that seeks the

in-focus scene radiance and defocus parameters best reproducing the input images acquired

at di�erent lens settings. Note that this optimization is commonly regularized with additional

smoothness terms, to address the ill-posedness of deconvolution, to reduce noise, and to enforce

prior knowledge of scene smoothness, e.g., [42, 54, 95].

Since a global optimization of the image restoration problem is intractable for images of

practical size, such restorationmethods resort to various iterative re�nement techniques, such as

gradient descent �ow [62], EM-like alternating minimization [38, 40, 54], or simulated anneal-

ing [95]. �ese iterative methods have the disadvantage of being sensitive to the initial estimate,

and may potentially become trapped in local extrema.

Additive layer decomposition. One simplifying approach to image restoration is to dis-

cretize the scene into additive fronto-parallel depth layers, o�en one per input image [14, 65, 67,

77]. Unlike layered models incorporating detailed occlusion e�ects (Sec. 2.3), the layers in this

context are modeled as semi-transparent and additive [14, 65, 67, 117]. McGuire, et al. suggest
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a related formulation where radiance is assigned to two layers, but with an alpha value for the

front-most layer represented explicitly as well [77].

�is formulation reduces the deconvolution problem to the distribution of scene radiance

over the layered volume, where the input images can be reproduced by a linear combination of

the layers defocused in a knownway. In particular, provided that the input images correspond to

an even sampling of the focus setting, the imaging model may be expressed more succinctly as

a 3D convolution between the layered scene volume and the 3D point-spread function [75, 117].

�is required image restoration can be implemented iteratively, by distributing radiance among

the depth layers based on the discrepancy between the input images and the current estimate,

synthesized according to the defocus model [14, 65, 67, 75, 77, 117].

�is layered additive scene model �gures prominently in deconvolution microscopy [75, 117],

which involves deconvolving a set of microscopy images corresponding to a dense sampling of

focus settings, similar to the input for depth-from-focus (Sec. 2.6). Since many microscopy ap-

plications involve semi-transparent biological specimens, the assumed additive imaging model

is well-justi�ed.

MRF-based models. When the layers composing a layered scene model are modeled as

opaque instead, every pixel is assigned to a single depth layer, casting depth recovery as a combi-

natorial assignment problem [10, 54, 95]. �is problem can be addressed using aMarkov random

�eld (MRF) framework [24], based on formulating costs for assigning discrete defocus labels to

each pixel, as well as smoothness costs favoring adjacent pixels with similar defocus labels. Ra-

jagopalan and Chaudhuri formulate a spatially-variant model of defocus (Sec. 2.3.2) in terms of

anMRF, and suggest optimizing theMRFusing a simulated annealing procedure [95], initialized

using classic window-based DFD methods (Sec. 2.7.2).

Defocus as diffusion. Another approach to image restoration involves posing defocus in

terms of a partial di�erential equation (PDE) for a di�usion process [39]. �is strategy entails

simulating the PDE on the more focused of the two images, until it becomes identical to the

other image. Under this “simulation-based” inference, the time variable is related to the amount

of relative blur. For isotropic di�usion, the formulation is equivalent to the simple isotropic heat

equation, whereas for shi�-variant di�usion, the anisotropy of the di�usion tensor characterizes

the local variance of defocus.
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Deconvolution with occlusion. Several recent DFD methods [42, 54, 77] have modeled oc-

clusion e�ects in detail, following the richer reversed-projection model for defocus [16]. To

make the reconstruction tractable, these methods assume a simpli�ed scene model consisting

of two smooth surfaces [42, 77], or use approximations for occluded defocus [54, 77].

Even though defocus under this occlusion model is no longer a simple convolutional opera-

tor, the simultaneous reconstruction of scene radiance, depth, and alpha mask is still amenable

to image restoration techniques, using regularized gradient-based optimization [42, 54, 77].

Information divergence. All iterative deconvolution methods involve updating the esti-

mated radiance and shape of the scene based on the discrepancy between the input images and

the current synthetically defocused estimate. Based on several axioms and positivity constraints

on scene radiance and the blur kernel, Favaro, et al. have argued that the only consistent mea-

sure of discrepancy is the information divergence, which generalizes the Kullback-Leibler (KL)

divergence [38, 40, 62].

�is discrepancy measure has been applied in the context of alternating minimization for

surface and radiance [38, 40], as well as minimization by PDE gradient descent �ow, using level

set methods [62].

2.7.2 Depth from relative defocus

While direct deconvolutionmethods rely on simultaneously reconstructing the underlying scene

radiance and depth, it is also possible to factor out the scene radiance, by considering the relative

amount of defocus over a particular image window, between two di�erent lens settings.

By itself, relative defocus is not enough to determine the depth of the scene, however the

lens calibration may be used to resolve relative focus into absolute blur parameters, which can

then be related to depth as before.

If one of the blur parameters is known in advance, the other blur parameter can be resolved

by simple equation �tting. As Pentland describes, when one image is acquired with a pinhole

aperture, i.e., σ1 = 0, the relative blur directly determines the other blur parameter, e.g., accord-

ing to Eq. (2.18) [91, 92].

In fact, the restriction that one of the images is a pinhole image can easily be relaxed, as

the lens calibration provides an additional constraint between absolute blur parameters. For

the thin lens model, Eq. (2.5) may be used to derive a linear constraint on the underlying blur

parameters, i.e., σ1 = Aσ2 + B, between any two lens settings [109]. Technically speaking, for
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this linear constraint to be unique, the sign ambiguity in Eq. (2.5) must be resolved as described

earlier in Sec. 2.7.

Frequency-domain analysis. �e most common method of recovering relative defocus is

by analyzing the relative frequency response in corresponding image windows. As shown be-

low, the relative frequency response is invariant to the underlying scene radiance, and provides

evidence about the level of relative defocus.

Convolution ratio. In the Fourier domain, the simple convolutional model of defocus given

by Eq. (2.7) can be manipulated in an elegant way. Using the fact that convolution in the spatial

domain corresponds to multiplication in the Fourier domain, we have

F[I1]F[I2] = F[Bσ1] ⋅F[Î]F[Bσ2] ⋅F[Î]
=
F[Bσ1]F[Bσ2] . (2.17)

�is formula, also known as the convolution ratio, has the important feature of canceling all

frequencies F[Î] due to the underlying scene radiance [92, 129].
�ought of another way, the convolution ratio provides us with a relationship between the

unknown defocus parameters, σ1 and σ2, that is invariant to the underlying scene. For exam-

ple, by assuming a Gaussian defocus function as in Eqs. (2.13)–(2.14), the convolution ratio in

Eq. (2.17) reduces to:

σ2
2 − σ

2
1 =

2

ω2 + ν2
ln(F[I1](ω, ν)F[I2](ω, ν)) . (2.18)

While other defocus functions may not admit such a simple closed-form solution, the convo-

lution ratio will nevertheless describe a relationship between the blur parameters σ1 and σ2, i.e.,

that can be expressed through a set of per-frequency lookup tables.

In theory, we can fully de�ne the relative defocus, as in the prototypical Eq. (2.18), simply

by considering the response of the defocused images at a single 2D frequency, (ω, ν). However,
using a �xed particular frequency can cause arbitrarily large errors and instability if the images

do not contain su�cient energy in that frequency. Provided the defocus function is symmetric,

for additional robustness we can integrate over radial frequency, λ =
√
ω2 + ν2, without a�ecting

the relationship between relative blur and the convolution ratio [91, 92].

Note that an alternate version of the convolution ratio can be formulated using the total

Fourier power, P(ω, ν) = ∣F(ω, ν)∣2, instead. �is gives analogous equations for relative defo-
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cus, but has the advantage that Parseval’s theorem, ∫∫ ∣I(x , y)∣2 dx dy = 1
4π2 ∫∫ ∣F[I](ω, ν)∣2 dω dν,

may be used to compute relative defocus more e�ciently in the spatial domain [91, 109].

Windowing effects. By generalizing the convolution ratio to the windowed, locally fronto-

parallel scene model described by Eq. (2.10), we obtain the more complicated formula,

F[I1] ∗F[W1]F[I2] ∗F[W2] = (F[Bσ1] ⋅F[Î]) ∗F[W1](F[Bσ2] ⋅F[Î]) ∗F[W2]
≈
F[Bσ1]F[Bσ2] . (2.19)

For the underlying scene radiance to cancel in this case, thewindowing functionsmust be tightly

band-limited in the Fourier domain, i.e., F[W1] = F[W2] ≈ δ, which is only true for very large

windows.

In addition to the previously described problems with windowing (Sec. 2.3.3), inverse �lter-

ing in Fourier domain presents additional di�culties due to �nite-window e�ects [35]. Firstly,

accurate spectral analysis requires large windows, which corresponds to low depth resolution

or very smoothly varying scenes. Secondly, since windowing can be thought of as an additional

convolution in the Fourier domain, it may cause zero-crossings in the Fourier domain to shi�

slightly, causing potentially large variations in convolution ratio. Finally, using same size win-

dows in both images can lead to border artifacts, as the di�erent levels of defocus imply that the

actual source areas in Î are di�erent.

Tuned inverse filtering. To mitigate the errors and instability caused by �nite-width �lters,

one approach is to use �lters specially tuned to the dominant frequencies in the image. Around

the dominant frequencies, �nite-width e�ects are negligible [129], however we do not know a

priori which frequencies over an image window are dominant, or even if any exist.

A straightforward approach for identifying dominant frequencies, which provides an ap-

pealing formal invariance to surface radiance [43], is to use a large bank of tuned narrow-band

�lters, densely sampling the frequency domain [91, 128, 129]. Dominant frequencies can then

be identi�ed as �lter responses of signi�cant magnitude, and satisfying a stability criterion that

detects contamination due to �nite-width windowing artifacts [128, 129]. By assigning higher

weights to the dominant frequencies, the depth estimates over all narrow-band �lters may be

aggregated, e.g., using weighted least-squares regression.

Note that the uncertainty relation means that highly tuned �lters with narrow response in
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the frequency domain require large kernel support in the spatial domain. For a �xed window

size in the spatial domain, Xiong and Shafer improve the resolution in the frequency domain by

using additional moment-based �lters, up to �ve times as many, to better model the spectrum

within each narrow-band �lter [129].

As Nayar, et al. suggest, another way to constrain the dominant frequencies in the scene is to

use active illumination to project structured patterns onto the scene [81]. �ey propose using a

checkerboard pattern, paired with a Laplacian-like focus operator that is tuned to the dominant

frequency of the speci�c projected pattern.

Broadband inverse filtering. A contrasting approach to inverse �ltering involves using

broadband �lters, that integrate over many di�erent frequencies [109, 120]. Broadband �lters

lead to smaller windows in the spatial domain, and therefore to higher resolution; they are more

computationally e�cient, since less of them are required to estimate defocus; and they are more

stable to low magnitude frequency responses. However, because defocus is not uniform over

frequency (see Eq. (2.14), for example), the relative defocus estimated by integrating over a broad

range of frequencies is potentially less accurate.

Watanabe and Nayar designed a set of three broadband �lters for DFD, motivated as a

higher-order expansion of the convolution ratio, Eq. (2.17), for a relatively small 7 × 7 spatial

kernel [120]. In fact, they consider a normalized version of the convolution ratio instead,

F[I1] −F[I2]F[I1] +F[I2] ≈ F[Bσ1] −F[Bσ2]F[Bσ1] +F[Bσ2] . (2.20)

constrained to [−1, 1] for positive frequencies, and sharing the property that frequencies due to

the underlying surface radiance cancel out [81, 120].

Watanabe and Nayar also suggest that it is important to pre-�lter the image before inverse

�ltering, to remove any bias caused by the DC component, and to remove higher frequencies

that violate the assumed monotonicity of the blur kernel [120]. Furthermore, to address the

instability in low-texture regions, they de�ne a con�dencemeasure, derived using a perturbation

analysis, and adaptively smooth the results until con�dence meets some acceptable threshold

throughout the image [120].

Modeling relative defocus. A di�erent method for evaluating the relative defocus between

two image windows is to explicitly model the operator representing relative defocus. Given such

amodel for relative defocus, we can potentially build a set of detectors corresponding to di�erent
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levels of relative defocus, producing output somewhat analogous to a focus measure (Sec. 2.5).

Cubic polynomial patches. Subbarao and Surya suggest modeling the ideal pinhole image

as a cubic bivariate polynomial, that is, Î = ∑ km,n xmyn, with m + n ≤ 3 [111]. Under this simple

scenemodel, the convolution of Eq. (2.7) can be expressed in terms of low-ordermoments of the

defocus function. �en by assuming the defocus function is radially symmetric, the deconvolu-

tion reduces to the analytic form, Î = I− σ2

4
⋅∇2I, which is equivalent to a well-known sharpening

�lter. �erefore the relative blur can be expressed analytically as

I2 − I1 =
1

4
(σ2

2 − σ
2
1 ) ⋅ ∇2(I1 + I2

2
) , (2.21)

for an arbitrary radially symmetric defocus function. Note that this expression contains no

terms related to Î, therefore it also provides invariance to scene radiance.

Matrix-based deconvolution. For the simple convolutional model of defocus described by

Eq. (2.7), the convolution ratio (Sec. 2.7.2) can be easily reformulated in the spatial domain as

I2 = B∆ ∗ I1 , (2.22)

where B∆ is a kernel representing the relative defocus.

Because convolution is a linear operator, Eq. (2.22) can be expressed as matrix multipli-

cation, where the matrix representing convolution is sparse, and has block-Toeplitz structure.

While this suggests that B∆ may be recovered by matrix inversion, in the presence of noise, the

problem is ill-posed and unstable. Ens and Lawrence propose performing this matrix inver-

sion, but regularizing the solution by including a term that measures the �t of B∆ to a low-order

polynomial [35].

Note that by manipulating the spatial domain convolution ratio, Eq. (2.22), we can obtain

another expression for relative defocus, in terms of the underlying blur kernels,

Bσ2 = B∆ ∗Bσ1 . (2.23)

�erefore, provided that the formof the blur kernel is known (Sec. 2.3), we can recover an explicit

model of the relative defocus,B∆, by deconvolvingEq. (2.23). Ens andLawrence suggest applying

this method to recover B∆ over a range of di�erent blur kernel pairs, corresponding to di�erent

depths [35]. �en each relative defocus hypothesis, B∆, can be evaluated by applying Eq. (2.22)
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and measuring the least-squares error.

Rank-basedmethods. As discussed in Sec. 2.4, in one recent approach, the blur kernel may

be recovered empirically as a set of rank-based approximations characterizing the relative defo-

cus at particular calibrated depths [43]. �is approach combines a large number of defocused

images to recover a linear subspace describing an operator for relative defocus that provides

invariance to the underlying scene radiance.

Differential defocus. Another way to model relative defocus is according to di�erential

changes to the lens settings. As Subbarrao proposed in theory, the relative defocus can be fully

speci�ed by a di�erential analysis of the lens model [109].

Farid and Simoncelli realized an interesting version of di�erential DFD, by using specially

designed pairs of optical �lters that “directly” measure derivatives with respect to aperture size

or viewpoint [36]. By comparing the image produced with one �lter, and the spatial derivative of

the image produced with another �lter, they obtain a scale factor for every point, which can then

be related to depth. �is method relies on defocus, otherwise the scale factor will be unde�ned,

andmoreover it implicitly assumes a locally fronto-parallel scene over the extent of defocus [36].

2.7.3 Strong scenemodels

Assuming some prior knowledge, the scenemay be reconstructed from as little as one defocused

image. A strong model of the scene may also be used to simplify the depth estimation problem

or to increase robustness.

Sharp Reflectance Edges. Various reconstruction methods from focus are based on the

assumption that the in-focus scene contains perfectly sharp re�ectance edges, i.e., step discon-

tinuities in surface albedo. Given this strong model of the scene, depth may be recovered by

analyzing 1D intensity pro�les across the blurred edges.

�is approach was �rst proposed by Pentland for a single defocused image, as a qualitative

measure over a sparse set of pixels containing detected edges [92]. �e analysis was subsequently

generalized for rotationally symmetric blur kernels [110], where it was shown that the radius of

gyration (Sec. 2.5.1) is simply
√
2 times the second moment of the line spread function for a

sharp edge.

Asada, et al. proposed a more robust method for detecting sharp edges and their depths,

using a dense number of focus settings [15]. Under the assumption of a rotationally symmet-
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ric blur model, constant-intensity lines may be �t in the vicinity of each edge, where depth is

determined by the intersection of these lines.

Confocal lighting. As already noted, active illumination can be used constrain the frequency

characteristics of the scene, and increase the robustness of estimating the relative defocus (Sec. 2.7.2).

However, an even stronger use of active illumination is confocal lighting, which involves selec-

tively illuminating the equifocal surface with a light source sharing the same optical path as the

lens [121].

By using a large aperture together with confocal lighting, parts of the scene away from the

equifocal surface are both blurred and dark, which greatly enhances contrast [73, 121]. In theory,

we can directly obtain cross-sections of the scene from such images at di�erent focus settings,

and assemble them into a 3D volumetric model.

Levoy, et al. suggest a version of confocal imaging implemented onmacro-scale with opaque

objects [73]. In their design, a single camera and projector share the same optical path using a

beam splitter, and they use an array of mirrors to create 16 virtual viewpoints. �en, multi-pixel

tiles at a given focal depth are illuminated according to coded masks, by focusing the projector

from the virtual viewpoints. Although they obtain good results with their system for matting,

the depth of �eld is currently too large to provide adequate resolution for 3D reconstruction.

2.7.4 Analysis

Feasibility ofDFD. Favaro, et al. provide a basic result that if the radiance of the scene can be

arbitrarily controlled, for example, by active illumination, then any piecewise-smooth surface

can be distinguished from all others, i.e., fully reconstructed, from a set of defocused images

[38].

With the “complexity” of scene radiance formalized in terms of the degree of a 2D linear

basis, it can be shown that two piecewise-smooth surfaces can theoretically be distinguished up

to a resolution that depends on this complexity, with further limitations due to the optics [38].

Optimal interval for DFD. Using a perturbation analysis of thin lens model, assuming a

pillbox defocus function, Schechner and Kiryati showed that the optimal interval between the

two focus settings, with respect to perturbations at the Nyquist frequency, corresponds to the

depth of �eld [99]. For smaller intervals no frequency will satisfy optimality, whereas for larger

intervals the Nyquist frequency will be suboptimal, but some lower frequency will be optimal

with respect to perturbations.
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Shih, et al. give an alternate analysis of optimality to perturbations in information-theoretic

terms, assuming a symmetric Gaussian defocus function [102]. According to their analysis,

the lowest-variance unbiased estimator from a pair of defocused images is attained when the

corresponding levels of blur are related by σ1 =
√
3/2 σ2. However, this result is di�cult to

apply in practice, since knowledge of these blur parameters implies that depth has already been

recovered.

2.8 Compositing and Resynthesis

Although most methods for processing defocused images have concentrated on 3D reconstruc-

tion, others have explored synthesizing new images from this input as well [10, 29, 51, 54, 87]. A

growing interest in this application has also motivated specialized imaging designs that capture

representations enabling the photographer to refocus or manipulate other camera parameters

a�er the capture session [61, 69, 85, 115].

Image fusion for extended depth of field. �emost basic image synthesis application for

multiple defocused images is to synthetically create a composite image, in which thewhole scene

is in-focus [10, 51, 87, 97, 108, 130, 135]. �is application is of special interest to macro-scale pho-

tographers, because in this domain the depth of �eld is so limited that capturingmultiple photos

with di�erent settings are o�en required just to span the desired depth range of the subject.

Classic methods of this type involve applying a blind focus measure (Sec. 2.5.2) to a set of

di�erently focused images, followed by a hard, winner-take-all decision rule over various image

scales, selecting the pixels determined to be the most in-focus [87, 135]. More recently, this ap-

proach has been extended to incorporate adaptively-sized and variously oriented windows for

the computation of the defocus measure [97, 108]. Such methods typically exhibit strong arti-

facts at depth discontinuities, and are biased toward noisy composites, since the high frequencies

associated with noise are easily mistaken for in-focus texture.

More successful recent methods for image fusion are based on �rst performing depth-from-

focus (Sec. 2.6) in anMRF framework [10, 130]. An advantage of this approach is that by favoring

global piecewise smoothness, over-�tting to image noise can be avoided. Another important

feature for generating a visually realistic composite is the use of gradient-based blending [10],

which greatly reduces compositing artifacts at depth discontinuities.

Note that while other 3D reconstruction methods based on image restoration from defocus

(Sec. 2.7.1) implicitly recover an underlying in-focus representation of the scene as well, these
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methods are not designed with its display as a speci�c goal.

Resynthesis with new camera parameters. In a recent application of the convolution ra-

tio (Sec. 2.7.2), Chaudhuri suggested a nonlinear interpolation method for “morphing” between

two defocused images taken with di�erent settings [29]. Although the formulation is elegant,

themethod shares the limitations of other additive window-basedmethods (Sec. 2.3.3) and does

not address the inherent depth ambiguity described by Eq. (2.5). In particular, because the in-

terpolation does not allow the possibility of the in-focus setting lying between the focus settings

of the input images, the synthesized results may be physically inconsistent.

Another resynthesis application for defocused images is to synthetically increase the level of

defocus, to reproduce the shallow depth of �eld found in large-aperture SLR photos. As Bae and

Durand show, for the purpose of this simple application, defocus can be estimated su�ciently

well just from cues in a single image [18].

In general, any depth-from-defocus method yielding both a depth map and the underlying

in-focus radiance (Sec. 2.7.1) can be exploited to resynthesize new images with simulated camera

settings (e.g., refocusing), according to the assumed forward image formation model. One of

the earliest methods to consider this problem involved implicitly decomposing the scene into

additive transparent layers [14, 65]. A more recent approach used a layer-based scene model as

well, but incorporates a detailed model of occlusion at depth discontinuities [54].
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Chapter 3

Confocal Stereo

�ere is nothing worse than a sharp image of a fuzzy concept.

Ansel Adams (1902–1984)

In this chapter, we present confocal stereo, a new method for computing 3D shape by con-

trolling the focus and aperture of a lens. �e method is speci�cally designed for reconstructing

scenes with high geometric complexity or �ne-scale texture. To achieve this, we introduce the

confocal constancy property, which states that as the lens aperture varies, the pixel intensity of a

visible in-focus scene point will vary in a scene-independent way, that can be predicted by prior

radiometric lens calibration. �e only requirement is that incoming radiance within the cone

subtended by the largest aperture is nearly constant. First, we develop a detailed lens model that

factors out the distortions in high resolution SLR cameras (12MP or more) with large-aperture

lenses (e.g., f/1.2). �is allows us to assemble an A×F aperture-focus image (AFI) for each pixel,

that collects the undistorted measurements over all A apertures and F focus settings. In the

AFI representation, confocal constancy reduces to color comparisons within regions of the AFI,

and leads to focus metrics that can be evaluated separately for each pixel. We propose two such

metrics and present initial reconstruction results for complex scenes, as well as for a scene with

known ground-truth shape.

3.1 Introduction

Recent years have seen many advances in the problem of reconstructing complex 3D scenes

from multiple photographs [45, 57, 137]. Despite this progress, however, there are many com-

mon scenes for which obtaining detailed 3D models is beyond the state of the art. One such

45
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Figure 3.1: (a) Wide-aperture image of a complex scene. (b) Le�: Successive close-ups of a region in
(a), showing a single in-focus strand of hair. Right: Narrow-aperture image of the same region, with
everything in focus. Confocal constancy tells us that the intensity of in-focus pixels (e.g., on the strand)
changes predictably between these two views. (c) �e aperture-focus image (AFI) of a pixel near the
middle of the strand. A column of the AFI collects the intensities of that pixel as the aperture varies with
focus �xed.

class includes scenes that contain very high levels of geometric detail, such as hair, fur, feath-

ers, miniature �owers, etc. �ese scenes are di�cult to reconstruct for a number of reasons—

they create complex 3D arrangements not directly representable as a single surface; their images

contain �ne detail beyond the resolution of common video cameras; and they create complex

self-occlusion relationships. As a result, many approaches either side-step the reconstruction

problem [45], require a strong prior model for the scene [89, 122], or rely on techniques that

approximate shape at a coarse level.

Despite these di�culties, the high-resolution sensors in today’s digital cameras open the

possibility of imaging complex scenes at a very high level of detail. With resolutions surpassing

12Mpixels, even individual strands of hair may be one or more pixels wide (Fig. 3.1a,b). In this

chapter, we explore the possibility of reconstructing static scenes of this type using a newmethod

called confocal stereo, which aims to compute depth maps at sensor resolution. Although the

method applies equally well to low-resolution settings, it is designed to exploit the capabilities

of high-end digital SLR cameras and requires no special equipment besides the camera and a

laptop. �e only key requirement is the ability to actively control the aperture, focus setting, and

exposure time of the lens.

At the heart of our approach is a property we call confocal constancy, which states that as
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the lens aperture varies, the pixel intensity of a visible in-focus scene point will vary in a scene-

independentway, that can be predicted by prior radiometric lens calibration. To exploit confocal

constancy for reconstruction, we develop a detailed lens model that factors out the geomet-

ric and radiometric distortions observable in high resolution SLR cameras with large-aperture

lenses (e.g., f/1.2). �is allows us to assemble an A× F aperture-focus image (AFI) for each pixel,

that collects the undistorted measurements over all A apertures and F focus settings (Fig 3.1c).

In the AFI representation, confocal constancy reduces to color comparisons within regions of

the AFI and leads to focus metrics that can be evaluated separately for each pixel.

Our work has fourmain contributions. First, unlike existing depth from focus or depth from

defocus methods, our confocal constancy formulation shows that we can assess focus without

modeling a pixel’s spatial neighborhood or the blurring properties of a lens. Second, we show

that depth from focus computations can be reduced to pixelwise intensity comparisons, in the

spirit of traditional stereo techniques. �ird, we introduce the aperture-focus-image represen-

tation as a basic tool for focus- and defocus-based 3D reconstruction. Fourth, we show that

together, confocal constancy and accurate image alignment lead to a reconstruction algorithm

that can compute depth maps at resolutions not attainable with existing techniques. To achieve

all this, we also develop a method for the precise geometric and radiometric alignment of high-

resolution images taken at multiple focus and aperture settings, that is particularly suited for

professional-quality cameras and lenses, where the standard thin-lens model breaks down.

We begin this chapter by discussing the relation of this work to current approaches for re-

constructing scenes that exploit defocus in wide-aperture images. Sec. 3.3 describes our generic

imagingmodel and introduces the property of confocal constancy. Sec. 3.4 gives a brief overview

of how we exploit this property for reconstruction and Secs. 3.5–3.6 discuss the radiometric and

geometric calibration required to relate high resolution images takenwith di�erent lens settings.

In Sec. 3.7 we show how the AFI for each pixel can be analyzed independently to estimate depth,

using both confocal constancy and its generalization. Finally, Sec. 3.8 presents experimental

results using images of complex real scenes, and one scene for which ground truth has been

recovered.

3.2 RelatedWork

Our method builds on �ve lines of recent work—depth from focus, depth from defocus, shape

from active illumination, camera calibration, and synthetic aperture imaging. We brie�y discuss

their relation to this work below.
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Depth fromfocus. Our approach can be thought of as a depth from focusmethod, in that we

assign depth to each pixel by selecting the focus setting that maximizes a focus metric for that

pixel’s AFI. Classic depth from focusmethods collect images atmultiple focus settings and de�ne

metrics that measure sharpness over a small spatial window surrounding the pixel [30, 64, 80].

�is implicitly assumes that depth is approximately constant for all pixels in that window. In

contrast, our criterion depends on measurements at a single pixel and requires manipulating a

second, independent camera parameter (i.e., aperture). As a result, we can recovermuch sharper

geometric detail than window-based methods, and also recover depth with more accuracy near

depth discontinuities. �e tradeo� is that our method requires us to capture more images than

other depth from focus methods.

Depth fromdefocus. Many depth from defocus methods directly evaluate defocus over spa-

tial windows, e.g., by �tting a convolutionalmodel of defocus to images captured at di�erent lens

settings [43, 49, 92, 111, 120, 129]. Spatial windowing is also implicit in recent depth from defocus

methods based on deconvolving a single image, with the help of coded apertures and natural

image statistics [69, 115]. As a result, none of these methods can handle scenes with dense dis-

continuities like the ones we consider. Moreover, while depth from defocus methods generally

exploit basicmodels of defocus, themodels used do not capture the complex blurring properties

of multi-element, wide-aperture lenses, which can adversely a�ect depth computations.

Although depth from defocusmethods have taken advantage of the ability to control camera

aperture, this has generally been used as a substitute for focus control, so the analysis remains

essentially the same [49, 92, 111]. An alternative form of aperture control involves using spe-

cially designed pairs of optical �lters in order to compute derivatives with respect to aperture

size or viewpoint [36], illuminating the connection between defocus-based methods and small-

baseline stereo [36, 99]. Ourmethod, on the other hand, is speci�cally designed to exploit image

variations caused by changing the aperture in the standard way.

A second class of depth from defocus methods formulates depth recovery as an iterative

global energy minimization problem, simultaneously estimating depth and in-focus radiance

at all pixels [22, 38, 39, 42, 54, 62, 77, 95]. Some of the recent methods in this framework model

defocus in greater detail to better handle occlusion boundaries [22, 42, 54, 77] (see Chapter 4),

but rely on the occlusion boundaries being smooth. Unfortunately, these minimization-based

methods are prone to many local minima, their convergence properties are not completely un-

derstood, and they rely on smoothness priors that limit the spatial resolution of recovered depth

maps.
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Compared to depth from defocus methods, which may require as little as a single image

[69, 115], our method requires us to capture many more images. Again, the tradeo� is that our

method provides us with the ability to recover pixel-level depth for �ne geometric structures,

which would not otherwise be possible.

Shape from active illumination. Since it does not involve actively illuminating the scene,

our reconstruction approach is a “passive”method. Severalmethods use active illumination (i.e.,

projectors) to aid defocus computations. For example, by projecting structured patterns onto

the scene, it is possible to control the frequency characteristics of defocused images, reducing

the in�uence of scene texture [38, 79, 81]. Similarly, by focusing the camera and the projected

illumination onto the same scene plane, confocal microscopy methods are able to image (and

therefore reconstruct) transparent scenes one slice at a time [121]. �is approach has also been

explored for larger-scale opaque scenes [73].

Most recently, Zhang andNayar developed an active illuminationmethod that also computes

depthmaps at sensor resolution [132]. To do this, they evaluate the defocus of patterns projected

onto the scene using a metric that also relies on single-pixel measurements. �eir approach can

be thought of as orthogonal to our own, since it projects multiple defocused patterns instead of

controlling aperture. While their preliminary work has not demonstrated the ability to handle

scenes of the spatial complexity discussed here, it may be possible to combine aperture control

and active illumination formore accurate results. In practice, active illumination ismost suitable

for darker environments, where the projector is signi�cantly brighter than the ambient lighting.

Geometric and radiometric lens calibration. Because of the high image resolutions we

employ (12Mpixels or more) and the need for pixel-level alignment between images taken at

multiple lens settings, we model detailed e�ects that previous methods were not designed to

handle. For example, previous methods account for radiometric variation by normalizing spa-

tial image windows by their mean intensity [92, 111], or by �tting a global parametric model

such as a cosine-fourth fallo� [63]. To account for subtle radiometric variations that occur in

multi-element, o�-the-shelf lenses, we use a data-driven, non-parametric model that accounts

for the camera response function [31, 50] as well as slight temporal variations in ambient light-

ing. Furthermore, most methods for modeling geometric lens distortions due to changing focus

or zoom setting rely on simple magni�cation [15, 30, 81, 119] or radial distortion models [124],

which are not su�cient to achieve sub-pixel alignment of high resolution images.
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Synthetic aperture imaging. While real lenses integrate light over wide apertures in a con-

tinuous fashion, multi-camera systems can be thought of as a discretely-sampled synthetic aper-

ture that integrates rays from the light �eld [74]. Various such systems have been proposed in

recent years, including camera arrays [61, 74], virtual camera arrays simulated usingmirrors [73],

and arrays of lenslets in front of a standard imaging sensor [9, 85]. Our work can be thought of as

complementary to these methods since it does not depend on having a single physical aperture;

in principle, it can be applied to synthetic apertures as well.

3.3 Confocal Constancy

Consider a camera whose lens contains multiple elements and has a range of known focus and

aperture settings. We assume that no information is available about the internal components of

this lens (e.g., the number, geometry, and spacing of its elements). We therefore model the lens

as a “black box” that redirects incoming light toward a �xed sensor plane and has the following

idealized properties:

• Negligible absorption: light that enters the lens in a given direction is either blocked from
exiting or is transmitted with no absorption.

• Perfect focus: for every 3D point in front of the lens there is a unique focus setting that
causes rays through the point to converge to a single pixel on the sensor plane.

• Aperture-focus independence: the aperture setting controls only which rays are blocked
from entering the lens; it does not a�ect the way that light is redirected.

�ese properties are well approximated by lenses used in professional photography applica-

tions1. Hereweuse such a lens to collect images of a 3D scene forAaperture settings, {α1, . . . , αA},
and F focal settings, { f1, . . . , fF}. �is acquisition produces a 4D set of pixel data, Iα f (x , y),
where Iα f is the image capturedwith aperture α and focal setting f . As in previous defocus-based

methods, we assume that the camera and scene are stationary during the acquisition [64, 92, 132].

Suppose that a 3D point p on an opaque surface is in perfect focus in image Iα f and suppose

that it projects to pixel (x , y). In this case, the light reaching the pixel is restricted to a cone from
p that is determined by the aperture setting (Fig. 3.2). For a sensor with a linear response, the

intensity Iα f (x , y) measured at the pixel is proportional to the irradiance, namely the integral

1�ere is a limit, however, on how close points can be and still be brought into focus for real lenses, restricting
the 3D workspace that can be reconstructed.
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Figure 3.2: Generic lens model. (a) At the perfect focus setting of pixel (x , y), the lens collects outgoing
radiance from a scene point p and directs it toward the pixel. �e 3D position of point p is uniquely
determined by pixel (x , y) and its perfect focus setting. �e shaded cone of rays, Cxy(α, f ), determines
the radiance reaching the pixel. �is cone is a subset of the cone subtended by p and the front aperture
because some rays may be blocked by internal components of the lens, or by its back aperture. (b) For
out-of-focus settings, the lens integrates outgoing radiance from a region of the scene.

of outgoing radiance over the cone,

Iα f (x , y) = κ ∫
ω∈Cx y(α, f )

L(p,ω)dω , (3.1)

where ωmeasures solid angle, L(p,ω) is the radiance for rays passing through p, κ is a constant
that depends only on the sensor’s response function [31, 50], and Cxy(α, f ) is the cone of rays
that reach (x , y). In practice, the apertures on a real lens correspond to a nested sequence of

cones, Cxy(α1, f ) ⊂ . . . ⊂ Cxy(αA, f ), leading to a monotonically-increasing intensity at the pixel

(given equal exposure times).

If the outgoing radiance at the in-focus point p remains constant within the cone of the

largest aperture, i.e., L(p,ω) = L(p), and if this cone does not intersect the scene elsewhere, the
relation between intensity and aperture becomes especially simple. In particular, the integral of

Eq. (3.1) disappears and the intensity for aperture α is proportional to the solid angle subtended

by the associated cone, i.e.,

Iα f (x , y) = κ ∥ Cxy(α, f ) ∥ L(p) , (3.2)

where ∥ Cxy(α, f ) ∥ = ∫Cx y(α, f ) dω. As a result, the ratio of intensities at an in-focus point for two
di�erent apertures is a scene-independent quantity:

Confocal Constancy Property

Iα f (x , y)
Iα1 f (x , y) =

∥ Cxy(α, f ) ∥∥ Cxy(α1, f ) ∥ def
= Rxy(α, f ) . (3.3)
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Intuitively, the constant of proportionality, Rxy(α, f ), describes the relative amount of light re-

ceived from an in-focus scene point for a given aperture. �is constant, whichwe call the relative

exitance of the lens, depends on lens internal design (front and back apertures, internal elements,

etc.) and varies in general with aperture, focus setting, and pixel position on the sensor plane.

�us, relative exitance incorporates vignetting and other similar radiometric e�ects that do not

depend on the scene.

Confocal constancy is an important property for evaluating focus for four reasons. First, it

holds for a very general lens model that covers the complex lenses commonly used with high-

quality SLR cameras. Second, it requires no assumptions about the appearance of out-of-focus

points. �ird, it holds for scenes with general re�ectance properties, provided that radiance is

nearly constant over the cone subtended by the largest aperture.2 Fourth, and most important,

it can be evaluated at pixel resolution because it imposes no requirements on the spatial layout

(i.e., depths) of points in the neighborhood of p.

3.4 The Confocal Stereo Procedure

Confocal constancy allows us to decide whether or not the point projecting to a pixel (x , y) is in
focus by comparing the intensities Iα f (x , y) for di�erent values of aperture α and focus f . �is

leads to the following reconstruction procedure (Fig. 3.3):

1. (Relative exitance estimation) Compute the relative exitance of the lens for the A aper-

tures and F focus settings (Sec. 3.5).

2. (Image acquisition) For each of the F focus settings, capture an image of the scene for

each of the A apertures.

3. (Image alignment) Warp the captured images to ensure that a scene point projects to the

same pixel in all images (Sec. 3.6).

4. (AFI construction) Build an A × F aperture-focus image for each pixel, that collects the

pixel’s measurements across all apertures and focus settings.

5. (Confocal constancy evaluation) For each pixel, process its AFI to �nd the focus setting

that best satis�es the confocal constancy property (Sec. 3.7).

2For example, an aperture with an e�ective diameter of 70mm located 1.2m from the scene corresponds to
0.5% of the hemisphere, or a cone whose rays are less than 3.4° apart.
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Figure 3.3: Overview of confocal stereo: (a) Acquire A× F images over A apertures and F focus settings.
(b) Align all images to the reference image, taking into account both radiometric calibration (Sec. 3.5)
and geometric distortion (Sec. 3.6). (c) Build the A × F aperture-focus image (AFI) for each pixel. (d)
Process the AFI to �nd the best in-focus setting (Sec. 3.7).

3.5 Relative Exitance Estimation

In order to use confocal constancy for reconstruction, we must be able to predict how chang-

ing the lens aperture a�ects the appearance of scene points that are in focus. Our approach is

motivated by three basic observations. First, the apertures on real lenses are non-circular and

the f-stop values describing them only approximate their true area (Fig. 3.4a,b). Second, when

the e�ective aperture diameter is a relatively large fraction of the camera-to-object distance, the

solid angles subtended by di�erent 3D points in the workspace can di�er signi�cantly.3 �ird,

vignetting and o�-axis illumination e�ects cause additional variations in the light gathered from

di�erent in-focus points [63, 105] (Fig. 3.4b).

To deal with these issues, we explicitly compute the relative exitance of the lens, Rxy(α, f ),
for all apertures α and for a sparse set of focal settings f . �is can be thought of as a scene-

independent radiometric lens calibration step that must be performed just once for each lens.

In practice, this allows us to predict aperture-induced intensity changes to within the sensor’s

noise level (i.e., within 1–2 gray levels), and enables us to analyze potentially small intensity

3For a 70mm diameter aperture, the solid angle subtended by scene points 1.1–1.2m away can vary up to 10%.
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Figure 3.4: (a) Images of an SLR lens showing variation in aperture shape with corresponding images
of a di�use plane. (b) Top: comparison of relative exitances for the central pixel indicated in (a), as
measured using Eq. (3.3) (solid graph), and as approximated using the f-stop values (dotted) according
to Rxy(α, f ) = α21 /α2 [31]. Bottom: comparison of the central pixel (solid) with the corner pixel (dotted)
indicated in (a). �e agreement is good for narrow apertures (i.e., high f-stop values), but for wider
apertures, spatially-varying e�ects are signi�cant.

variations due to focus. For quantitative validation of our radiometric calibration method, see

Appendix A.

To compute relative exitance for a focus setting f , we place a di�use white plane at the in-

focus position and capture one image for each aperture, α1, . . . , αA. We then apply Eq. (3.3) to

the luminance values of each pixel (x , y) to recover Rxy(αi , f ). To obtain Rxy(αi , f ) for focus
settings that span the entire workspace, we repeat the process for multiple values of f and use

interpolation to compute the in-between values. Since Eq. (3.3) assumes that pixel intensity is

a linear function of radiance, we transform all images according to the inverse of the sensor

response function, which we recover using standard techniques from the high dynamic range

literature [31, 50].

Note that in practice, we manipulate the exposure time in conjunction with the aperture

setting α, to keep the total amount of light collected roughly constant and prevent unnecessary

pixel saturation. Exposure time can be modeled as an additional multiplicative factor in the

image formation model, Eq. (3.1), and does not a�ect the focusing behavior of the lens.4 �us,

we can fold variation in exposure time into the calculation of Rxy(αi , f ), provided that we vary
the exposure time in the same way for both the calibration and test sequences.

Global lighting correction. While the relative exitance need only be computed once for a

given lens, we have observed that variations in ambient lighting intensity over short time in-

4A side-e�ect of manipulating the exposure time is that noise characteristics will change with varying intensity
[56], however this phenomenon does not appear to be signi�cant in our experiments.
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Figure 3.5: (a–e) To evaluate stochastic lens distortions, we computed centroids of dot features for images
of a static calibration pattern. (a–d) Successive close-ups of a centroid’s trajectory for three cycles (red,
green, blue) of the 23 aperture settings. In (a–b) the trajectories aremagni�ed by a factor of 100. As shown
in (d), the trajectory, while stochastic, correlates with aperture setting. (e) Trajectory for the centroid of
(c) over 50 images with the same lens settings.

tervals can be signi�cant (especially for �uorescent tubes, due to voltage �uctuations). �is

prevents directly applying the relative exitance computed during calibration to a di�erent se-

quence.

To account for this e�ect, we model lighting variation as an unknown multiplicative factor

that is applied globally to each captured image. To factor out lighting changes, we renormalize

the images so that the total intensity of a small patch at the image center remains constant over

the image sequence. In practice, we use a patch that is a small fraction of the image (roughly

0.5% of the image area), so that aperture-dependent e�ects such as vignetting can be ignored,

and we take into account only pixels that are unsaturated for every lens setting.

3.6 High-Resolution Image Alignment

�e intensity comparisons needed to evaluate confocal constancy are only possible if we can

locate the projection of the same 3D point in multiple images taken with di�erent settings. �e

main di�culty is that real lenses map in-focus 3D points onto the image plane in a non-linear

fashion that cannot be predicted by ordinary perspective projection. To enable cross-image

comparisons, we develop an alignment procedure that reverses these non-linearities and warps

the input images to make them consistent with a reference image (Fig. 3.3b).

Since our emphasis is on reconstructing scenes at the maximum possible spatial resolution,

we aim tomodel real lenses with enough precision to ensure sub-pixel alignment accuracy. �is

task is especially challenging because at resolutions of 12MP or more, we begin to approach the

optical and mechanical limits of the camera. In this domain, the commonly-used thin lens (i.e.,

magni�cation) model [16, 30, 39, 41, 42, 81] is insu�cient to account for observed distortions.
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3.6.1 Deterministic second-order radial distortionmodel

Tomodel geometric distortions caused by the lens optics, we use a model with F +5 parameters

for a lens with F focal settings. �e model expresses deviations from an image with reference

focus setting f1 as an additive image warp consisting of two terms—a pure magni�cation term

m f that is speci�c to focus setting f , and a quadratic distortion term that ampli�es the magni-

�cation:

wD
f (x , y) = [m f +m f ( f − f1)(k0 + k1r + k2r2) − 1 ] ⋅ [(x , y) − (xc , yc)] , (3.4)

where k0, k1, k2 are the quadratic distortion parameters, (xc , yc) is the estimated image center,

and r = ∥(x , y) − (xc , yc)∥ is the radial displacement.5 Note that when the quadratic distortion

parameters are zero, the model reduces to pure magni�cation, as in the thin lens model.

It is a standard procedure inmanymethods [67, 124] tomodel radial distortion using a poly-

nomial of the radial displacement, r. A di�erence in our model is that the quadratic distortion

term in Eq. (3.4) incorporates a linear dependence on the focus setting as well, consistent with

more detailed calibration methods involving distortion components related to distance [46]. In

our empirical tests, we have found that this term is necessary to obtain sub-pixel registration at

high resolutions.

3.6.2 Stochastic first-order distortionmodel

We were surprised to �nd that signi�cant misalignments can occur even when the camera is

controlled remotely without any change in settings and is mounted securely on an optical table

(Fig. 3.5e). While thesemotions are clearly stochastic, we also observed a reproducible, aperture-

dependent misalignment of about the same magnitude (Fig. 3.5a–d), which corresponded to

slight but noticeable changes in viewpoint. In order to achieve sub-pixel alignment, we approx-

imate these motions by a global 2D translation, estimated independently for every image:

wS
α f (x , y) = tα f . (3.5)

We observed thesemotions with two di�erent Canon lenses and three Canon SLR cameras, with

no signi�cant di�erence using mirror-lockup mode. We hypothesize that this e�ect is caused

by additive random motion due to camera vibrations, plus variations in aperture shape and its

5Since our geometric distortion model is radial, the estimated image center has zero displacement over focus
setting, i.e., wD

f (xc , yc) = (0, 0) for all f .
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center point.

Note that while the geometric image distortions have a stochastic component, the corre-

spondence itself is deterministic: given two images taken at two distinct camera settings there

is a unique correspondence between their pixels.

3.6.3 Offline geometric lens calibration

We recover the complete distortionmodel of Eqs. (3.4)–(3.5) in a single optimization step, using

images of a calibration pattern taken over all F focus settings at the narrowest aperture, α1. �is

optimization simultaneously estimates the F + 5 parameters of the deterministic model and the

2F parameters of the stochastic model. To do this, we solve a non-linear least squares problem

that minimizes the squared reprojection error over a set of features detected on the calibration

pattern:

E(xc , yc ,m, k,T) = ∑(x ,y)∑ f ∣∣wD
f (x , y) +wS

α1 f
(x , y) − ∆α1 f (x , y) ∣∣2 , (3.6)

where m and k are the vectors of magni�cation and quadratic parameters, respectively; T col-

lects stochastic translations; and ∆α1 f (x , y) is the displacement between a feature location at

focus setting f and its location at the reference focus setting, f1.

To avoid being trapped in a local minimum, we initialize the optimization with suitable

estimates for (xc , yc) andm, and initialize the other distortion parameters to zero. To estimate

the image center (xc , yc), we �t lines through each feature track across focus setting, and then

compute their “intersection” as the point minimizing the sum of distances to these lines. To

estimate the magni�cations m, we use the regression suggested by Willson and Shafer [127] to

aggregate the relative expansions observed between pairs of features.

In practice, we use a planar calibration pattern consisting of a grid of about 25 × 15 circular

black dots on a white background (Fig. 3.5). We roughly localize the dots using simple image

processing and then compute their centroids in terms of raw image intensity in the neighbor-

hood of the initial estimates. �ese centroid features are accurate to sub-pixel and can tolerate

both slight defocus and smooth changes in illumination [125]. To increase robustness to outliers,

we run the optimization for Eq. (3.6) iteratively, removing features whose reprojection error is

more than 3.0 times the median.
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3.6.4 Online geometric alignment

While the deterministic warp parameters need only be computed once for a given lens, we can-

not apply the stochastic translations computed during calibration to a di�erent sequence. �us,

when capturing images of a new scene, we must re-compute these translations.

In theory, it might be possible to identify key points and compute the best-�t translation.

�is would amount to redoing the optimization of Eq. (3.6) for each image independently, with

all parameters except T �xed to the values computed o�ine. Unfortunately, feature localization

can be unstable because di�erent regions of the scene are defocused in di�erent images. �is

makes sub-pixel feature estimation and alignment problematic at large apertures (see Fig. 3.1a,

for example).

We deal with this issue by using Lucas-Kanade registration to compute the residual stochas-

tic translations in an image-based fashion, assuming additive image noise [19, 30]. To avoid

registration problems caused by defocus we (1) perform the alignment only between pairs of

“adjacent” images (same focus and neighboring aperture, or vice versa) and (2) take into ac-

count only image patches with high frequency content. In particular, to align images taken at

aperture settings αi , αi+1 and the same focus setting, we identify the patch of highest variance in

the image taken at the maximum aperture, αA, and the same focus setting. Since this image pro-

duces maximum blur for defocused regions, patches with high frequency content in the images

are guaranteed to contain high frequencies for any aperture.

3.7 Confocal Constancy Evaluation

Together, image alignment and relative exitance estimation allow us to establish a pixel-wise

geometric and radiometric correspondence across all input images, i.e., for all aperture and focus

settings. Given a pixel (x , y), we use this correspondence to assemble an A× F aperture-focus

image, describing the pixel’s intensity variations as a function of aperture and focus (Fig. 3.6a):

�e Aperture-Focus Image (AFI) of pixel (x , y)
AFIxy(α, f ) = 1

Rxy(α, f ) Îα f (x , y) , (3.7)

where Îα f denotes the images a�er global lighting correction (Sec. 3.5) and geometric image

alignment (Sec. 3.6).
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AFIs are a rich source of information about whether or not a pixel is in focus at a particular

focus setting f . We make this intuition concrete by developing two functionals that measure

how well a pixel’s AFI conforms to the confocal constancy property at f . Since we analyze the

AFI of each pixel (x , y) separately, we drop subscripts and use AFI(α, f ) to denote its AFI.
3.7.1 Direct Evaluation of Confocal Constancy

Confocal constancy tells us that when a pixel is in focus, its relative intensities across aperture

should match the variation predicted by the relative exitance of the lens. Since Eq. (3.7) already

corrects for these variations, confocal constancy at a hypothesis f̂ implies constant intensity

within column f̂ of the AFI (Fig. 3.6b,c). Hence, to �nd the perfect focus setting we can simply

�nd the column with minimum variance:

f ∗ = argmin
f̂

Var [{AFI(1, f̂ ), . . . , AFI(A, f̂ ) }] . (3.8)

To handle color images, we compute this cross-aperture variance for each RGB channel inde-

pendently and then sum over channels.

�e reason why the variance is higher at out-of-focus settings is that defocused pixels inte-

grate regions of the scene surrounding the true surface point (Fig. 3.2b), which generally con-

tain “texture” in the form of varying geometric structure or surface albedo. Hence, as with any

method that does not use active illumination, the scene must contain su�cient spatial variation

for this confocal constancy metric to be discriminative.

3.7.2 Evaluation by AFI Model-Fitting

A disadvantage of the previous method is that most of the AFI is ignored when testing a given

focus hypothesis f̂ , since only one column of the AFI participates in the calculation of Eq. (3.8)

(Fig. 3.6b). In reality, the 3D location of a scene point determines both the column of the AFI

where confocal constancy holds as well as the degree of blur that occurs in the AFI’s remaining,

“out-of-focus” regions.6 By taking these regions into account, we can create a focus detector

with more resistance to noise and higher discriminative power.

In order to take into account both in- and out-of-focus regions of a pixel’s AFI, we develop an

idealized, parametric AFI model that generalizes confocal constancy. �is model is controlled

6While not analyzed in the context of confocal constancy or the AFI, this is a key observation exploited by
depth from defocus approaches [36, 42, 43, 92, 111, 120].
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Figure 3.6: (a) �e A × F measurements for the pixel shown in Fig. 3.1. Le�: prior to image alignment.
Middle: a�er image alignment. Right: a�er accounting for relative exitance (Eq. (3.7)). Note that the AFI’s
smooth structure is discernible only a�er both corrections. (b) Direct evaluation of confocal constancy
for three focus hypotheses, f̂ = 3, 21 and 39. (c) Mean color of the corresponding AFI columns. (d)
Boundaries of the equi-blur regions, superimposed over the AFI (for readability, only a third are shown).
(e) Results of AFI model-�tting, with constant intensity in each equi-blur region, from the mean of the
corresponding region in the AFI. Observe that for f̂ = 39 the model is in good agreement with the
measured AFI ((a), rightmost).

by a single parameter—the focus hypothesis f̂—and is �t directly to a pixel’s AFI. �e perfect

focus setting is chosen to be the hypothesis that maximizes agreement with the AFI.

Our AFI model is based on two key observations. First, the AFI can be decomposed into

a set of F disjoint equi-blur regions that are completely determined by the focus hypothesis f̂

(Fig. 3.6d). Second, under mild assumptions on scene radiance, the intensity within each equi-

blur region will be constant when f̂ is the correct hypothesis. �ese observations suggest that

we canmodel the AFI as a set of F constant-intensity regions whose spatial layout is determined

by the focus hypothesis f̂ . Fitting this model to a pixel’s AFI leads to a focus criterion that

minimizes intensity variance in every equi-blur region (Fig. 3.6e):

f ∗ = argmin
f̂

F

∑
i=1
(w f̂

i Var [{AFI(α, f ) ∣ (α, f ) ∈ B f̂
i }] ) , (3.9)

where B f̂
i is the i-th equi-blur region for hypothesis f̂ , andw

f̂
i weighs the contribution of region
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B f̂
i . In our experiments, we set w f̂

i = area(B f̂
i ), which means that Eq. (3.9) reduces to comput-

ing the sum-of-squared error between the measured AFI and the AFI synthesized given each

focus hypothesis. For color images, as in Eq. (3.8), we compute the focus criterion for each RGB

channel independently and then sum over channels.

To implement Eq. (3.9) we must compute the equi-blur regions for a given focus hypothesis

f̂ . Suppose that the hypothesis f̂ is correct, and suppose that the current aperture and focus of

the lens are α and f̂ , respectively, i.e., a scene point p̂ is in perfect focus (Fig. 3.7a). Now consider

“defocusing” the lens by changing its focus to f (Fig. 3.7b). We can represent the blur associated

with the pair (α, f ) by a circular disc centered at point p̂ and parallel to the sensor plane. From

similar triangles, the diameter of this disc is equal to

bα f =
ϝ

α

∣dist( f̂ ) − dist( f )∣
dist( f ) , (3.10)

where ϝ is the focal length of the lens and dist(⋅) converts focus settings to distances from the

aperture.7 Our representation of this function assumes that the focal surfaces are fronto-parallel

planes [105].

Given a focus hypothesis f̂ , Eq. (3.10) assigns a “blur diameter” to each point (α, f ) in the

AFI and induces a set of nested, wedge-shaped curves of equal blur diameter (Figs. 3.6d and 3.7).

We quantize the possible blur diameters into F bins associated with the widest-aperture settings,

i.e., (αA, f1), . . . , (αA, fF), which partitions the AFI into F equi-blur regions, one per bin.

Eq. (3.10) fully speci�es our AFI model, and we have found that this model matches the

observed pixel variations quite well in practice (Fig. 3.6e). It is important, however, to note

that this model is approximate. In particular, we have implicitly assumed that once relative

exitance and geometric distortion have been factored out (Secs. 3.5–3.6), the equi-blur regions

of the AFI are well-approximated by the equi-blur regions predicted by the thin-lens model

[16, 105]. �en, the intensity at two positions in an equi-blur region will be constant under the

following conditions: (i) the largest aperture subtends a small solid angle from all scene points,

(ii) outgoing radiance for all scene points contributing to a defocused pixel remains constant

within the cone of the largest aperture, and (iii) depth variations for such scene points do not

signi�cantly a�ect the defocus integral. See Appendix B for a formal analysis.

7To calibrate the function dist(⋅), we used the same calibration pattern as in Sec. 3.6, mounted on a transla-
tion stage parallel to the optical axis. For various stage positions spanning the workspace, we used the camera’s
autofocus feature and measured the corresponding focus setting using a printed ruler mounted on the lens. We
related stage positions to absolute distances using a FaroArm Gold 3D touch probe, whose single-point accuracy
was ±0.05mm.
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Figure 3.7: Quantifying the blur due to an out-of-focus setting. (a) At focus setting f̂ , scene point p̂ is
in perfect focus. �e aperture’s e�ective diameter can be expressed in terms of its f-stop value α and
the focal length ϝ. (b) For an out-of-focus setting f , we can use Eq. (3.10) to compute the e�ective blur
diameter, bα f . (c) A second aperture-focus combination with the same blur diameter, bα′ f ′ = bα f . In our
AFI model, (α, f ) and (α′, f ′) belong to the same equi-blur region.

3.8 Experimental Results

To test our approach we used two setups representing di�erent grades of camera equipment.

Our �rst setup was designed to test the limits of pixel-level reconstruction accuracy in a high-

resolution setting, by using professional-quality camerawith awide-aperture lens. In the second

setup, we reproduced our approach with older and low-quality equipment, using one of earliest

digital SLR cameras, with a low-quality zoom lens.

For the �rst setup, we used two di�erent digital SLR cameras, the 16MP Canon EOS-1Ds

Mark II (Box dataset), and the 12MP Canon EOS-1Ds (Hair and Plastic datasets). For both

cameras we used the same wide-aperture, �xed focal length lens (Canon EF85mm f1.2L). �e

lens aperture was under computer control and its focal setting was adjusted manually using
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a printed ruler on the body of the lens. We operated the cameras at their highest resolution,

capturing 4992 × 3328-pixel and 4604 × 2704-pixel images respectively in RAW 12-bit mode.

Each imagewas demosaiced usingCanon so�ware and linearized using the algorithm in [31]. We

used A = 13 apertures ranging from f/1.2 to f/16, and F = 61 focal settings spanning a workspace

that was 17 cm in depth and 1.2m away from the camera. Successive focal settings therefore

corresponded to a depth di�erence of approximately 2.8mm. We mounted the camera on an

optical table in order to allow precise ground-truth measurements and to minimize external

vibrations.

For the second setup, we used a 6MPCanon 10D camera (Teddy dataset) with a low-quality

zoom-lens (Canon EF24-85mm f3.5-4.5). Again, we operated the camera in RAW mode at its

highest resolution, which here was 3072 × 2048. Unique to this setup, we manipulated focal

setting using a computer-controlled steppingmotor to drive the lens focusing ringmechanically

[4]. We used A = 11 apertures ranging from f/3.5 to f/16, and F = 41 focal settings spanning

a workspace that was 1.0m in depth and 0.5m away from the camera. Because this lens has

a smaller maximum aperture, the depth resolution was signi�cantly lower, and the distance

between successive focal settings was over 8mm at the near end of the workspace.8

To enable the construction of aperture-focus images, we �rst computed the relative exitance

of the lens (Sec. 3.5) and then performed o�ine geometric calibration (Sec. 3.6). For the �rst

setup, our geometric distortion model was able to align the calibration images with an accuracy

of approximately 0.15 pixels, as estimated from centroids of dot features (Fig. 3.5c). �e accuracy

of online alignmentwas about 0.4 pixels, i.e., worse than during o�ine calibration butwell below

one pixel. �is penalty is expected sincewe use smaller regions of the scene for online alignment,

and since we align the image sequence in an incremental pairwise fashion, to avoid alignment

problems with severely defocused image regions (see Sec. 3.6.4). Calibration accuracy for the

second setup was similar.

While the computation required by confocal stereo is simple and linear in the total number of

pixels and focus hypotheses, the size of the datasets make memory size and disk speed the main

computational bottlenecks. In our experiments, image capture took an average of two seconds

per frame, demosaicking oneminute per frame, and alignment and further preprocessing about

three minutes per frame. For a 128 × 128 pixel patch, a Matlab implementation of AFI model-

�tting took about 250 s using 13× 61 images, compared with 10 s for a depth from focus method

that uses 1 × 61 images.

8For additional results, see http://www.cs.toronto.edu/∼hasinoff/confocal.
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Figure 3.8: Behavior of focus criteria for a speci�c pixel (highlighted square) in three test datasets. �e
dashed graph is for direct confocal constancy (Eq. (3.8)), solid is for AFI model-�tting (Eq. (3.9)), and the
dotted graph is for 3 × 3 variance (DFF). While all three criteria o�en have corresponding local minima
near the perfect focus setting, AFI model-�tting varies much more smoothly and exhibits no spurious
localminima in these examples. For themiddle example, which considers the same pixel shown in Fig. 3.1,
the global minimum for variance is at an incorrect focus setting. �is is because the pixel lies on a strand
of hair only 1–2 pixels wide, beyond the resolving power of variance calculations. �e graphs for each
focus criterion are shown with relative scaling.

Quantitative evaluation: BOX dataset. To quantify reconstruction accuracy, we used a

tilted planar scene consisting of a box wrapped in newsprint (Fig. 3.8, le�). �e plane of the

box was measured using a FaroArm Gold 3D touch probe, as employed in Sec. 3.7.2, whose

single-point accuracy was ±0.05mm in the camera’s workspace. To relate probe coordinates to

coordinates in the camera’s reference frame we used the Camera Calibration Toolbox forMatlab

[23] along with further correspondences between image features and 3D coordinates measured

by the probe.

We computed a depth map of the scene for three focus criteria: direct confocal constancy

(Eq. (3.8)), AFI model-�tting (Eq. (3.9)), and a depth from focus (DFF) method, applied to

the widest-aperture images, that chooses the focus setting with the highest variance in a 3 × 3

window centered at each pixel, summed over RGB color channels. �e planar shape of the

scene and its detailed texture can be thought of as a best-case scenario for such window-based

approaches. �e plane’s footprint contained 2.8 million pixels, yielding an equal number of 3D

measurements.

As Table 3.1 shows, all three methods performed quite well, with accuracies of 0.36–0.49%

of the object-to-camera distance. �is performance is on par with previous quantitative studies
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Figure 3.9: Visualizing the accuracy of reconstruction and outlier detection for the Box dataset. Top row:
For all three focus criteria, we show depth maps for a 200 × 200 region from the center of the box (see
Fig. 3.10). �e depth maps are rendered as 3D point clouds where intensity encodes depth, and with the
ground-truth plane shown overlaid as a 3D mesh. Middle row: We compute con�dence for each pixel
as the second derivative at the minimum of the focus criterion. For comparison across di�erent focus
criteria, we �xed the threshold for AFI model-�tting, and adjusted the thresholds so that the other two
criteria reject the same number of outliers. While this signi�cantly helps reject outliers for AFI model-
�tting, for the other criteria, which are typically multi-modal, this strategy is much less e�ective. Bottom
row: Subsequently �ltering out pixels with multiple modes has little e�ect on AFI model-�tting, which is
nearly always uni-modal, but removes almost all pixels for the other criteria.

Table 3.1: Ground-truth accuracy results. All distances weremeasured relative to the ground-truth plane,
and the inlier threshold was set to 11mm. We also express the RMS error as a percentage of the mean
camera-to-scene distance of 1025mm.

median abs. inlier RMS % RMS % dist.
dist. (mm) dist. (mm) inliers to camera

3 × 3 spatial variance (DFF) 2.16 3.79 80 0.374
confocal constancy evaluation 3.47 4.99 57 0.487
AFI model-�tting 2.14 3.69 91 0.356
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[120, 132], although few results with real images have been reported in the passive depth from

focus literature. Signi�cantly, AFI model-�tting slightly outperforms spatial variance (DFF) in

both accuracy and number of outliers even though its focus computations are performed en-

tirely at the pixel level and, hence, are of much higher resolution. Qualitatively, this behavior is

con�rmed by considering all three criteria for speci�c pixels (Fig. 3.8) and for an image patch

(Figs. 3.9 and 3.10).

Note that it is also possible to detect outlier pixels where the focus criterion is uninformative

(e.g., when the AFI is nearly constant due to lack of texture) by using a con�dencemeasure or by

processing the AFI further. We have experimented with a simple con�dencemeasure computed

as the second derivative at theminimumof the focus criterion9. As shown in Fig. 3.9, �ltering out

low-con�dence pixels for AFI model-�tting leads to a sparser depth map that suppresses noisy

pixels, but for the other focus criteria, where most pixels have multiple modes, such �ltering is

far less bene�cial. �is suggests that AFI model-�tting is a more discriminative focus criterion,

because it produces fewer modes that are both sharply peaked and incorrect.

As a �nal experiment with this dataset, we investigated how AFI model-�tting degrades

when a reduced number of apertures is used (i.e., for AFIs of size A′ × F with A′ < A). Our

results suggest that using only �ve or six apertures causes little reduction in quality (Fig. 3.11).

HAIR dataset. Our second test scene was a wig with a messy hairstyle, approximately 25 cm

tall, surrounded by several arti�cial plants (Figs. 3.1 and 3.8, middle). Reconstruction results

for this scene (Fig. 3.12) show that our confocal constancy criteria lead to very detailed depth

maps, at the resolution of individual strands of hair, despite the scene’s complex geometry and

despite the fact that depths can vary greatly within small image neighborhoods (e.g., toward the

silhouette of the wig). By comparison, the 3×3 variance operator produces uniformly-lower

resolution results, and generates smooth “halos” around narrow geometric structures like in-

dividual strands of hair. In many cases, these “halos” are larger than the width of the spatial

operator, as blurring causes distant points to in�uence the results.

In low-texture regions, such as the cloth �ower petals and leaves, �tting amodel to the entire

AFI allows us to exploit defocused texture from nearby scene points. Window-based methods

like variance, however, generally yield even better results in such regions, because they propagate

focus information from nearby texture more directly, by implicitly assuming a smooth scene

9In practice, since computing second derivatives directly can be noisy, we compute the width of the valley
that contains the minimum, at a level 10% above the minimum. For AFI model-�tting across all datasets, we
reject pixels whose width exceeds 14 focus settings. Small adjustments to this threshold do not change the results
signi�cantly.
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Figure 3.10: Top: Depth map for the Box dataset using AFI model-�tting. Bottom: Close-up depth maps
for the highlighted region corresponding to Fig. 3.9, computed using three focus criteria.
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Figure 3.11: AFI model-�tting error and inlier fraction as a function of the number of aperture settings
(Box dataset, inlier threshold = 11mm).

geometry. Like all focus measures, those based on confocal constancy are uninformative in

extremely untextured regions, i.e., when the AFI is constant. However, by using the proposed

con�dence measure, we can detect many of these low-texture pixels (Figs. 3.12 and 3.15). To

better visualize the result of �ltering out these pixels, we replace them using a simple variant of

PDE-based inpainting [21].
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Figure 3.12: Center: Depth map for the Hair dataset using AFI model-�tting. Top: �e AFI-based
depth map resolves several distinctive foreground strands of hair. We also show the result of detecting
low-con�dence pixels from AFI model-�tting and replacing them using PDE-based inpainting [21] (see
Fig. 3.15), which suppresses noise but preserves �ne detail. Direct evaluation of confocal constancy is also
sharp but much noisier, making structure di�cult to discern. By contrast, 3×3 variance (DFF) exhibits
thick “halo” artifacts and fails to detect most of the foreground strands (see also Fig. 3.8). Bottom right:

DFF yields somewhat smoother depths for the low-texture leaves, but exhibits inaccurate halo artifacts
at depth discontinuities. Bottom le�: Unlike DFF, AFI model-�tting resolves structure amid signi�cant
depth discontinuities.
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PLASTIC dataset. Our third test scene was a rigid, near-planar piece of transparent plastic,

formerly used as packaging material, which was covered with dirt, scratches, and �ngerprints

(Fig. 3.8, right). �is plastic object was placed in front of a dark background and lit obliquely

to enhance the contrast of its limited surface texture. Reconstruction results for this scene

(Figs. 3.13–3.14) illustrate that at high resolution, even transparent objectsmay have enough �ne-

scale surface texture to be reconstructed using focus- or defocus-based techniques. In general,

wider baseline methods like standard stereo cannot exploit such surface texture easily because

textured objects behind the transparent surface may interfere with matching.

Despite the scene’s relatively low texture, AFI model-�tting still recovers the large-scale pla-

nar geometry of the scene, albeit with signi�cant outliers (Fig. 3.14). By comparison, the 3×3

variance operator recovers a depth map with fewer outliers, which is expected since window-

based approaches are well suited to reconstruction of near-planar scenes. As in the previous

dataset, most of the AFI outliers can be attributed to low-con�dence pixels and are readily �l-

tered out (Fig. 3.15).

TEDDY dataset. Our �nal test scene, captured using low-quality camera equipment, consists

of a teddy bear with coarse fur, seated in front of a hat and several cushions, with a variety of

ropes in the foreground (Fig. 3.16). Since little of this scene is composed of the �ne pixel-level

texture found in previous scenes, this �nal dataset provides an additional test for low-texture

areas.

We had no special di�culty applying our method for this new setup, and even with a lower-

quality lens we obtained a similar level of accuracy with our radiometric and geometric cali-

bration model. As shown in Fig. 3.16, the results are qualitatively comparable to depth recovery

for the low-texture objects in previous datasets. �e large-scale geometry of the scene is clearly

recovered, and many of the outliers produced by our pixel-level AFI model-�tting method can

be identi�ed as well.

Online alignment. To qualitatively assess the e�ect of online alignment, which accounts for

both stochastic sub-pixel camera motion (Sec. 3.6.4) as well as temporal variations in lighting

intensity (Sec. 3.5), we compared the depth maps produced using AFI model-�tting (Eq. (3.9))

with and without this alignment step (Fig. 3.15a,b). Our results show that online alignment leads

to noise reduction for low-texture, dark, or other noisy pixels (e.g., due to color demosaicking),

but does not resolve signi�cant additional detail. �is also suggests that any further improve-

ments to geometric calibration might lead to only slight gains.
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Figure 3.13: Center: Depth map for the Plastic dataset using AFI model-�tting. Top: Close-up depth
maps for the highlighted region, computed using three focus criteria. While 3×3 variance (DFF) yields the
smoothest depth map overall for the transparent surface, there are still a signi�cant number of outliers.
Direct evaluation of confocal constancy, is extremely noisy for this dataset, but AFImodel-�tting recovers
the large-scale smooth geometry. Bottom: Similar results for another highlighted region of the surface,
but with relatively more outliers for AFI model-�tting. While AFI model-�tting produces more outliers
overall than DFF for this dataset, many of these outliers can be detected and replaced using inpainting.
Focus criteria for the three highlighted pixels are shown in Fig. 3.14.
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Figure 3.14: Failure examples. Le� to right: Behavior of the three focus criteria in Fig. 3.13 for three
highlighted pixels. �e dashed graph is for direct confocal constancy (Eq. (3.8)), solid is for AFI model-
�tting (Eq. (3.9)), and the dotted graph is for 3×3 variance (DFF). For pixel 1 all minima coincide. Lack of
structure in pixel 2 produces multiple local minima for the AFI model-�tting metric; only DFF provides
an accurate depth estimate. Pixel 3 and its neighborhood are corrupted by saturation, so no criterion
gives meaningful results. Depth estimates at pixel 2 and 3 would have been rejected by our con�dence
criterion.

Four observations can be made from our experiments. First, we have validated the ability

of confocal stereo to estimate depths for �ne pixel-level geometric structures. Second, the ra-

diometric calibration and image alignment method we use are su�cient to allow us to extract

depthmaps with very high resolution cameras and wide-aperture lenses. �ird, ourmethod can

still be applied successfully in a low-resolution setting, using low-quality equipment. Fourth, al-

though the AFI is uninformative in completely untextured regions, we have shown that a simple

con�dence metric can help identify such pixels, and that AFI model-�tting can exploit defo-

cused texture from nearby scene points to provide useful depth estimates even in regions with

relatively low texture.

3.9 Discussion and Limitations

�e extreme locality of shape computations derived from aperture-focus images is both a key

advantage and a major limitation of the current approach. While we have shown that process-

ing a pixel’s AFI leads to highly detailed reconstructions, this locality does not yet provide the

means to handle large untextured regions [38, 114] or to reason about global scene geometry and

occlusion [16, 42, 99].

Untextured regions of the scene are clearly problematic since they lead to near-constant and

uninformative AFIs. �e necessary conditions for resolving scene structure, however, are even

more stringent because a fronto-parallel plane colored with a linear gradient can also produce

constant AFIs.10 To handle these cases, we are exploring the possibility of analyzing AFIs at

10�is follows from the work of Favaro, et al. [38] who established that non-zero second-order albedo gradients
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Figure 3.15: (a)–(b) Improvement of AFImodel-�tting due to online alignment, accounting for stochastic
sub-pixel camera motion and temporal variations in lighting intensity. (b) Online alignment leads to a
reduction in noisy pixels and yields smoother depth maps for low-textured regions, but does not resolve
signi�cantly more detail in our examples. (c) Low-con�dence pixels for the AFI model-�tting criterion,
highlighted in red, are pixels where the second derivative at the minimum is below the same threshold
used for AFI model-�tting in Fig. 3.9. (d) Low con�dence pixels �lled using PDE-based inpainting [21].
By comparison to (b), we see that many outliers have been �ltered, and that the detailed scene geometry
has been preserved. �e close-up depth maps correspond to regions highlighted in Figs. 3.12–3.13.
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Teddy dataset

Figure 3.16: Top right: Sample widest-aperture f/3.5 input photo of the Teddy dataset. Center: Depth
map using AFI model-�tting. Top le�: Close-up depth maps for the highlighted region, comparing 3×3
variance (DFF) and AFI model-�tting, with and without inpainting of the detected outliers. Like the
Plastic dataset shown in Fig. 3.13, outliers are signi�cant for low-texture regions. While window-based
DFF leads to generally smoother depths, AFI model-�tting provides the ability to distinguish outliers.
Bottom: Similar e�ects can be seen for the bear’s paw, just in front of low-texture cushion.
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Figure 3.17: AFImodel-�tting vs. the thin lensmodel. Le�: Narrow-aperture image region from theHair

dataset, corresponding to Fig. 3.12, top. Right: For two aperture settings, we show the cross-focus appear-
ance variation of the highlighted horizontal segment: (i) for the aligned input images, (ii) re-synthesized
using AFI model-�tting, and (iii) re-synthesized using the thin lens model. To resynthesize the input im-
ages we used the depths and colors predicted by AFI model-�tting. At wide apertures, AFI model-�tting
much better reproduces the input, but at the narrowest aperture both methods are identical.

multiple levels of detail and analyzing the AFIs of multiple pixels simultaneously. �e goal of

this general approach is to enforce geometric smoothness only when required by the absence of

structure in the AFIs of individual pixels.

Although notmotivated by the optics, it is also possible to applyMarkov random�eld (MRF)

optimization, e.g., [24], to the output of our per-pixel analysis, since Eqs. (3.8) and (3.9) e�ec-

tively de�ne “data terms” measuring the level of inconsistency for each depth hypothesis. Such

an approach would bias the reconstruction toward piecewise-smooth depths, albeit without ex-

ploiting the structure of defocus over spatial neighborhoods. To emphasize our ability to recon-

struct pixel-level depth we have not taken this approach, but have instead restricted ourselves

to a greedy per-pixel analysis.

Since AFI’s equi-blur regions are derived from the thin lens model, it is interesting to com-

pare our AFI model’s ability to account for the input images, compared to the pure thin lens

model. In this respect, the �tted AFIs are much better at capturing the spatial and cross-focus

appearance variations (Fig. 3.17). Intuitively, our AFI model is less constrained than the thin

lens model, because it depends on F color parameters per pixel (one for each equi-blur region),

instead of just one. Furthermore, these results suggest that lens defocusmay be poorly described

by simple analytic point-spread functions as in existingmethods, and thatmore expressivemod-

els based on the structure of the AFI may be more useful in fully accounting for defocus.

Finally, as a pixel-levelmethod, confocal stereo exhibits better behavior near occlusion bound-

are a necessary condition for resolving the structure of a smooth scene.
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aries compared to standard defocus-based techniques that require integration over spatial win-

dows. Nevertheless, confocal constancy does not hold exactly for pixels that are both near an

occlusion boundary and correspond to the occluded surface because the assumption of a fully-

visible aperture breaks down. To this end, we are investigating more explicit methods for oc-

clusion modeling [16, 42], as well as the use of a space-sweep approach to account for these

occlusions, analogous to voxel-based stereo [68].

Summary

�e key idea of our approach is the introduction of the aperture-focus image, which serves as an

important primitive for depth computation at high resolutions. We showed how each pixel can

be analyzed in terms of its AFI, and how this analysis led to a simplemethod for estimating depth

at each pixel individually. Our results show that we can compute 3D shape for very complex

scenes, recovering �ne, pixel-level structure at high resolution. We also demonstrated ground

truth results for a simple scene that compares favorably to previousmethods, despite the extreme

locality of confocal stereo computations.

Although shape recovery is our primary motivation, we have also shown how, by comput-

ing an empirical model of a lens, we can achieve geometric and radiometric image alignment

that closely matches the behavior and capabilities of high-end consumer lenses and imaging

sensors. In this direction, we are interested in exploiting the typically unnoticed stochastic, sub-

pixel distortions in SLR cameras in order to achieve super-resolution [90], as well as for other

applications.
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Chapter 4

Layer-Based Restoration for

Multiple-Aperture Photography

�ere are two kinds of light—the glow that illuminates, and the
glare that obscures.

James�urber (1894–1961)

In this chapter we present multiple-aperture photography, a new method for analyzing sets

of images captured with di�erent aperture settings, with all other camera parameters �xed. We

show that by casting the problem in an image restoration framework, we can simultaneously ac-

count for defocus, high dynamic range exposure (HDR), and noise, all of which are confounded

according to aperture. Our formulation is based on a layered decomposition of the scene that

models occlusion e�ects in detail. Recovering such a scene representation allows us to adjust the

camera parameters in post-capture, to achieve changes in focus setting or depth of �eld—with

all results available in HDR. Our method is designed to work with very few input images: we

demonstrate results from real sequences obtained using the three-image “aperture bracketing”

mode found on consumer digital SLR cameras.

4.1 Introduction

Typical cameras have three major controls—aperture, shutter speed, and focus. Together, aper-

ture and shutter speed determine the total amount of light incident on the sensor (i.e., exposure),

whereas aperture and focus determine the extent of the scene that is in focus (and the degree of

out-of-focus blur). Although these controls o�er �exibility to the photographer, once an image

has been captured, these settings cannot be altered.

77
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Recent computational photography methods aim to free the photographer from this choice

by collecting several controlled images [10, 34, 78], or using specialized optics [61, 85]. For exam-

ple, high dynamic range (HDR) photography involves fusing images taken with varying shutter

speed, to recover detail over a wider range of exposures than can be achieved in a single photo

[5, 78].

In this chapter we show that �exibility can be greatly increased through multiple-aperture

photography, i.e., by collecting several images of the scene with all settings except aperture �xed

(Fig. 4.1). In particular, our method is designed to work with very few input images, includ-

ing the three-image “aperture bracketing” mode found on most consumer digital SLR cameras.

Multiple-aperture photography takes advantage of the fact that by controlling aperture we si-

multaneously modify the exposure and defocus of the scene. To our knowledge, defocus has

not previously been considered in the context of widely-ranging exposures.

We show that by inverting the image formation in the input photos, we can decouple all three

controls—aperture, focus, and exposure—thereby allowing complete freedom in post-capture,

i.e., we can resynthesize HDR images for any user-speci�ed focus position or aperture setting.

While this is the major strength of our technique, it also presents a signi�cant technical chal-

lenge. To address this challenge, we pose the problem in an image restoration framework, con-

necting the radiometric e�ects of the lens, the depth and radiance of the scene, and the defocus

induced by aperture.

�e key to the success of our approach is formulating an image formation model that ac-

curately accounts for the input images, and allows the resulting image restoration problem to

be inverted in a tractable way, with gradients that can be computed analytically. By applying

the image formation model in the forward direction we can resynthesize images with arbitrary

camera settings, and even extrapolate beyond the settings of the input.

In our formulation, the scene is represented in layered form, but we take care to model

occlusion e�ects at defocused layer boundaries [16] in a physically meaningful way. �ough

several depth-from-defocus methods have previously addressed such occlusion, these methods

have been limited by computational ine�ciency [42], a restrictive occlusion model [22], or the

assumption that the scene is composed of two surfaces [22, 42, 77]. By comparison, our approach

can handle an arbitrary number of layers, and incorporates an approximation that is e�ective

and e�cient to compute. Like McGuire, et al. [77], we formulate our image formation model in

terms of image compositing [104], however our analysis is not limited to a two-layer scene or

input photos with special focus settings.

Our work is also closely related to depth-from-defocusmethods based on image restoration,
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multiple-aperture input photos

post-capture resynthesis, in HDR

Figure 4.1: Photography with varying apertures. Top: Input photographs for the Dumpster dataset,
obtained by varying aperture setting only. Without the strong gamma correction we apply for display
(γ=3), these images would appear extremely dark or bright, since they span a wide exposure range. Note
that aperture a�ects both exposure and defocus. Bottom: Examples of post-capture resynthesis, shown
in high dynamic range (HDR) with tone-mapping. Le�-to-right: the all-in-focus image, an extrapolated
aperture (f/1), and refocusing on the background (f/2).

that recover an all-in-focus representation of the scene [42, 62, 95, 107]. Although the output of

thesemethods theoretically permits post-capture refocusing and aperture control, most of these

methods assume an additive, transparent image formationmodel [62, 95, 107] which causes seri-
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ous artifacts at depth discontinuities, due to the lack of occlusion modeling. Similarly, defocus-

based techniques speci�cally designed to allow refocusing rely on inverse �ltering with local

windows [14, 29], and do not model occlusion either. Importantly, none of these methods are

designed to handle the large exposure di�erences found in multiple-aperture photography.

Our work has four main contributions. First, we introduce multiple-aperture photography

as a way to decouple exposure and defocus from a sequence of images. Second, we propose

a layered image formation model that is e�cient to evaluate, and enables accurate resynthe-

sis by accounting for occlusion at defocused boundaries. �ird, we show that this formula-

tion is speci�cally designed for an objective function that can be practicably optimized within

a standard restoration framework. Fourth, as our experimental results demonstrate, multiple-

aperture photography allows post-capture manipulation of all three camera controls—aperture,

shutter speed, and focus—from the same number of images used in basic HDR photography.

4.2 Photography by Varying Aperture

Suppose we have a set of photographs of a scene taken from the same viewpoint with di�erent

apertures, holding all other camera settings �xed. Under this scenario, image formation can be

expressed in terms of four components: a scene-independent lens attenuation factor R, a scene

radiance term L, the sensor response function g(⋅), and image noise η,

I(x , y, a) = g(
sensor irradiance³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

R(x , y, a, f )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
lens term

⋅ L(x , y, a, f )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
scene radiance term

) + η®
noise

, (4.1)

where I(x , y, a) is image intensity at pixel (x , y) when the aperture is a. In this expression, the

lens term Rmodels the radiometric e�ects of the lens and depends on pixel position, aperture,

and the focus setting, f , of the lens. �e radiance termL corresponds to themean scene radiance

integrated over the aperture, i.e., the total radiance subtended by aperture a divided by the solid

angle. We use mean radiance because this allows us to decouple the e�ects of exposure, which

depends on aperture but is scene-independent, and of defocus, which also depends on aperture.

Given the set of captured images, our goal is to perform two operations:

• Highdynamic range photography. Convert each of the input photos toHDR, i.e., recover
L(x , y, a, f ) for the input camera settings, (a, f ).

• Post-capture aperture and focus control. Compute L(x , y, a′, f ′) for any aperture and
focus setting, (a′, f ′).
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While HDR photography is straightforward by controlling exposure time rather than aperture

[78], in our input photos, defocus and exposure are deeply interrelated according to the aperture

setting. Hence, existing HDR and defocus analysis methods do not apply, and an entirely new

inverse problem must be formulated and solved.

To do this, we establish a computationally tractable model for the terms in Eq. (4.1) that well

approximates the image formation in consumer SLR digital cameras. Importantly, we show that

this model leads to a restoration-based optimization problem that can be solved e�ciently.

4.3 Image FormationModel

Sensor model. Following the high dynamic range literature [78], we express the sensor re-

sponse g(⋅) in Eq. (4.1) as a smooth, monotonic function mapping the sensor irradiance R ⋅L

to image intensity in the range [0, 1]. �e e�ective dynamic range is limited by over-saturation,

quantization, and the sensor noise η, which we model as additive. Note that in Chapter 6 we

consider more general models of noise.

Exposure model. Since we hold exposure time constant, a key factor in determining the

magnitude of sensor irradiance is the size of the aperture. In particular, we represent the total

solid angle subtended by the aperture with an exposure factor ea, which converts between the

mean radiance L and the total radiance integrated over the aperture, eaL. Because this factor is

scene-independent, we incorporate it in the lens term,

R(x , y, a, f ) = ea R̂(x , y, a, f ) , (4.2)

therefore the factor R̂(x , y, a, f ) models residual radiometric distortions, such as vignetting,

that vary spatially and depend on aperture and focus setting. To resolve the multiplicative am-

biguity, we assume that R̂ is normalized so the center pixel is assigned a factor of one.

Defocus model. While more general models are possible [11], we assume that the defocus

induced by the aperture obeys the standard thin lensmodel [16, 92]. �ismodel has the attractive

feature that for a fronto-parallel scene, relative changes in defocus due to aperture setting are

independent of depth.

In particular, for a fronto-parallel scene with radiance L, the defocus from a given aperture

can be expressed by the convolution L = L ∗ Bσ [92]. �e 2D point-spread function B is pa-

rameterized by the e�ective blur diameter, σ , which depends on scene depth, focus setting, and
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Figure 4.2: Defocused image formationwith the thin lensmodel. (a) Fronto-parallel scene. (b) For a two-
layered scene, the shaded fraction of the cone integrates radiance from layer 2 only, while the unshaded
fraction integrates the unoccluded part of layer 1. Our occlusion model of Sec. 4.4 approximates layer 1’s

contribution to the radiance at (x , y) as (LP+LQ) ∣Q∣
∣P∣+∣Q∣ , where LP and LQ represent the total radiance

from regions P and Q respectively. �is is a good approximation when 1
∣P∣LP ≈ 1

∣Q∣LQ .

aperture size (Fig. 4.2a). From simple geometry,

σ =
∣d′ − d∣

d
D , (4.3)

where d′ is the depth of the scene, d is the depth of the in-focus plane, and D is the e�ective

diameter of the aperture. �is implies that regardless of the scene depth, for a �xed focus setting,

the blur diameter is proportional to the aperture diameter.1

�e thin lens geometry also implies that whatever its form, the point-spread function B will

scale radially with blur diameter, i.e., Bσ(x , y) = 1
σ2B( xσ , y

σ
). In practice, we assume that Bσ is a

2D symmetric Gaussian, where σ represents the standard deviation (Sec. 2.3.5).

1Because it is based on simple convolution, the thin lens model for defocus implicitly assumes that scene radi-
ance L is constant over the cone subtended by the largest aperture. �emodel also implies that any camera settings
yielding the same blur diameter σ will produce the same defocused image, i.e., that generalized confocal constancy
(Sec. 3.7.2) is satis�ed [53].
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4.4 Layered Scene Radiance

Tomake the reconstruction problem tractable, we rely on a simpli�ed scene model that consists

of multiple, possibly overlapping, fronto-parallel layers, ideally corresponding to a gross object-

level segmentation of the 3D scene.

In this model, the scene is composed of K layers, numbered from back to front. Each layer is

speci�ed by an HDR image, Lk, that describes its outgoing radiance at each point, and an alpha

matte, Ak, that describes its spatial extent and transparency.

Approximate layered occlusion model. Although the relationship between defocus and

aperture setting is particularly simple for a single-layer scene, the multiple layer case is signif-

icantly more challenging due to occlusion.2 A fully accurate simulation of the thin lens model

under occlusion involves backprojecting a cone into the scene, and integrating the unoccluded

radiance (Fig. 4.2b) using a form of ray-tracing [16]. Unfortunately, this process is computation-

ally intensive, since the point-spread function can vary with arbitrary complexity according to

the geometry of the occlusion boundaries.

For computational e�ciency, we therefore formulate an approximate model for layered im-

age formation (Fig. 4.3) that accounts for occlusion, is e�ective in practice, and leads to simple

analytic gradients used for optimization.

�e model entails defocusing each scene layer independently, according to its depth, and

combining the results using image compositing:

L =
K

∑
k=1
[(Ak ⋅ Lk) ∗ Bσk] ⋅Mk , (4.4)

where σk is the blur diameter for layer k, Mk is a second alpha matte for layer k, representing

the cumulative occlusion from defocused layers in front,

Mk =

K

∏
j=k+1
(1 −A j ∗ Bσ j) , (4.5)

and ⋅ denotes pixel-wise multiplication. Eqs. (4.4) and (4.5) can be viewed as an application of

the matting equation [104], and generalizes the method ofMcGuire, et al. [77] to arbitrary focus

settings and numbers of layers.

Intuitively, rather than integrating partial cones of rays that are restricted by the geometry of

2Since we model the layers as thin, occlusion due to perpendicular step edges [22] can be ignored.
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Figure 4.3: Approximate layered image formation model with occlusion, illustrated in 2D. �e double-
cone shows the thin lens geometry for a given pixel, indicating that layer 3 is nearly in-focus. To compute
the defocused radiance, L, we use convolution to independently defocus each layerAk ⋅Lk , where the blur
diameters σk are de�ned by the depths of the layers (Eq. (4.3)). We combine the independently defocused
layers using image compositing, where the mattesMk account for cumulative occlusion from defocused
layers in front.

the occlusion boundaries (Fig. 4.2b), we integrate the entire cone for each layer, and weigh each

layer’s contribution by the fraction of rays that reach it. �ese weights are given by the alpha

mattes, and model the thin lens geometry exactly.

In general, our approximation is accurate when the region of a layer that is subtended by

the entire aperture has the same mean radiance as the unoccluded region (Fig. 4.2b). �is as-

sumption is less accurate when only a small fraction of the layer is unoccluded, but this case

is mitigated by the small contribution of the layer to the overall integral. Worst-case behavior

occurs when an occlusion boundary is accidentally aligned with a brightness or texture discon-

tinuity on the occluded layer, however this is rare in practice.

All-in-focus scene representation. In order to simplify our formulation even further, we

represent the entire scene as a single all-in-focus HDR radiance map, L. In this reduced repre-

sentation, each layer is modeled as a binary alpha matte A′k that “selects” the unoccluded pixels

corresponding to that layer. Note that if the narrowest-aperture input photo is all-in-focus, the

brightest regions of L can be recovered directly, however this condition is not a requirement of

our method.

While the all-in-focus radiance directly speci�es the unoccluded radiance A′k ⋅ L for each

layer, to accurately model defocus near layer boundaries we must also estimate the radiance for

occluded regions (Fig. 4.2b). Our underlying assumption is that L is su�cient to describe these

occluded regions as extensions of the unoccluded layers. �is allows us to apply the same image
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Figure 4.4: Reduced representation for the layered scene in Fig. 4.3, based on the all-in-focus radiance,
L. �e all-in-focus radiance speci�es the unoccluded regions of each layer, A′k ⋅ L, where {A′k} is a hard
segmentation of the unoccluded radiance into layers. We assume that L is su�cient to describe the oc-
cluded regions of the scene aswell, with inpainting (lighter, dotted) used to extend the unoccluded regions
behind occluders as required. Given these extended layers, A′k ⋅ L + A

′′
k ⋅ L

′′
k , we apply the same image

formation model as in Fig. 4.3.

formation model of Eqs. (4.4)–(4.5) to extended versions of the unoccluded layers (Fig. 4.4):

Ak = A
′
k + A′′k (4.6)

Lk = A′k ⋅ L + A′′k ⋅ L
′′
k . (4.7)

In Sec. 4.7 we describe our method for extending the unoccluded layers using image inpainting.

Complete scenemodel. In summary, we represent the scene by the triple (L,A, σ), consist-
ing of the all-in-focus HDR scene radiance, L, the hard segmentation of the scene into unoc-

cluded layers, A = {A′k}, and the per-layer blur diameters, σ , speci�ed for the widest aperture.3

4.5 Restoration-based Framework for HDR Layer Decom-

position

In multiple-aperture photography we do not have any prior information about either the layer

decomposition (i.e., depth) or scene radiance. We therefore formulate an inverse problemwhose

goal is to compute (L,A, σ) from a set of input photos. �e resulting optimization can be viewed

as a generalized image restoration problem that uni�es HDR imaging and depth-from-defocus

3To relate the blur diameters over aperture setting, we rely on Eq. (4.3). Note that in practice we do not compute
the aperture diameters directly from the f-numbers. For greater accuracy, we instead estimate the relative aperture

diameters according to the calibrated exposure factors, Da ∝

√
ea/eA.
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by jointly explaining the input in terms of layered HDR radiance, exposure, and defocus.

In particular we formulate our goal as estimating (L,A, σ) that best reproduces the input
images, by minimizing the objective function

O(L,A, σ) = 1

2

A

∑
a=1
∥∆(x , y, a)∥2 + λ ∥L∥β . (4.8)

In this optimization, ∆(x , y, a) is the residual pixel-wise error between each input image I(x , y, a)
and the corresponding synthesized image; ∥L∥β is a regularization term that favors piecewise

smooth scene radiance; and λ > 0 controls the balance between squared image error and the

regularization term.

�e following equation shows the complete expression for the residual ∆(x , y, a), parsed
into simpler components:

∆(x , y, a) = min
⎧⎪⎪⎨⎪⎪⎩ ea ⋅

°
exposure
factor

[ K

∑
k=1
[(A′k ⋅ L +A′′k ⋅ L′′k) ∗ Bσa ,k] ⋅Mk]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
layered occlusion model, L
from Eqs. (4.4)−(4.5)

, 1

®
clipping
term

⎫⎪⎪⎬⎪⎪⎭ −

1

R̂(x , y, a, f ) g−1(I(x , y, a))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
linearized and lens−corrected

image intensity

, (4.9)

�e residual is de�ned in terms of input images that have been linearized and lens-corrected ac-

cording to pre-calibration (Sec. 4.7). �is transformation simpli�es the optimization of Eq. (4.8),

and converts the image formationmodel of Eq. (4.1) to scaling by an exposure factor ea, followed

by clipping tomodel over-saturation. �e innermost component of Eq. (4.9) is the layered image

formation model described in Sec. 4.4.

While scaling due to the exposure factor greatly a�ects the relativemagnitude of the additive

noise, η, this e�ect is handled implicitly by the restoration. Note, however, that additive noise

from Eq. (4.1) is modulated by the linearizing transformation that we apply to the input images,

yielding modi�ed additive noise at every pixel:

η′(x , y, a) = 1

R̂(x , y, a, f ) ∣dg
−1(I(x , y))
dI(x , y) ∣ η , (4.10)

where η′ →∞ for over-saturated pixels [101].
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Weighted TV regularization. To regularize Eq. (4.8), we use a form of the total variation

(TV) norm, ∥L∥TV = ∫ ∥∇L∥. �is norm is useful for restoring sharp discontinuities, while

suppressing noise and other high frequency detail [116]. �e variant we propose,

∥L∥β = ∫
√(w(L) ∥∇L∥)2 + β , (4.11)

includes a perturbation term β > 0 that remains constant4 and ensures di�erentiability as∇L→
0 [116]. More importantly, our norm incorporates per-pixel weightsw(L)meant to equalize the

TV penalty over the high dynamic range of scene radiance (Fig. 4.12).

We de�ne the weightw(L) for each pixel according to its inverse exposure level, 1/ea∗ , where
a∗ corresponds to the aperture for which the pixel is “best exposed”. In particular, we synthesize

the transformed input images using the current scene estimate, and for each pixel we select

the aperture with highest signal-to-noise ratio, computed with the noise level η′ predicted by

Eq. (4.10).

4.6 OptimizationMethod

To optimize Eq. (4.8), we use a series of alternating minimizations, each of which estimates one

of L,A, σ while holding the rest constant.

• Image restoration To recover the scene radiance L thatminimizes the objective, we take a
direct iterative approach [107, 116], by carrying out a set of conjugate gradient steps. Our
formulation ensures that the required gradients have straightforward analytic formulas
(Appendix C).

• Blur re�nement We use the same approach, of taking conjugate gradient steps, to opti-
mize the blur diameters σ . Again, the required gradients have simple analytic formulas
(Appendix C).

• Layer re�nement �e layer decomposition A is more challenging to optimize because it
involves a discrete labeling, but e�cient optimizationmethods such as graph cuts [24] are
not applicable. Weuse a näıve approach that simultaneouslymodi�es the layer assignment
of all pixels whose residual error is more than �ve times the median, until convergence.
Each iteration in this stage evaluates whether a change in the pixels’ layer assignment leads
to a reduction in the objective.

• Layer ordering Recall that the indexing for A speci�es the depth ordering of the layers,
from back to front. To test modi�cations to this ordering, we note that each blur diam-
eter corresponds to two possible depths, either in front of or behind the in-focus plane

4We used β = 10−8 in all our experiments.
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(Eq. (4.3), Sec. 2.7). We use a brute force approach that tests all 2K−1 distinct layer order-
ings, and select the one leading to the lowest objective (Fig. 4.6d).

Note that even when the layer ordering and blur diameters are speci�ed, a two-fold ambi-
guity still remains. In particular, our defocus model alone does not let us resolve whether
the layer with the smallest blur diameter (i.e., the most in-focus layer) is in front of or
behind the in-focus plane. In terms of resynthesizing new images, this ambiguity has lit-
tle impact provided that the layer with the smallest blur diameter is nearly in focus. For
greater levels of defocus, however, the ambiguity can be signi�cant. Our current approach
is to break the ambiguity arbitrarily, but we could potentially analyze errors at occlusion
boundaries or exploit additional information (e.g., that the lens is focused behind the
scene [111]) to resolve this.

• Initialization In order for this procedure towork, weneed to initialize all three of (L,A, σ)
with reasonable estimates, as discussed below.

4.7 Implementation Details

Scene radiance initialization. We de�ne an initial estimate for the unoccluded radiance,

L, by directly selecting pixels from the transformed input images, then scaling them by their

inverse exposure factor, 1/ea, to convert them toHDR radiance. Our strategy is to select asmany

pixels as possible from the sharply focused narrowest-aperture image, but to make adjustments

for darker regions of the scene, whose narrow-aperture image intensities will be dominated by

noise (Fig. 4.5).

For each pixel, we select the narrowest aperture for which the image intensity is above a �xed

threshold of κ = 0.1, or if none meet this threshold, then we select the largest aperture. In terms

of Eq. (4.10), the threshold de�nes a minimum acceptable signal-to-noise ratio of κ/η′.
Initial layering and blur assignment. To obtain an initial estimate for the layers and blur

diameters, we use a simple window-based depth-from-defocus method inspired by classic ap-

proaches [29, 92] andmore recentMRF-based techniques [10, 95]. Ourmethod involves directly

testing a set of hypotheses for blur diameter, {σ̂i}, by synthetically defocusing the image as if the

whole scene were a single fronto-parallel surface. We specify these hypotheses for blur diame-

ter in the widest aperture, recalling that Eq. (4.3) relates each such hypothesis over all aperture

settings.

Because of the large exposure di�erences between photos taken several f-stops apart, we

restrict our evaluation of consistency with a given blur hypothesis, σ̂i , to adjacent pairs of images

captured with successive aperture settings, (a, a + 1).
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Figure 4.5: Initial estimate for unoccluded scene radiance. (a) Source aperture from the input sequence,
corresponding to the narrowest aperture with acceptable SNR. (b) Initial estimate for HDR scene radi-
ance, shown using tone-mapping.

To evaluate consistency for each such pair, we use the hypothesis to align the narrower aper-

ture image to the wider one, then directly measure per-pixel resynthesis error. �is alignment

involves convolving the narrower aperture image with the required incremental blur, scaling

the image intensity by a factor of ea+1/ea, and clipping any oversaturated pixels. Since our point-
spread function isGaussian, this incremental blur can be expressed in a particularly simple form,

namely another 2D symmetric Gaussian with a standard deviation of
√
Da+1

2
− Da

2 σ̂i .

By summing the resynthesis error across all adjacent pairs of apertures, we obtain a rough

per-pixel metric describing consistency with the input images over our set of blur diameter hy-

potheses. While this errormetric can beminimized in a greedy fashion for every pixel (Fig. 4.6a),

we a useMarkov random �eld (MRF) framework to reward piecewise smoothness and recover a

small number of layers (Fig. 4.6b). In particular, we employ graph cuts with the expansion-move

approach [25], where the smoothness cost is de�ned as a truncated linear function of adjacent

label di�erences on the four-connected grid,

∑
(x′ ,y′) ∈neigh(x ,y)

max ( ∣l(x′, y′) − l(x , y)∣, smax ) , (4.12)

where l(x , y) represents the discrete index of the blur hypothesis σ̂i assigned to pixel (x , y), and
neigh(x , y) de�nes the adjacency structure. In all our experiments we used smax = 2.

A�er �nding the MRF solution, we apply simple morphological post-processing to detect

pixels belonging to very small regions, constituting less than 5% of the image area, and to rela-

bel them according to their nearest neighboring region above this size threshold. Note that our
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Figure 4.6: (a)–(c) Initial layer decomposition and blur assignment for the Dumpster dataset, computed
using our depth-from-defocus method. (a) Greedy layer assignment. (b) MRF-based layer assignment.
(c) Initial layer decomposition, determined by applyingmorphological post-processing to (b). Our initial
guess for the back-to-front depth ordering is also shown. (d) Final layering, which involves re-estimating
the depth ordering and iteratively modifying the layer assignment for high-residual pixels. �e corrected
depth ordering signi�cantly improves the quality of resynthesis, however the e�ect of modifying the layer
assignment is very subtle.

implementation currently assumes that all pixels assigned to the same blur hypothesis belong

the same depth layer. While this simplifying assumption is appropriate for all our examples

(e.g., the two window panes in Fig. 4.14) and limits the number of layers, a more general ap-

proach is to assign disconnected regions of pixels to separate layers (we did not do this in our

implementation).

Sensor responseand lens termcalibration. To recover the sensor response function, g(⋅),
we apply standard HDR imaging methods [78] to a calibration sequence captured with varying

exposure time.

We recover the radiometric lens term R(x , y, a, f ) using one-time pre-calibration process

as well. To do this, we capture a calibration sequence of a di�use and textureless plane, and

take the pixel-wise approach described in Sec. 3.5. In practice our implementation ignores the

dependence of R on focus setting, but if the focus setting is recorded at capture time, we can

use it to interpolate over a more detailed radiometric calibrationmeasured over a range of focus

settings (Sec. 3.5).

Occluded radiance estimation. As illustrated in Fig. 4.4, we assume that all scene layers

can be expressed in terms of the unoccluded all-in-focus radiance L. During optimization, we

use a simple inpainting method to extend the unoccluded layers: we use a näıve, low-cost tech-
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Figure 4.7: Layering and background inpainting for theDumpster dataset. (a)�e three recovered scene
layers, visualized by masking out the background. (b) Inpainting the background for each layer using the
nearest layer pixel. (c) Using di�usion-based inpainting [21] to de�ne the layer background. In practice,
we need not compute the inpainting for the front-most layer (bottom row).

nique that extends each layer by �lling its occluded background with the closest unoccluded

pixel from its boundary (Fig. 4.7b). For synthesis, however, we obtain higher-quality results by

using a simple variant of PDE-based inpainting [21] (Fig. 4.7c), which formulates inpainting as

a di�usion process. Previous approaches have used similar inpainting methods for synthesis

[69, 77], and have also explored using texture synthesis to extend the unoccluded layers [79].



92 Chapter 4. Multiple-Aperture Photography

0 50 100 150 200 250 300

44

46

48

50

52

ob
je
ct
iv
e

iteration number

Figure 4.8: Typical convergence behavior of our restoration method, shown for the Dumpster dataset
(Fig. 4.1). �e yellow and pink shaded regions correspond to alternating blocks of image restoration and
blur re�nement respectively (10 iterations each), and the dashed red vertical lines indicate layer reorder-
ing and re�nement (every 80 iterations).

4.8 Results and Discussion

To evaluate our approach we captured several real datasets using two di�erent digital SLR cam-

eras. We also generated a synthetic dataset to enable comparison with ground truth (Lena

dataset).

We captured the real datasets using the Canon EOS-1Ds Mark II (Dumpster, Portrait,

Macro datasets) or the EOS-1Ds Mark III (Doors dataset), secured on a sturdy tripod. In

both cases we used a wide-aperture �xed focal length lens, the Canon EF85mm f1.2L and the

EF50mm f1.2L respectively, set to manual focus. For all our experiments we used the built-in

three-image “aperture bracketing” mode set to ±2 stops, and chose the shutter speed so that the

images were captured at f/8, f/4, and f/2 (yielding relative exposure levels of roughly 1, 4, and 16).

We captured 14-bit RAW images for increased dynamic range, and demonstrate our method for

downsampled images with resolutions of 500 × 333 or 705 × 469 pixels.5

Our image restoration algorithm follows the description in Sec. 4.6, alternating between

10 conjugate gradient steps each of image restoration and blur re�nement, until convergence.

We periodically apply the layer reordering and re�nement procedure as well, both immediately

a�er initialization and every 80 such steps. As Fig. 4.8 shows, the image restoration typically

converges within the �rst 100 iterations, and beyond the �rst application, layer reordering and

re�nement has little e�ect. For all experiments we set the smoothing parameter to λ = 0.002.

Resynthesis with new camera settings. Once the image restoration has been computed,

i.e., once (L,A, σ) has been estimated, we can apply the forward image formation model with

arbitrary camera settings, and resynthesize new images at near-interactive rates (Figs. 4.1,4.9–

5For additional results and videos, see http://www.cs.toronto.edu/∼hasinoff/aperture/.



4.8. Results and Discussion 93

ou
r

m
o
d
el

m
o
d
el

w
ith

ou
t

in
p
ain

tin
g

ad
d
itive

Figure 4.9: Layered image formation results at occlusion boundaries. Le�: Tone-mapped HDR image
of the Dumpster dataset, for an extrapolated aperture (f/1). Top inset: Our model handles occlusions
in a visually realistic way. Middle: Without inpainting, i.e., assuming zero radiance in occluded regions,
the resulting darkening emphasizes pixels whose layer assignment has been misestimated, that are not
otherwise noticeable. Bottom: An additive image formationmodel [95, 107] exhibits similar artifacts, plus
erroneous spill from the occluded background layer.

4.17).6 Note that since we do not record the focus setting f at capture time, we �x the in-focus

depth arbitrarily (e.g., to 1.0m), which allows us to specify the layer depths in relative terms

(Fig. 4.17). To synthesize photos with modi�ed focus settings, we express the depth of the new

focus setting as a fraction of the in-focus depth.7

Note that while camera settings can also be extrapolated, this functionality is somewhat

limited. In particular, while extrapolating larger apertures than lets us model exposure changes

and increased defocus for each depth layer (Fig. 4.9), the depth resolution of our layered model

is limited compared to what larger apertures could potentially provide [99].

To demonstrate the bene�t of our layered occlusion model for resynthesis, we compared

our resynthesis results at layer boundaries with those obtained using alternative methods. As

shown in Fig. 4.9, our layered occlusion model produces visually realistic output, even in the

absence of pixel-accurate layer assignment. Our model is a signi�cant improvement over the

6In order to visualize the exposure range of the recoveredHDR radiance, we apply tone-mapping using a simple
global operator of the form T(x) = x

1+x
.

7For ease of comparison, when changing the focus setting synthetically, we do not resynthesize geometric dis-
tortions such as image magni�cation (Sec. 3.6). Similarly, we do not simulate the residual radiometric distortions
R̂, such as vignetting. All these lens-speci�c artifacts can be simulated if desired.
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f/2f/4f/8

3D model synthetic input images

Figure 4.10: Synthetic Lena dataset. Le�: Underlying 3D scene model, created from an HDR version of
the Lena image. Right: Input images generated by applying our image formation model to the known 3D
model, focused on the middle layer.

typical additive model of defocus [95, 107], which shows objectionable rendering artifacts at

layer boundaries. Importantly, our layered occlusion model is accurate enough that we can

resolve the correct layer ordering in all our experiments (except for one error in the Doors

dataset), simply by applying brute force search and testing which ordering leads to the smallest

objective.

Synthetic data: LENA dataset. To enable comparison with ground truth, we tested our

approach using a synthetic dataset (Fig. 4.10). �is dataset consists of an HDR version of the

512 × 512 pixel Lena image, where we simulate HDR by dividing the image into three vertical

bands and arti�cially exposing each band. We decomposed the image into layers by assigning

di�erent depths to each of three horizontal bands, and generated the input images by applying

the forward image formation model, focused on the middle layer. Finally, we added Gaussian

noise to the input with a standard deviation of 1% of the intensity range.

As Fig. 4.11 shows, the restoration and resynthesis agree well with the ground truth, and

show no visually objectionable artifacts, even at layer boundaries. �e results show denoising

throughout the image and ev demonstrate good performance in regions that are both dark and

defocused. Such regions constitute a worst case for our method, since they are dominated by

noise for narrow apertures, but are strongly defocused for wide apertures. Despite the challenge

presented by these regions, our image restoration framework handles them naturally, because

our formulation with TV regularization encourages the “deconvolution” of blurred intensity

edges while simultaneously suppressing noise (Fig. 4.12a, inset). In general, however, weaker

high-frequency detail cannot be recovered from strongly defocused regions.
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Figure 4.11: Resynthesis results for the Lena dataset, shown tone-mapped, agree visually with ground
truth. Note the successful smoothing and sharpening . �e remaining errors are mainly due to the loss of
the highest frequency detail caused by our image restoration and denoising. Because of the high dynamic
range, we visualize the error in relative terms, as a fraction of the ground truth radiance.

(a) (b)

Figure 4.12: E�ect of TVweighting. We show the all-in-focusHDR restoration result for the Lenadataset,
tone-mapped and with enhanced contrast for the inset: (a) weighting the TV penalty according to e�ec-
tive exposure using Eq. (4.11), and (b) without weighting. In the absence of TV weighting, dark scene
regions give rise to little TV penalty, and therefore get relatively under-smoothed. In both cases, TV
regularization shows characteristic blocking into piecewise smooth regions.
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We also used this dataset to test the e�ect of using di�erent numbers of input images span-

ning the same range of apertures from f/8 to f/2 (Table 4.1). As Fig. 4.13 shows, using only 2 input

images signi�cantly deteriorates the restoration results. As expected, using more input images

improves the restoration, particularly with respect to recovering detail in dark and defocused

regions, which bene�t from the noise reduction that comes from additional images.

DUMPSTER dataset. �is outdoor scene has served as a running example throughout the

chapter (Figs. 4.1, 4.5-4.9). It is composed of three distinct and roughly fronto-parallel layers: a

background building, a pebbled wall, and a rusty dumpster. �e foreground dumpster is darker

than the rest of the scene and is almost in-focus. Although the layering recovered by the restora-

tion is not pixel-accurate at the boundaries, resynthesis with new camera settings yields visually

realistic results (Figs. 4.1 and 4.9).

PORTRAIT dataset. �is portrait was captured indoors in a dark room, using only available

light from the background window (Fig. 4.14). �e subject is nearly in-focus and very dark

compared to the background buildings outside, and an even darker chair sits defocused in the

foreground. Note that while the �nal layer assignment is only roughly accurate (e.g., near the

subject’s right shoulder), the discrepancies are restrictedmainly to low-texture regions near layer

boundaries, where layer membership is ambiguous and has little in�uence on resynthesis. In

this sense, our method is similar to image-based rendering from stereo [45, 137] where recon-

struction results that deviate from ground truth in “unimportant” ways can still lead to visually

realistic new images. Slight artifacts can be observed at the boundary of the chair, in the form of

an over-sharpened dark stripe running along its arm. �is part of the scene was under-exposed

even in the widest-aperture image, and the blur diameter was apparently estimated too high,

Table 4.1: Restoration error for the Lena dataset, using di�erent numbers of input images spanning the
aperture range f/8–f/2. All errors are measured with respect to the ground truth HDR all-in-focus radi-
ance.

num. input f-stops RMS error RMS rel. error median rel. error
images apart (all-in-focus) (all-in-focus) (all-in-focus)

2 4 0.0753 13.2% 2.88%
3 2 0.0737 11.7% 2.27%
5 1 0.0727 11.4% 1.97%
9 1/2 0.0707 10.8% 1.78%
13 1/3 0.0688 10.6% 1.84%
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Figure 4.13: E�ect of the number of input images for the Lena dataset. Top of row: Tone-mapped all-in-
focus HDR restoration. For better visualization, the inset is shown with enhanced contrast. Bottom of

row: Relative absolute error, compared to the ground truth in-focus HDR radiance.
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perhaps due to over-�tting the background pixels that were incorrectly assigned to the chair.

DOORS dataset. �is architectural scene was captured outdoors at twilight, and consists of

a sloping wall containing a row of rusty doors, with a more brightly illuminated background

(Fig. 4.15). �e sloping, hallway-like geometry constitutes a challenging test for our method’s

ability to handle scenes that violate our piecewise fronto-parallel scene model. As the results

show, despite the fact that our method decomposes the scene into six fronto-parallel layers, the

recovered layer ordering is almost correct, and our restoration allows us to resynthesize visually

realistic new images. Note that the reduced detail for the tree in the background is due to scene

motion caused by wind over the 1 s total capture time.

Failure case: MACRO dataset. Our �nal sequence was a macro still life scene, captured

using a 10mm extension tube to reduce the minimum focusing distance of the lens, and to

increase themagni�cation to approximately life-sized (1:1). �e scene is composed of aminiature

glass bottle whose inner surface is painted, and a dried bundle of green tea leaves (Fig. 4.16).

�is is a challenging dataset for several reasons: the level of defocus is severe outside the very

narrow depth of �eld, the scene consists of both smooth and intricate geometry (bottle and tea

leaves, respectively), and the re�ections on the glass surface only become focused at incorrect

virtual depths. �e initial segmentation leads to a very coarse decomposition into layers, which

is not improved by our optimization. While the resynthesis results for this scene su�er from

strong artifacts, the gross structure, blur levels, and ordering of the scene layers are still recovered

correctly. �e worst artifacts are the bright “cracks” occurring at layer boundaries, due to a

combination of incorrect layer segmentation and our di�usion-based inpainting method.

A current limitation of our method is that our scheme for re-estimating the layering is not

always e�ective, since residual error in reproducing the input images may not be discriminative

enough to identify pixels with incorrect layer labels, given over�tting and other sources of error

such as imperfect calibration. Fortunately, even when the layering is not estimated exactly, our

layered occlusion model o�en leads to visually realistic resynthesized images (e.g., Figs. 4.9 and

4.14).

Summary

We demonstrated howmultiple-aperture photography leads to a uni�ed restoration framework

for decoupling the e�ects of defocus and exposure, which permits post-capture control of the

camera settings in HDR. From a user interaction perspective, one can imagine creating new
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Figure 4.14: Portrait dataset. �e input images are visualized with strong gamma correction (γ=3) to
display the high dynamic range of the scene, and show signi�cant posterization artifacts. Although the
�nal layer assignment has errors in low-texture regions near layer boundaries, the restoration results are
su�ciently accurate to resynthesize visually realistic new images. We demonstrate refocusing in HDR
with tone-mapping, simulating the widest input aperture (f/2).
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Figure 4.15: Doors dataset. �e input images are visualized with strong gamma correction (γ = 3) to
display the high dynamic range of the scene. Our method approximates the sloping planar geometry of
the scene using a small number of fronto-parallel layers. Despite this approximation, and an incorrect
layer ordering estimated for the le�most layer, our restoration results are able to resynthesize visually
realistic new images. We demonstrate refocusing in HDR with tone-mapping, simulating the widest
input aperture (f/2).
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Figure 4.16:Macro dataset (failure case). �e input images are visualized with strong gamma correction
(γ = 3) to display the high dynamic range of the scene. �e recovered layer segmentation is very coarse,
and signi�cant artifacts are visible at layer boundaries, due to a combination of the incorrect layer seg-
mentation and our di�usion-based inpainting. We demonstrate refocusing in HDR with tone-mapping,
simulating the widest input aperture (f/2).
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Dumpster Portrait

Doors Macro

Figure 4.17: Gallery of restoration results for the real datasets. We visualize the recovered layers in 3D
using the relative depths de�ned by their blur diameters and ordering.

controls to navigate the space of camera settings o�ered by our representation. In fact, our

recovered scene model is rich enough to support non-physically based models of defocus as

well, and to permit additional special e�ects such as compositing new objects into the scene.

For future work, we are interested in addressing motion between exposures that may be

caused by hand-held photography or subject motion. Although we have experimented with

simple image registration methods, it could be bene�cial to integrate a layer-based parametric

model of optical �ow directly into the overall optimization. We are also interested in improving

the e�ciency of our technique by extending it to multi-resolution.

While each layer is currently modeled as a binary mask, it could be useful to represent each

layer with fractional alpha values, for improved resynthesis at boundary pixels that containmix-

tures of background and foreground. Our image formation model (Sec. 4.4) already handles

layers with general alpha mattes, and it should be straightforward to process our layer estimates

in the vicinity of the initial hard boundaries using existing matting techniques [52, 137]. �is

color-based matting may also be useful help re�ne the initial layering we estimate using depth-

from-defocus.



Chapter 5

Light-Efficient Photography

E�ciency is doing better what is already being done.

Peter Drucker (1909–2005)

I’ll take ��y percent e�ciency to get one hundred percent loyalty.

Samuel Goldwyn (1879–1974)

In this chapter we consider the problem of imaging a scene with a given depth of �eld at

a given exposure level in the shortest amount of time possible. We show that by (1) collecting

a sequence of photos and (2) controlling the aperture, focus and exposure time of each photo

individually, we can span the given depth of �eld in less total time than it takes to expose a

single narrower-aperture photo. Using this as a starting point, we obtain two key results. First,

for lenses with continuously-variable apertures, we derive a closed-form solution for the globally

optimal capture sequence, i.e., that collects light from the speci�ed depth of �eld in themost e�-

cient way possible. Second, for lenses with discrete apertures, we derive an integer programming

problemwhose solution is the optimal sequence. Our results are applicable to o�-the-shelf cam-

eras and typical photography conditions, and advocate the use of dense, wide-aperture photo

sequences as a light-e�cient alternative to single-shot, narrow-aperture photography.

5.1 Introduction

Two of the most important choices when taking a photo are the photo’s exposure level and its

depth of �eld. Ideally, these choices will result in a photo whose subject is free of noise or pixel

saturation [54, 56], and appears to be in focus. �ese choices, however, come with a severe time

constraint: in order to take a photo that has both a speci�c exposure level and a speci�c depth

of �eld, we must expose the camera’s sensor for a length of time that is dictated by the lens

103
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1 photo @ f/8
total time: 2 s

2 photos @ f/4
total time: 1 s

synthesized photo
with desired DOF

2 s 0.5 s0.5 s

Figure 5.1: Le�: Traditional single-shot photography. �e desired depth of �eld is shown in red. Right:
Light-e�cient photography. Two wide-aperture photos span the same DOF as a single-shot narrow-
aperture photo. Eachwide-aperture photo requires 1/4 the time to reach the exposure level of the narrow-
aperture photo, resulting in a 2× net speedup for the total exposure time.

optics. Moreover, the wider the depth of �eld, the longer we must wait for the sensor to reach

the chosen exposure level. In practice, this makes it impossible to e�ciently take sharp and

well-exposed photos of a poorly-illuminated subject that spans a wide range of distances from

the camera. To get a good exposure level, wemust compromise something—either use a narrow

depth of �eld (and incur defocus blur [58, 64, 92, 120]) or take a long exposure (and incurmotion

blur [96, 113, 131]).

In this chapter we seek to overcome the time constraint imposed by lens optics, by capturing

a sequence of photos rather than just one. We show that if the aperture, exposure time, and

focus setting of each photo is selected appropriately, we can span a given depth of �eld with a

given exposure level in less total time than it takes to expose a single photo (Fig. 5.1). �is novel

observation is based on a simple fact: even though wide apertures have a narrow depth of �eld

(DOF), they are much more e�cient than narrow apertures in gathering light from within their

depth of �eld. Hence, even though it is not possible to span a wide DOF with a single wide-

aperture photo, it is possible to span it with several of them, and do so very e�ciently.

Using this observation as a starting point, we develop a general theory of light-e�cient pho-

tography that addresses four questions: (1) under what conditions is capturing photo sequences

with “synthetic” DOFs more e�cient than single-shot photography? (2) How can we character-

ize the set of sequences that are globally optimal for a given DOF and exposure level, i.e., whose

total exposure time is the shortest possible? (3) How can we compute such sequences automati-

cally for a speci�c camera, depth of �eld, and exposure level? (4) Finally, how do we convert the

captured sequence into a single photo with the speci�ed depth of �eld and exposure level?

Little is known about how to gather light e�ciently from a speci�ed DOF. Research on com-

putational photography has not investigated the light-gathering ability of existing methods, and
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has not considered the problem of optimizing exposure time for a desired DOF and exposure

level. For example, even though there has been great interest in manipulating a camera’s DOF

through optical [28, 36, 69, 96, 115, 138] or computational [14, 29, 53, 54, 58, 75, 83] means, current

approaches do sowithout regard to exposure time—they simply assume that the shutter remains

open as long as necessary to reach the desired exposure level. �is assumption is also used for

high-dynamic range photography [31, 54], where the shutter must remain open for long periods

in order to capture low-radiance regions in a scene. In contrast, here we capture photos with

camera settings that are carefully chosen to minimize total exposure time for the desired DOF

and exposure level.

Since shorter total exposure times reduce motion blur, our work can be thought of as com-

plementary to recent synthetic shutter approaches whose goal is to reduce such blur. Instead of

controlling aperture and focus, these techniques divide a given exposure interval into several

shorter ones, with the same total exposure (e.g., n photos, each with 1/n the exposure time [113];

two photos, one with long and one with short exposure [131]; or one photo where the shutter

opens and closes intermittently during the exposure [96]). �ese techniques do not increase

light e�ciency and do not rely on any camera controls other than the shutter. As such, they can

be readily combined with our work, to confer the advantages of both methods.

�e �nal step in light-e�cient photography involves merging the captured photos to create

a new one (Fig. 5.1). As such, our work is related to the well-known technique of extended-

depth-of-�eld imaging. �is technique creates a new photo whose DOF is the union of DOFs in

a sequence, and has found wide use in microscopy [75], macro photography [10, 85] and photo

manipulation [10, 85]. Currentwork on the subject concentrates on the problems of imagemerg-

ing [10, 87] and 3D reconstruction [75], and indeed we use an existing implementation [10] for

our own merging step. However, the problem of how to best acquire such sequences remains

open. In particular, the idea of controlling aperture and focus to optimize total exposure time

has not been explored.

Our work o�ers four contributions over the state of the art. First, we develop a theory that

leads to provably-e�cient light-gathering strategies, and applies both to o�-the-shelf cameras

and to advanced camera designs [96, 113] under typical photography conditions. Second, from

a practical standpoint, our analysis shows that the optimal (or near-optimal) strategies are very

simple: for example, in the continuous case, a strategy that uses the widest-possible aperture for

all photos is either globally optimal or it is very close to it (in a quanti�able sense). �ird, our ex-

periments with real scenes suggest that it is possible to compute good-quality synthesized photos

using readily-available algorithms. Fourth, we show that despite requiring less total exposure
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Figure 5.2: Each curve represents all pairs (τ,D) for which τD2 = L∗ in a speci�c scene. Shaded zones
correspond to pairs outside the camera limits (valid settings were τ ∈ [1/8000 s, 30 s] and D ∈ [f/16, f/1.2]
with f =85mm). Also shown is the DOF corresponding to each diameter D. �e maximum acceptable
blur was set to c = 25µm, or about 3 pixels in our camera. Di�erent curves represent scenes with di�erent
average radiance (relative units shown in brackets).

time than a single narrow-aperture shot, light-e�cient photography provides more information

about the scene (i.e. depth) and allows post-capture control of aperture and focus.

5.2 The Exposure Time vs. Depth of Field Tradeoff

�e exposure level of a photo is the total radiant energy integrated by the camera’s entire sensor

while the shutter is open. �e exposure level can in�uence signi�cantly the quality of a captured

photo because when there is no saturation or thermal noise, a pixel’s signal-to-noise ratio (SNR)

always increases with higher exposure levels.1 For this reason, most modern cameras can auto-

mate the task of choosing an exposure level that provides high SNR for most pixels and causes

little or no saturation.

Lens-based camera systems provide only two ways to control exposure level— the diameter

of their aperture and the exposure time. We assume that all light passing through the aper-

ture will reach the sensor plane, and that the average irradiance measured over this aperture is

independent of the aperture’s diameter. In this case, the exposure level L satis�es

L ∝ τ D2 , (5.1)

where τ is exposure time and D is the aperture diameter.

Now suppose that we have chosen a desired exposure level L∗. How canwe capture a photo at

1�ermal e�ects, such as dark-current noise, become signi�cant only for exposure times longer than a few
seconds [56].



5.2. The Exposure Time vs. Depth of Field Tradeoff 107

this exposure level? Eq. (5.1) suggests that there are only two general strategies for doing this—

either choose a long exposure time and a small aperture diameter, or choose a large aperture

diameter and a short exposure time. Unfortunately, both strategies have important side-e�ects:

increasing exposure time can introduce motion blur when we photograph moving scenes [113,

131]; opening the lens aperture, on the other hand, a�ects the photo’s depth of �eld (DOF), i.e.,

the range of distances where scene points do not appear out of focus. �ese side-e�ects lead to

an important tradeo� between a photo’s exposure time and its depth of �eld (Fig. 5.2):

Exposure Time vs. Depth of �eld Tradeo�:We can either achieve a desired exposure

level L∗ with short exposure times and a narrowDOF, or with long exposure times and

a wide DOF.

In practice, the exposure time vs. DOF tradeo� limits the range of scenes that can be pho-

tographed at a given exposure level (Fig. 5.2). �is range depends on scene radiance, the physical

limits of the camera (i.e., range of possible apertures and shutter speeds), as well as subjective

factors (i.e., acceptable levels of motion blur and defocus blur).

Our goal is to “break” this tradeo� by seeking novel photo acquisition strategies that capture

a given depth of �eld at the desired exposure level L∗ much faster than traditional optics would

predict. We brie�y describe below the basic geometry and relations governing a photo’s depth

of �eld, as they are particularly important for our analysis.

5.2.1 Depth of Field Geometry

Weassume that focus anddefocus obey the standard thin lensmodel [92, 105]. �ismodel relates

three positive quantities (Eq. (5.2) in Table 5.1): the focus setting v, de�ned as the distance from

the sensor plane to the lens; the distance d from the lens to the in-focus scene plane; and the

focal length ϝ, representing the “focusing power” of the lens.

Apart from the idealized pinhole, all apertures induce spatially-varying amounts of defocus

for points in the scene (Fig. 5.3a). If the lens focus setting is v, all points at distance d from the

lens will be in-focus. A scene point at distance d′ /= d, however, will be defocused: its image

will be a circle on the sensor plane whose diameter σ is called the blur diameter. For any given

distance d, the thin-lens model tells us exactly what focus setting we should use to bring the

plane at distance d into focus, and what the blur diameter will be for points away from this

plane (Eqs. (5.3) and (5.4), respectively).

For a given aperture and focus setting, the depth of �eld is the interval of distances in the

scene whose blur diameter is below a maximum acceptable size c (Fig. 5.3b).
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Figure 5.3: (a) Blur geometry for a thin lens. (b) Blur diameter as a function of distance to a scene point.
�e plot is for a lens with ϝ = 85mm, focused at 117 cm with an aperture diameter of 5.31mm (i.e., an
f/16 aperture in photography terminology). (c) Blur diameter and DOF represented in the space of focus
settings.

thin lens law
1

v
+
1

d
=
1

ϝ
(5.2)

focus setting for distance d v =
dϝ

d − ϝ
(5.3)

blur diameter for out-of-focus
distance d′

σ = D
ϝ ∣d′ − d∣(d − ϝ) d′ (5.4)

aperture diameter whose DOF
is interval [α, β] D = c

β + α

β − α
(5.5)

focus setting whose DOF
is interval [α, β] v =

2 α β

α + β
(5.6)

DOF endpoints for aperture
diameter D and focus v

α, β =
Dv

D ± c
(5.7)

Table 5.1: Basic equations governing focus and DOFs for the thin-lens model.

Since every distance in the scene corresponds to a unique focus setting (Eq. (5.3)), every

DOF can also be expressed as an interval [α, β] in the space of focus settings. �is alternate

DOF representation gives us especially simple relations for the aperture and focus setting that

produce a given DOF (Eqs. (5.5) and (5.6)) and, conversely, for the DOF produced by a given

aperture and focus setting (Eq. (5.7)). We adopt this DOF representation for the rest of our

analysis (Fig. 5.3c).

A key property of the depth of �eld is that it shrinks when the aperture diameter increases:

from Eq. (5.4) it follows that for a given out-of-focus distance, larger apertures always produce
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larger blur diameters. �is equation is the root cause of the exposure time vs. depth of �eld

tradeo�.

5.3 The Synthetic DOF Advantage

Suppose that we want to capture a single photo with a speci�c exposure level L∗ and a speci�c

depth of �eld [α, β]. How quickly can we capture this photo? �e basic DOF geometry of

Sec. 5.2.1 tells us we have no choice: there is only one aperture diameter that can span the given

depth of �eld (Eq. (5.5)), and only one exposure time that can achieve a given exposure level

with that diameter (Eq. (5.1)). �is exposure time is2

τone = L∗ ⋅ ( β − α

c (β + α))
2

. (5.8)

�e key idea of our approach is that while lens optics do not allow us to reduce this time

without compromising the DOF or the exposure level, we can reduce it by taking more photos.

�is is based on a simple observation that takes advantage of the di�erent rates atwhich exposure

time andDOF change: if we increase the aperture diameter and adjust exposure time tomaintain

a constant exposure level, its DOF shrinks (at a rate of about 1/D), but the exposure time shrinks

much faster (at a rate of 1/D2). �is opens the possibility of “breaking” the exposure time vs. DOF

tradeo� by capturing a sequence of photos that jointly span the DOF in less total time than τone

(Fig. 5.1).

Our goal is to study this idea in its full generality, by �nding capture strategies that are prov-

ably time-optimal. We therefore start from �rst principles, by formally de�ning the notion of a

capture sequence and of its synthetic depth of �eld:

De�nition 1 (Photo Tuple). A tuple ⟨ D, τ, v ⟩ that speci�es a photo’s aperture diameter, exposure

time, and focus setting, respectively.

De�nition 2 (Capture Sequence). A �nite ordered sequence of photo tuples.

De�nition 3 (Synthetic Depth of Field). �e union of DOFs of all photo tuples in a capture se-

quence.

We will use two e�ciency measures: the total exposure time of a sequence is the sum of the

exposure times of all its photos; the total capture time, on the other hand, is the actual time

2�e apertures and exposure times of real cameras span �nite intervals and, inmany cases, take discrete values.
Hence, in practice, Eq. (5.8) holds only approximately.
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it takes to capture the photos with a speci�c camera. �is time is equal to the total exposure

time, plus any overhead caused by camera internals (computational and mechanical). We now

consider the following general problem:

Light-E�cient Photography: Given a set D of available aperture diameters, con-

struct a capture sequence such that: (1) its synthetic DOF is equal to [α, β]; (2) all its
photos have exposure level L∗; (3) the total exposure time (or capture time) is smaller

than τone ; and (4) this time is a global minimum over all �nite capture sequences.

Intuitively, whenever such a capture sequence exists, it can be thought of as being optimallymore

e�cient than single-shot photography in gathering light. Below we analyze three instances of

the light-e�cient photography problem. In all cases, we assume that the exposure level L∗, depth

of �eld [α, β], and aperture set D are known and �xed.

Noise and Quantization Properties. Because we hold exposure level constant our analy-

sis already accounts for noise implicitly. �is follows from the fact that most sources of noise

(photon noise, sensor noise, and quantization noise) depend only on exposure level. �e only

exception is thermal or dark-current noise, which increases with exposure time [56]. �erefore,

all photos we consider have similar noise properties, except for thermal noise, which will be

lower for light-e�cient sequences because they involve shorter exposure times.

Another consequence of holding exposure level constant is that all photos we consider have

the same dynamic range, since all photos are exposed to the same brightness, and have similar

noise properties for quantization. �erefore, standard techniques for HDR imaging [31, 78] are

complementary to our analysis, since we can apply light-e�cient capture for each exposure level

in an HDR sequence.

5.4 Theory of Light-Efficient Photography

5.4.1 Continuously-Variable Aperture Diameters

Manymanual-focus SLR lenses aswell as programmable-aperture systems [138] allow their aper-

ture diameter to vary continuously within some interval D = [Dmin , Dmax]. In this case, we

prove that the optimal capture sequence has an especially simple form—it is unique, it uses the

same aperture diameter for all tuples, and this diameter is either the maximum possible or a

diameter close to that maximum.

More speci�cally, consider the following special class of capture sequences:
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De�nition 4 (Sequences with Sequential DOFs). A capture sequence has sequential DOFs if for

every pair of adjacent photo tuples, the right endpoint of the �rst tuple’s DOF is the le� endpoint of

the second.

�e following theorem states that the solution to the light-e�cient photography problem is

a speci�c sequence from this class:

�eorem 1 (Optimal Capture Sequence for Continuous Apertures). (1) If the DOF endpoints

satisfy β < (7 + 4√3)α, the sequence that globally minimizes total exposure time is a sequence

with sequential DOFs whose tuples all have the same aperture. (2) De�ne D(k) and n as follows:

D(k) = c
k
√
β + k
√
α

k
√
β − k
√
α

, n =

⎢⎢⎢⎢⎢⎣
log α

β

log (Dmax−c
Dmax+c)

⎥⎥⎥⎥⎥⎦ . (5.9)

�e aperture diameter D∗ and length n∗ of the optimal sequence is given by

D∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(n) if

D(n)
Dmax
>
√

n
n+1

Dmax otherwise.
n∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n if

D(n)
Dmax
>
√

n
n+1

n + 1 otherwise.
. (5.10)

�eorem 1 speci�es the optimal sequence indirectly, via a “recipe” for calculating the optimal

length and the optimal aperture diameter (Eqs. (5.9) and (5.10)). Informally, this calculation

involves three steps. �e �rst step de�nes the quantity D(k); in our proof of �eorem 1 (see

Appendix D), we show that this quantity represents the only aperture diameter that can be used

to “tile” the interval [α, β] with exactly k photo tuples of the same aperture. �e second step

de�nes the quantity n; in our proof, we show that this represents the largest number of photos

we can use to tile the interval [α, β] with photo tuples of the same aperture. �e third step

involves choosing between two “candidates” for the optimal solution—one with n tuples and

one with n + 1.

�eorem 1 makes explicit the somewhat counter-intuitive fact that the most light-e�cient

way to span a given DOF [α, β] is to use images whose DOFs are very narrow. �is fact applies

broadly, because �eorem 1’s inequality condition for α and β is satis�ed for all lenses for con-

sumer photography that we are aware of (e.g., see [2]).3 See Figs. 5.4 and 5.5 for an application

of this theorem to a practical example.

3To violate the condition, a lens must have an extremely short minimum focusing distance of under 1.077ϝ.
�e condition can still hold for macro lenses with a stated minimum focusing distance of 0, since this is measured
relative to the front-most glass surface, and the e�ective lens center is deeper inside.
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Figure 5.4: Optimal light-e�cient photography of a “dark” subject using a lens with a continuously-
variable aperture (ϝ = 85mm). To cover the DOF ([110 cm, 124 cm]) in a single photo, we need a long
1.5s exposure to achieve the desired exposure level. Together, the two graphs specify the optimal capture
sequences when the aperture diameter is restricted to the range [f/16,Dmax]; for each value of Dmax,
�eorem 1 gives a unique optimal sequence. AsDmax increases, the number of photos (le�) in the optimal
sequence increases, and the total exposure time (right) of the optimal sequence falls dramatically. �e
dashed lines show that when the maximum aperture is f/1.2 (71mm), the optimal synthetic DOF consists
of n∗ = 13 photos (corresponding to D∗ = 69.1mm), which provides a speedup of 13× over single-shot
photography.
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Figure 5.5: �e e�ect of camera overhead for various frame-per-second (fps) rates. Each point in the
graphs represents the total capture time of a sequence that spans the DOF and whose photos all use
the diameter D(n) indicated. Even though overhead reduces the e�ciency of long sequences, capturing
synthetic DOFs is faster than single-shot photography even for low-fps rates; for current o�-the-shelf
cameras with high-fps rates, the speedups can be very signi�cant.

Note that �eorem 1 speci�es the number of tuples in the optimal sequence and their aper-

ture diameter, but does not specify their exposure times or focus settings. �e following lemma

shows that specifying those quantities is not necessary because they are determined uniquely.

Importantly, Lemma 1 gives us a recursive formula for computing the exposure time and focus

setting of each tuple in the sequence:
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Lemma 1 (Construction of Sequences with Sequential DOFs). Given a le� DOF endpoint α,

every ordered sequence D1, . . . ,Dn of aperture diameters de�nes a unique capture sequence with

sequential DOFs whose n tuples are

⟨ Di ,
L∗

Di
2
,
Di + c

Di

αi ⟩ , i = 1, . . . , n , (5.11)

with αi given by the following recursive relation:

αi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α if i = 1 ,

D i+c
D i−c αi−1 otherwise.

(5.12)

5.4.2 Discrete Aperture Diameters

Modern auto-focus lenses o�en restrict the aperture diameter to a discrete set of choices, D =
{D1, . . . ,Dm}. �ese diameters form a geometric progression, spaced so that the aperture area

doubles every two or three steps. Unlike the continuous case, the optimal capture sequence is

not unique and may contain several distinct aperture diameters. To �nd an optimal sequence,

we reduce the problem to integer linear programming [86]:

�eorem 2 (Optimal Capture Sequence for Discrete Apertures). �ere exists an optimal capture

sequence with sequential DOFs whose tuples have a non-decreasing sequence of aperture diame-

ters. Moreover, if ni is the number of times diameter Di appears in the sequence, the multiplicities

n1, . . . , nm satisfy the integer program

minimize ∑m
i=1 ni

L∗

D i
2 (5.13)

subject to ∑m
i=1 ni log

D i−c
D i+c ≤ log α

β
(5.14)

ni ≥ 0 (5.15)

ni integer . (5.16)

SeeAppendixD for a proof. Aswith�eorem 1,�eorem2does not specify the focus settings

in the optimal capture sequence. We use Lemma 1 for this purpose, which explicitly constructs

it from the apertures and their multiplicities.

While it is not possible to obtain a closed-form expression for the optimal sequence, solving

the integer program for any desiredDOF is straightforward. We use a simple branch-and-bound

method based on successive relaxations to linear programming [86]. Moreover, since the opti-
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Figure 5.6: Optimal light-e�cient photography with discrete apertures, shown for a Canon EF85mm 1.2L
lens (23 apertures, illustrated in di�erent colors). (a) For a depth of �eld whose le� endpoint is α, we show
optimal capture sequences for a range of relative DOF sizes α

β
. �ese sequences can be read horizontally,

with subintervals corresponding to the apertures determined by �eorem 2. Note that when the DOF
is large, they e�ectively approximate the continuous case. �e diagonal dotted line shows the minimum
DOF to be spanned. (b) Visualizing the optimal capture sequence as a function of the camera overhead
for the DOF [α, β]. Note that as the overhead increases, the optimal sequence involves fewer photos with
larger DOFs (i.e., smaller apertures).

mal sequence depends only on the relative DOF size α
β
, we pre-compute it exactly for all relative

sizes and store it in a lookup table (Fig. 5.6a).

5.4.3 Discrete Aperture Diameters Plus Overhead

Our treatment of discrete apertures generalizes easily to account for camera overhead. Wemodel

overhead as a per-shot constant, τover, that expresses the minimum delay between the time that

the shutter closes and the time it is ready to open again for the next photo. To �nd the optimal

sequence, we modify the objective function of �eorem 2 so that it measures for total capture

time rather than total exposure time:

minimize ∑m
i=1 ni [ τover + L∗

D i
2 ] . (5.17)

Clearly, a non-negligible overhead penalizes long capture sequences and reduces the synthetic

DOF advantage. Despite this, Fig. 5.6b shows that synthetic DOFs o�er signi�cant speedups

even for current o�-the-shelf cameras. �ese speedups will be ampli�ed further as cameraman-

ufacturers continue to improve their frames-per-second rate.

5.5 Depth of Field Compositing and Resynthesis

While each light-e�cient sequence captures a synthetic DOF, merging the input photos into

a single photo with the desired DOF requires further processing. To achieve this, we use an
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existing depth-from-focus and compositing technique [10], and propose a simple extension that

allows us to reshape the DOF, to synthesize photos with new camera settings as well.

DOF Compositing. To reproduce the desired DOF, we adopted the Photomontage method

[10] with default parameters, which is based on maximizing a simple “focus measure” that eval-

uates local contrast according to the di�erence-of-Gaussians �lter. In this method, each pixel in

the composite has a label that indicates the input photo for which the pixel is in-focus. �e pixel

labels are then optimized using a Markov random �eld network that is biased toward piecewise

smoothness [25]. Importantly, the resulting composite is computed as a blend of photos in the

gradient domain, which reduces artifacts at label boundaries, including those due to misregis-

tration.

3DReconstruction. �eDOF compositing operation produces a coarse depth map as an in-

termediate step. �is is because labels correspond to input photos, and each input photo de�nes

an in-focus depth according to the focus setting with which it was captured. As our results show,

this coarse depth map is su�cient for good-quality resynthesis (Figs. 5.9–5.7, 5.8). For greater

depth accuracy, particularly when the capture sequence consists of only a few photos, we can

apply more sophisticated depth-from-defocus analysis, e.g., [120], that reconstructs depth by

modeling how defocus varies over the whole sequence.

Synthesizing Photos for Novel Focus Settings and Aperture Diameters. To synthesize

novel photos with di�erent camera settings, we generalize DOF compositing and take advan-

tage of the di�erent levels of defocus throughout the capture sequence. Intuitively, rather than

selecting pixels at in-focus depths from the input sequence, we use the recovered depth map to

select pixels with appropriate levels of defocus according to the desired synthetic camera setting.

We proceed in four basic steps. First, given a speci�c focus and aperture setting, we use

Eq. (5.4) and the coarse depth map to assign a blur diameter to each pixel in the �nal composite.

Second, we use Eq. (5.4) again to determine, for each pixel in the composite, the input photo

whose blur diameter that corresponds to the pixel’s depth matches most closely. �ird, for each

depth layer, we synthesize a photo with the novel focus and aperture setting, under the assump-

tion that the entire scene is at that depth. To do this, we use the blur diameter for this depth

to de�ne an interpolation between two of the input photos. Fourth, we generate the �nal com-

posite by merging all these synthesized images into one photo using the same gradient-domain
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blending as in DOF compositing, and using the same depth labels.4

To interpolate between the input photos we currently use simple linear cross-fading, which

we found to be adequate when the DOF is sampled densely enough (i.e., with 5 or more images).

For greater accuracy when fewer input images are available, more computationally intensive

frequency-based interpolation [29] could also be used. Note that blur diameter can also be

extrapolated, by synthetically applying the required additional blur. As discussed in Sec. 4.8,

there are limitations to this extrapolation. While extrapolated wider apertures can model the

resulting increase in defocus, we have limited ability to reduce the DOF for an input image,

which would entail decomposing an in-focus region into �ner depth gradations [99].

5.6 Results and Discussion

To evaluate our technique we show results and timings for experiments performed with two dif-

ferent cameras—a high-end digital SLR and a compact digital camera. All photos were captured

at the same exposure level for each experiment, determined by the camera’s built-in light meter.

In each case, we captured (1) a narrow-aperture photo, which serves as ground truth, and (2)

the optimal capture sequence for the equivalent DOF.5

�e digital SLR we used was the Canon EOS-1Ds Mark II (Hamster and Face datasets)

with a wide-angle �xed focal length lens (Canon EF85mm 1.2L). We operated the camera at

its highest resolution of 16MP (4992 × 3328) in RAW mode. To de�ne the desired DOF, we

captured a narrow-aperture photo using an aperture of f/16. For both datasets, the DOFwe used

was [98 cm, 108 cm], near the minimum focusing distance of the lens, and the narrow-aperture

photo required an exposure time of 800ms.

�e compact digital camera we used was the Canon S3 IS, at its widest-angle zoom setting

with a focal length of 6mm (Simpsons dataset). We used the camera to record 2MP (1600 ×

1200 pixels) JPEG images. To de�ne the desired DOF, we captured a photo with the narrowest

aperture of f/8. �e DOF we used was [30 cm, 70 cm], and the narrow-aperture photo required

an exposure time of 500ms.

• Hamster dataset Still life of a hamster �gurine (16 cm tall), posed on a table with various
other small objects (Fig. 5.7). �e DOF covers the hamster and all the small objects, but
not the background composed of cardboard packing material.

4Note that given a blur diameter there are two possible depths that correspond to it, one on each side of the
focus plane (Fig. 5.3b, Sec. 2.7). We resolve this by choosing thematching input photo whose focus setting is closest
to the synthetic focus setting.

5For additional results and videos, see http://www.cs.toronto.edu/∼hasinoff/lightefficient/.
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• Face dataset Studio-style 2/3 facial portrait of a subject wearing glasses, resting his chin
on his hands (Fig. 5.8). �e DOF extends over the subject’s face and the le� side of the
body closest the camera.

• Simpsons dataset Near-macro sequence of a messy desk (close objects magni�ed 1:5),
covered in books, papers, and tea paraphernalia, on top of which several plastic �gurines
have been arranged (Fig. 5.9). �e DOF extends from red tea canister to the pale green
book in the background.

Implementationdetails. To compensate for the distortions that occur with changes in focus

setting, we align the photos according to a one-time calibration method that �ts a simpli�ed

radial magni�cation model to focus setting [127].

We determined the maximum acceptable blur diameter, c, for each camera by qualitatively

assessing focus using a resolution chart. �e values we used, 25µm (3.5 pixels) and 5µm (1.4

pixels) for the digital SLR and compact camera respectively, agree with the standard values cited

for sensors of those sizes [105].

To process the 16MP synthetic DOFs captured with the digital SLR more e�ciently, we di-

vided the input photos into tiles of approximately 2MP each, so that all computation could take

place in main memory. To improve continuity at tile boundaries, we use tiles that overlap with

their neighbors by 100 pixels. Even so, as Fig. 5.8d illustrates, merging per-tile results that were

computed independently can introduce depth artifacts along tile boundaries. In practice, these

tile-based artifacts do not pose problems for resynthesis, because they are restricted to texture-

less regions, for which realistic resynthesis does not depend on accurate depth assignment.

Timing comparisons and optimal capture sequences. To determine the optimal capture

sequences, we assumed zero camera overhead and applied �eorem 2 for the chosen DOF and

exposure level, according to the speci�cations of each camera and lens. �e optimal sequences

involved spanning the DOF using the largest aperture in both cases. As Figs. 5.7–5.9 show, these

sequences led to signi�cant speedups in exposure time—11.9× and 2.5× for our digital SLR and

compact digital camera respectively.6

For a hypothetical camera overhead of 17ms (corresponding to a 60 fps camera), the optimal

capture sequence satis�es Eq. (5.17), which changes the optimal strategy for the digital SLR only

(Hamster and Face datasets). At this level of overhead, the optimal sequence for this case

6By comparison, the e�ective speedup provided by optical image stabilization for hand-held photography is
8–16×, when the scene is static. Gains from light e�cient photography are complementary to such improvements
in lens design.
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photo 3 of 14 @ f/1.2 synthetic DOF composite 1 photo @ f/16
exposure time: 5ms total exposure time: 70ms exposure time: 800ms

(a) (b) (c)

coarse depth map, synthesized f/2.8 aperture, synthesized f/2.8 aperture,
labels from DOF composite same focus setting as (a) refocused further

(d) (e) (f)

Figure 5.7: Hamster dataset. Light e�cient photography timings and synthesis, for several real scenes,
captured using a compact digital camera and a digital SLR. (a) Sample wide-aperture photo from the syn-
thetic DOF sequence. (b) DOF composites synthesized from this sequence. (c) Narrow-aperture photos
spanning an equivalent DOF, but with much longer exposure time. (d) Coarse depth map, computed
from the labeling we used to compute (b). (e) Synthetically changing aperture size, focused at the same
setting as (a). (f) Synthetically changing focus setting as well, for the same synthetic aperture as (e).

takes 220ms to capture7, compared to 800ms for one narrow-aperture photo. �is reduces the

speedup to 3.6×.

DOF compositing. Despite the fact that it relies on a coarse depth map, our compositing

scheme is able to reproduce high-frequency detail over the whole DOF, without noticeable ar-

tifacts, even in the vicinity of depth discontinuities (Figs. 5.7b, 5.8b, and 5.9b). �e narrow-

7More speci�cally, the optimal sequence involves spanning the DOFwith 7 photos instead of 14. �is sequence
consists of 1 photo captured at f/2, plus 3 photos each at f/2.2 and f/2.5.
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photo 7 of 14 @ f/1.2 synthetic DOF composite 1 photo @ f/16
exposure time: 5ms total exposure time: 70ms exposure time: 800ms

(a) (b) (c)

coarse depth map, synthesized f/2.8 aperture, synthesized f/2.8 aperture,
labels from DOF composite same focus setting as (a) refocused closer

(d) (e) (f)

Figure 5.8: Face dataset. Light e�cient photography timings and synthesis, for several real scenes, cap-
tured using a compact digital camera and a digital SLR. (a) Sample wide-aperture photo from the syn-
thetic DOF sequence. (b) DOF composites synthesized from this sequence. (c) Narrow-aperture photos
spanning an equivalent DOF, but with much longer exposure time. (d) Coarse depth map, computed
from the labeling we used to compute (b). Tile-based processing leads to depth artifacts in low-texture
regions, but these do not a�ect the quality of resynthesis. (e) Synthetically changing aperture size, focused
at the same setting as (a). (f) Synthetically changing focus setting as well, for the same synthetic aperture
as (e).

aperture photos represent ground truth, and visually they are almost indistinguishable from

our composites.

�eworst compositing artifact occurs in theHamster dataset, at the handle of the pumpkin

container, which is incorrectly assigned to a background depth (Fig. 5.10). �is is an especially

challenging region because the handle is thin and low-texture compared to the porcelain lid

behind it.

Note that while the synthesized photos satisfy our goal of spanning a speci�c DOF, objects
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photo 1 of 4 @ f/2.7 synthetic DOF composite 1 photo @ f/8
exposure time: 50ms total exposure time: 200ms exposure time: 500ms

(a) (b) (c)

coarse depth map, synthesized f/3.2 aperture, synthesized f/3.2 aperture,
labels from DOF composite same focus setting as (a) refocused further

(d) (e) (f)

Figure 5.9: Simpsons dataset. Light e�cient photography timings and synthesis, for several real scenes,
captured using a compact digital camera and a digital SLR. (a) Sample wide-aperture photo from the syn-
thetic DOF sequence. (b) DOF composites synthesized from this sequence. (c) Narrow-aperture photos
spanning an equivalent DOF, but with much longer exposure time. (d) Coarse depth map, computed
from the labeling we used to compute (b). (e) Synthetically changing aperture size, focused at the same
setting as (a). (f) Synthetically changing focus setting as well, for the same synthetic aperture as (e).

outside thatDOFwill appearmore defocused than in the corresponding narrow-aperture photo.

For example, the cardboard background in the Hamster dataset is not included in the DOF

(Fig. 5.11). �is background therefore appears slightly defocused in the narrow-aperture f/16

photo, and strongly defocused in the synthetic DOF composite. �is e�ect is expected, since

outside the synthetic DOF, the blur diameter will increase proportional to the wider aperture

diameter (Eq. (5.4)). For some applications, such as portrait photography, increased background
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key

synthetic DOF
composite

narrow aperture
ground truth (f/16)

coarse depth map,
from DOF composite

Figure 5.10: Compositing failure for the Hamster dataset (Fig. 5.7). Elsewhere this scene is synthesized
realistically. �e depth-from-focus method employed by the Photomontage method breaks down at the
handle of the pumpkin container, incorrectly assigning it to a background layer. �is part of the scene
is challenging to reconstruct because strong scene texture is visible “through” the defocused handle [42],
whereas the handle itself is thin and low-texture.

defocus may be a bene�cial feature.

DepthmapsandDOFcompositing. Despite beingmore e�cient to capture, sequences with

synthetic DOFs provide 3D shape information at no extra acquisition cost (Figs. 5.7d, 5.8d, and

5.9d). Using the method described in Sec. 5.5, we also show results of using this depth map to

compute novel images whose aperture and focus setting was changed synthetically (Figs. 5.7e–f,

5.8e–f, and 5.9e–f). As a general rule, the more light-e�cient a capture sequence is, the denser

it is, and therefore the wider the range it o�ers for synthetic refocusing.

Focus control and overhead. Neither of our cameras provide the ability to control focus

programmatically, sowe used severalmethods to circumvent this limitation. For our digital SLR,

we used a computer-controlled stepping motor to drive the lens focusing ring mechanically [4].

For our compact digital camera, we exploited modi�ed �rmware that provides general scripting

capabilities [6]. Unfortunately, both these methods incur high additional overhead, e�ectively

limiting us to about 1 fps.

Note that mechanical refocusing contributes relatively little overhead for the SLR, since ul-

trasonic lenses, like the Canon 85mm 1.2L we used, are fast. Our lens takes 3.5ms to refocus

from one photo in the sequence to the next, for a total of 45ms to cover the largest possible

DOF spanned by a single photo. In addition, refocusing can potentially be executed in parallel

with other tasks such as processing the previous image. Such parallel execution already occurs

in the Canon’s “autofocus servo”mode, in which the camera refocuses continuously on amoving
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key

synthetic DOF
composite

narrow aperture
ground truth (f/16)

Figure 5.11: Background defocus for the Hamster dataset. Because the cardboard background lies out-
side the DOF, it is slightly defocused in the narrow-aperture photo. In the synthetic DOF composite,
however, this background is defocused much more signi�cantly. �is e�ect is expected, because the syn-
thetic DOF composite is created frommuch wider-aperture photos, and the blur diameter scales linearly
with aperture. �e synthetic DOF composite only produces in-focus images of objects lying within the
DOF.

subject.

While light-e�cient photography may not be practical using our current prototypes, it will

become increasingly so, as newer cameras begin to expose their focusing API directly and new

CMOS sensors increases throughput. For example, the Canon EOS-1Ds Mark III provides re-

mote focus control for all Canon EF lenses, and the recently released Casio EX-F1 can capture

60 fps at 6MP. Even though light-e�cient photography will bene�t from the latest camera tech-

nology, as Fig. 5.5 shows, we can still realize time savings at slower frames-per-second rates.

Handlingmotion in the capture sequence. Because of the high overhead due to our focus

control mechanisms, we observed scenemotion in two of our capture sequences. �e Simpsons

dataset shows a subtle change in brightness above the green book in the background, because the

person taking the photosmoved during acquisition, casting amoving shadowon thewall. �is is

not an artifact and did not a�ect our processing. For the Face dataset, the subjectmoved slightly

during acquisition of the optimal capture sequence. To account for this motion, we performed

a global rigid 2D alignment between successive images using Lucas-Kanade registration [19].

Despite this inter-frame motion, our approach for creating photos with a synthetic DOF

(Sec. 5.5) generates results that are free of artifacts. In fact, the e�ects of this motion are only

possible to see only in the videos that we create for varying synthetic aperture and focus settings.

Speci�cally, while each still in the videos appears free of artifacts, successive stills contain a slight

but noticeable amount of motion.
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We emphasize the following two points. First, had we been able to exploit the internal fo-

cus control mechanism of the camera (a feature that newer cameras like the Canon EOS-1Ds

Mark III provide), the inter-frame motion for Face dataset would have been negligible, making

the above registration step unnecessary. Second, even with fast internal focus control, residual

motions would occur when photographing fast-moving subjects; our results in this sequence

suggest that even in that case, our simple merging method should be su�cient to handle such

motions with little or no image degradation.

5.7 Comparison to Alternative Camera Designs

While all the previous analysis for light-e�cient capture assumed a conventional camera, it is

instructive to compare our method to other approaches based on specially designed hardware.

�ese approaches claim the ability to extend the DOF, which is analogous to reduced capture

time in our formulation, since time savings can be applied to capture additional photos and

extend the DOF.

Light field cameras. �e basic idea of a light �eld camera is to trade sensor resolution for an

increased number of viewpoints in a single photo [47, 85, 115]. Our approach is both more light-

e�cient and orthogonal to light �eld cameras, because despite being portrayed as such [85, 115],

light �eld cameras do not have the ability to extend the DOF compared to regular wide-aperture

photography. �e authors of [85] have con�rmed the following analysis [72].

First, consider a conventional camera with an NK × NK pixel sensor, whose aperture is set

to the widest diameter of Dmax. For comparison, consider a light �eld camera built by placing an

N × N lenslet array in front of the same sensor, yielding N × N reduced-resolution sub-images

from K2 di�erent viewpoints [85]. Since each sub-image corresponds to a smaller e�ective aper-

ture with diameter Dmax/K, the blur diameter for every scene point will be reduced by a factor

of K as well (Eq. (5.4)).

While the smaller blur diameters associated with the light �eld camera apparently serve to

extend the DOF, this gain is misleading, because the sub-images have reduced resolution. By

measuring blur diameter in pixels, we can see that an identical DOF “extension” can be obtained

from a regular wide-aperture photo, just by resizing it by a factor of 1/K to match the sub-image

resolution.

Indeed, an advantage of the light �eld camera is that by combining the sub-images captured

fromdi�erent viewpoints we can “refocus” the light �eld [61] by synthesizing reduced-resolution



124 Chapter 5. Light-Efficient Photography

photos that actually have reduced DOF compared to regular photography. It is this reduction

in DOF that allows us to refocus anywhere within the overall DOF de�ned by each sub-image,

which is the same as the DOF of the conventional camera.

Since the light �eld camera and regular wide-aperture photography collect the same number

of photons, their noise properties are similar. In particular, both methods can bene�t equally

from noise reduction due to averaging, which occurs both when synthetically refocusing the

light �eld [61] followed by compositing [10], andwhen resizing the regular wide-aperture image.

In practice, light �eld cameras are actually less light-e�cient than wide-aperture photogra-

phy, because they require stopping down the lens to avoid overlap between lenslet images [85],

or they block light as a result of the imperfect packing of optical elements [47]. �e above analy-

sis also holds for the heterodyne light �eld camera [115], where the mask placed near the sensor

blocks 70% of the light, except that the sub-images are de�ned in frequency space.

Wavefront coding. Wavefront coding methods rely on a special optical element that e�ec-

tively spreads defocus evenly over a largerDOF, and then recovers the underlying in-focus image

using deconvolution [28]. While this approach is powerful, it exploits a tradeo� that is also or-

thogonal to our analysis. Wavefront coding can extend perceived DOF by a factor of K = 2 to

10, but it su�ers from reduced SNR, especially at high frequencies [28], and it provides no 3D

information. �e need to deconvolve the image is another possible source of error when using

wavefront coding, particularly since the point-spread function is only approximately constant

over the extended DOF.

To compare wavefront coding with our approach in a fair way, we �x the total exposure time,

τ (thereby collecting the same number of photons), and examine the SNR of the restored in-

focus photos. Roughly speaking, wavefront coding can be thought of as capturing a single photo

while sweeping focus through the DOF [55]. By contrast, our approach involves capturing K in-

focus photos spanning the DOF, each allocated exposure time of τ/K. �e sweeping analogy

suggests that wavefront coding can do no better than our method in terms of SNR, because it

collects the same number of “in-focus” photons for a scene at a given depth.

Aperture masks. Narrow apertures on a conventional camera can be thought of as masks

in front of the widest aperture, however it is possible to block the aperture using more general

masks as well. For example, ring-shaped apertures [88, 123] have a long history in astronomy and

microscopy, and recent methods have proposed using coded binary masks in conjunction with

regular lenses [69, 115]. Note that the use of aperture masks is complementary to our analysis, in
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that howevermuch a particularmask shape can e�ectively extend theDOF, our analysis suggests

that this mask should be scaled to be used with large apertures.

While previous analysis suggests that ring-shaped apertures yield no light-e�cient bene�t

[123], the case for coded aperture masks is less clear, despite recent preliminary analysis that

suggests the same [70]. �e advantage of codedmasks is their ability to preserve high frequencies

that would otherwise be lost to defocus, so the key question is whether coded apertures increase

e�ective DOF enough to justify blocking about 50% of the light.

Resolving the light-e�ciency of aperture masks requires a more sophisticated error analy-

sis of the in-focus reconstruction, going beyond the geometric approach to DOF. We develop

such a framework in the following chapter, as Levin, et al. [70] have also done independently.

Unlike the wavefront coding case, this analysis is complicated by the fact that processing a

coded-aperture image depends on the non-trivial task of depth recovery, which determines the

spatially-varying deconvolution needed to reconstruct the in-focus image.

Summary

In this chapter we studied the use of dense, wide-aperture photo sequences as a light-e�cient

alternative to single-shot, narrow-aperture photography. While our emphasis has been on the

underlying theory, we believe that our results will become increasingly relevant as newer, o�-

the-shelf cameras enable direct control of focus and aperture.

We are currently investigating several extensions to the basic approach. First, we are inter-

ested in further improving e�ciency by taking advantage of the depth information from the

camera’s auto-focus sensors. Such information would let us save additional time, because we

would only have to capture photos at focus settings that correspond to actual scene depths.

Second, we are generalizing the goal of light-e�cient photography to reproduce arbitrary

pro�les of blur diameter vs. depth, rather than just reproducing the depth of �eld. For example,

this method could be used to reproduce the defocus properties of the narrow-aperture photo

entirely, including the slight defocus for background objects in Fig. 5.11.
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Chapter 6

Time-Constrained Photography

Time �ies like an arrow. Fruit �ies like a banana.

Groucho Marx (1890–1977)

Suppose we have 100ms to capture a given depth of �eld. What is the best way to capture a

photo (or sequence of photos) to achieve this with highest possible signal-to-noise ratio (SNR)?

In this chapter we generalize our previous light-e�cient analysis (Chapter 5) to reconstruct the

best in-focus photo given a �xed time budget. �e key di�erence is that our restricted time bud-

get in general prevents us from obtaining the desired exposure level for each photo, so we need

also investigate the e�ect of manipulating exposure level. Manipulating exposure level leads to a

tradeo� between noise and defocus, which we analyze by developing a detailed imaging model

that predicts the expected reconstruction error of the in-focus image from any given sequence of

photos. Our results suggest that unless the time budget is highly constrained (e.g., below 1/30th

of the time for the well-exposed time-optimal solution), the previous light-e�cient sequence

is optimal in these terms as well. For extreme cases, however, it is more bene�cial to span the

depth of �eld incompletely and accept some defocus in expectation.

6.1 Introduction

In the previous chapter we assumed that all photos were captured at an “optimal” exposure level

of L∗, which means that every photo we considered was well-exposed and possessed good noise

characteristics. Under this assumption, we showed that the time-optimal sequence spanning a

particular DOF will generally involve multiple photos with large apertures (Fig. 6.1a). Since our

analysis leads to the globally optimal solution, no other set of conventional photos at the same

127
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Figure 6.1: (a) Light-e�cient photography, as a tiling of theDOF.�eoptimal sequence involves spanning
the DOF using n wide-aperture photos, each exposed at the desired level of L∗, and requires total time
of τ∗. As described in Sec. 5.4, the optimal sequence may slightly exceed the DOF. (b) Time-constrained
photography. A simple strategy for meeting a reduced time budget is to reduce the exposure time of each
photo proportionally. �e tradeo� is that the reduced exposure level leads to increased noise.

exposure level can span the desired DOF faster than the total capture time of τ∗ required by the

light-e�cient sequence.

�ough applying our light-e�ciency analysis can lead to greatly reduced total capture time

compared to single-shot photography, what if we are constrained to even less time than the

amount required by the optimal strategy—namely, what if τ < τ∗? �is type of situation is

common for poorly-illuminated moving subjects, where capturing a photo quickly enough to

avoid motion blur means severely underexposing the subject. Since spanning the entire DOF

and achieving well-exposed photos with an exposure level of L∗ requires total capture time of

at least τ∗, restricting ourselves to less capture time means sacri�cing reconstruction quality in

some sense.

To meet the more constrained time budget, the most obvious strategy is to reduce the expo-

sure times of all photos in the light-e�cient solution by a factor of τ/τ∗ < 1 (Fig. 6.1b). Although
these reduced-exposure photos will still span the DOF, they will be captured with a lower-than-

optimal exposure level of L = (τ/τ∗)L∗, leading to increased noise.

A completely di�erent strategy is to span the synthetic DOF incompletely, and expose the

fewer remaining photos for longer, so that their noise level is reduced (Fig. 6.2). �is strategy

may at �rst seem counterintuitive, because it has the major disadvantage that the DOF is no

longer fully spanned, and parts of the scene lying in the unspanned portion of the DOF will not

be in-focus. Under the assumption the scene is distributed uniformly throughout the DOF, this

strategy means accepting some level of defocus in expectation, because some of the scene will
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Figure 6.2: Alternative capture strategy for time-constrained photography. (a) By reducing the number
of captured photos tom < n, each photo can be captured with higher exposure level and lower noise than
the photos in Fig. 6.1b. �is comes at the expense of not spanning the whole DOF, so parts of the scene
will be defocused on average. (b) An extreme version of this strategy is to capture a single wide-aperture
photo for the whole time interval. While its noise level will be signi�cantly reduced compared to the
photos in Fig. 6.1b and (a), only a small portion of the DOF will be spanned, therefore most of the scene
will be defocused.

fall outside the synthetic DOF spanned by the sequence.

Under what conditions might it be valuable to not fully span the DOF? An illustrative ex-

ample is the case where the time budget is so tightly restricted that all photos in the synthetic

DOF are underexposed and consist only of quantization noise. By capturing just a single photo

with increased exposure time instead (Fig. 6.2b), we have the potential to exceed the quanti-

zation noise and recover at least some low frequency signal, for an improvement in the overall

reconstruction.

More generally, for a particular time budget, we study what capture sequence leads to the

best synthetic-DOF reconstruction. Our analysis requires modeling the tradeo� between noise

and defocus, each of which can be thought of as forms of image degradation a�ecting our ability

to infer the ideal synthetic DOF photo. To quantify the bene�t of a given capture sequence, we

estimate the signal-to-noise ratio (SNR) of the reconstruction it implies, based on a detailed

model we propose for the degradation process. More speci�cally, our analysis relies on explicit

models for lens defocus and camera noise, and on a simpli�ed model for the scene.

�e closest related work is a recent report by Levin, et al. that compares several general

families of camera designs and capture strategies [70], whichmakes use of a similar formulation

as ours. A major di�erence in our approach is the way we model taking multiple photos: while

we divide up the budget of capture time (at the expense of exposure level), they divide up their

budget of sensor elements (at the expense of resolution). Moreover, while our main interest is
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in evaluating how the optimal capture strategy for a conventional camera varies over di�erent

scenarios, they �x the capture scenario and determine the parameters for each of several camera

designs in a one-time optimization.

Our work o�ers three main contributions. First, we develop a theory that generalizes light-

e�cient photography to situations where our time budget is constrained to less than the amount

needed to capture the synthetic DOF at the desired exposure level. Second, we present a detailed

framework for imaging that uni�es the analysis of defocus and noise, that is simple enough to

be evaluated analytically for a scene at given depth, but also leads to a practical reconstruc-

tion method. �ird, our analysis shows that the near-optimal capture strategy can be expressed

in very simple terms: we should use the wide aperture corresponding to our previous light-

e�ciency analysis, expose all photos equally, and space them evenly throughout the DOF. �e

only unspeci�ed aspect of the strategy, how many wide-aperture photos to use, can be resolved

by evaluating the SNR for each option according to our detailed imaging model.

6.2 ImagingModel with Defocus and Noise

To analyze the ability of a particular capture sequence to reconstruct the underlying ideal image,

we develop a detailed image formation model, composed of explicit models for lens defocus

and camera noise, and using a statistical model of the scene. Since we model each of these

components as linear transformations or as Gaussian distributions, the overall model allows us

to derive analytic expressions for the optimal reconstruction and for its SNR.

Statistical scene model. Our analysis assumes that the scene is a set of textured fronto-

parallel planar patches located at random depths, distributed uniformly over the given DOF.1

We specify the depth distribution in the corresponding space of focus settings (Sec. 5.2.1),

v ∼ Uniform( α, β ) , (6.1)

for a DOF spanning [α, β]. Since we analyze a patch of the image at a time in practice, our scene

model can be thought of as a fronto-parallel plane distributed randomly in depth.

We also assume that the scene texture follows natural image statistics [98]. While more

general models are possible [70, 98], we de�ne a prior distribution on the texture using a simple

1�is implies either that the whole scene visible from the camera’s viewpoint lies within the DOF, or that the
boundaries of the DOF can be delineated in the images.
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Figure 6.3: MTF for di�erent apertures and levels of defocus, using the analytic model accounting for
defocus and di�raction in [59]. We show the MTF for a planar scene 117 cm from the camera, with a
focal length 85mm. �e DOF for an f/16 aperture focused at 117 cm is [110 cm, 124 cm]. �e maximum
frequency shown corresponds to a pixel spacing of 7.1µm on the sensor. (a) Perfectly in-focus, limited
only by di�raction. (b) Moderately defocused, 1 cm away from the in-focus plane. (c) More defocused,
5 cm away from the in-focus plane.

Gaussian for ease of analysis,

β∗ ∼ N(µprior , Mprior) , (6.2)

where β∗ is the ideal in-focus photo. Following the formulation of Levin, et al. [69], we spec-

ify the parameters of this distribution in order to penalize the sum of squared image gradient

magnitudes:

µprior = 0 (6.3)

M−1prior = α(CT
xCx +C

T
yCy) , (6.4)

where Cx ,Cy are block-Toeplitz matrices representing convolution with the �lter [−1 +1] over
the x , y dimensions of the image respectively. We determined the constant α = 0.004 empiri-

cally, by matching Mprior to the variance of a large set of “natural” images generated randomly

according to the standard 1/ν frequency distribution [98].

Defocused imaging using the lens MTF. To model the e�ects of defocus on the scene,

we characterize image formation in the frequency domain using the modulation transfer func-

tion (MTF). �e MTF is de�ned as the signed magnitude of the Fourier transform of the 2D
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point-spread function (Sec. 2.3.1), and can be interpreted as providing a set of per-frequency

attenuation factors degrading the true frequency content of the ideal photo. We assume that the

point-spread function is circularly symmetric, so we can express the MTF as a function of the

radial frequency, ν = (ν2x + ν2y) 1
2 .

Although many lens manufacturers provide MTF charts to characterize the performance of

real lenses, these charts are not directly useful, because they only provide measurements for a

few speci�c frequencies and assume an in-focus scene [7]. Instead, we used a classic analytic

model for MTF developed by Hopkins [59], that accounts for the combined e�ects of defocus

and di�raction. For a given blur diameter σ and aperture diameter D, the expression for the

MTF is:

mtf(ν) = 4

π2σν ∫
√
1−s(ν)2

0
sin(πσν[√1 − x2 − s(ν)]) dx , (6.5)

where

s(ν) = ν
ϝ

D
(v − ϝ

v
) ⋅ 546nm (6.6)

is the normalized spatial frequency, expressed relative to the di�raction limit of the aperture. As

before, ϝ is the focal length of the lens, and v is the focus setting, de�ned by the distance from

the sensor plane to the lens. We evaluated Eq. (6.5) using numerical integration (Fig. 6.3).

While we currently restrict our attention to an analytic lensMTF [59], nothing in our frame-

work prevents us from using an empirically measured MTF, or an MTF that takes into account

spatial variation over the image.2

Linear image formation with noise. By assuming that the scene is locally fronto-parallel,

both the blur diameter and theMTF will remain constant for a given patch, for any image of the

scene. In this simple case, we can express an observed photo y as a linear transformation of the

ideal in-focus image β∗, scaled by the relative exposure level, plus sensor noise:

y = ( L
L∗
)²

relative
exposure

⋅ F
−1 diag(mtf)F´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

composite
transform, X

⋅ β∗°
ideal
image

+ ε¯
multiplicative and

additive noise

, (6.7)

whereF is the change-of-basis matrix corresponding to the discrete 2D Fourier transform, and

diag(⋅) creates a diagonal matrix from a vector. In e�ect, the composite transformation matrix

2Lens aberrations (Sec. 2.2.2) are strongest at the extremes of a large-aperture image, so real lenses actually have
spatially-varying MTFs. �is e�ect is especially pronounced for low-quality lenses, for which large apertures can
have signi�cantly inferiorMTF performance even at the in-focus setting, contrary to the analyticmodel illustrated
in Fig. 6.3a.
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X performs three operations in sequence: (1) it transforms the photo to the Fourier domain, (2)

it attenuates frequencies according to the MTF, and then (3) it returns it to the spatial domain.

We model the sensor noise using a zero-mean Gaussian, whose variance My has both a

signal-dependentmultiplicative component, approximating Poisson-distributed shot noise, and

a constant component, accounting for read noise and quantization [56, 76]:

ε ∼ N(0 , σ2
s diag(y) + σ2

c I´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
noise variance, My

) . (6.8)

�is two-parameter noise model accurately captures the noise characteristics of many real sen-

sors [3, 76]. Note that to make the estimation of β∗ tractable, we express multiplicative noise as

a function of the noisy observed photo y, rather than of the unknown noise-free observation

( L
L∗
)Xβ∗.

6.3 Reconstruction and SNR Analysis

In the context of our more detailed imagingmodel, synthetic DOF photographymeans estimat-

ing the underlying ideal image β∗ from a set ofK input photos { yi }, eachwith di�erent aperture
diameters, exposure times, and focus settings, { ⟨Di ,

L i

D i
2 , vi⟩ }. Previously, we used compositing

techniques [10] to associate a single input photo with each pixel in the result (Sec. 5.5). Here,

however, our analysis goes beyond simple compositing, since it incorporates information from

all input photos at every pixel.

Assuming that the scene depth is known, we can use Eq. (6.5) to compute the MTF for

each input photo given its capture parameters. �is gives rise to a system of K linear models,

{ yi = ( L i

L∗
)Xiβ

∗
+ εi }, based on Eq. (6.7). Consequently, estimating the underlying ideal image

β∗ can be thought of as a problem closely related to depth-from-defocus methods based on

restoration [42, 54, 62, 95, 107]. What these restorationmethods have in common is the potential

to both denoise and deconvolve the input.

MAPreconstructionwithknowndepth. Because all quantities are linear andGaussian, the

maximum a posteriori (MAP) estimate for β∗ can be computed using a straightforward analytic

formula, and will itself follow a Gaussian distribution [112]:

β̂MAP ∼ N ( Mβ̂ ⋅[M−1priorµprior + ∑K
i=1X

T
i Wiyi] , Mβ̂ ) , (6.9)
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where

Mβ̂ = [M−1prior + ∑K
i=1X

T
i WiXi]−1 (6.10)

andWi =M−1yi areweights set according to the inverse variance of image noise. �is computation

amounts to a solving weighted linear least-squares problem, regularized by our natural image

prior. Note that a completely “uninformative” prior corresponds to parameters µprior = 0 and

M−1prior = 0.

SNR analysis. To determine the SNR of the optimal reconstruction β̂MAP, we can derive a

simple formula based on its analytically computed varianceMβ̂,

SNR =
∣∣β̂MAP∣∣2

E [∣∣β̂MAP − β
∗∣∣2] =

∣∣β̂MAP∣∣2
tr(Mβ̂) , (6.11)

where tr(⋅) is the trace operator that sums along the diagonal.

SNR analysis over depth. So far, we have shown how to derive the optimal reconstruction

and SNR for a particular capture sequence, for a fronto-parallel scene at a known depth. How-

ever, if the scene depth were truly known in advance, the optimal strategy would be the trivial

approach of focusing at the known scene depth, then capturing a single wide-aperture photo for

the entire time budget.

Instead, our main interest is characterizing capture sequences whose reconstruction prop-

erties are good in expectation over the random distribution of all scenes throughout the DOF

(Eq. (6.1)). Since this expectation has no closed form, we evaluate it numerically, using Monte

Carlo integration over depth. From Eq. (6.11), the expected SNR can be computed as

E [SNR] = 1

N

N

∑
i=1

∣∣β̂MAP(vi)∣∣2
tr(Mβ̂(vi)) , (6.12)

where the depth samples {vi} follow the uniform randomdistribution fromEq. (6.1). In practice

we compute Eq. (6.12) by sampling the DOF uniformly at 1000 di�erent depths.

6.4 Candidate Sequences for Reconstruction

To help us analyze what capture sequences are optimal for time-constrained photography, we

make several mild assumptions that greatly restrict the space of sequences we need to consider:
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• Equal apertures First, we limit our analysis to continuously-variable apertures, because
the optimal sequences resulting from�eorem 1 (p. 111) have the especially simple prop-
erty that all photos use the same aperture.

As a consequence, any time-constrained sequence that is optimal according to SNRmust
also consist of photos with equal apertures. �is is because, according to �eorem 1, for
any sequence not having equal apertures, there must be some equal-aperture sequence
spanning an equivalent DOF in less total time, at the same exposure level. In the context
of our �xed time budget, this equal aperture sequence corresponds to additional exposure
time per photo, leading to increased exposure level and higher SNR.3

• Equal exposure levels We assume all photos in the optimal time-constrained sequence
are captured with the same exposure level. Because our scene model is distributed over
the DOF uniformly at random, we have no reason to collect more photons corresponding
to a particular subinterval of the DOF at the expense of other areas. In expectation over
our random scenemodel, SNRwill therefore be highest when all photos are captured with
equal exposure levels.

• Even focus distribution For the same reason, because our random scene model gives us
no reason to concentrate on any particular DOF sub-interval, we assume that the focus
settings for the optimal time-constrained sequence are distributed evenly throughout the
DOF. More speci�cally, for a sequence consisting of n photos, we choose focus settings
corresponding to the narrow aperture photos that would be required to evenly span the
DOF without gaps (Eq. (D.1)).

Based on these assumptions, all candidates for the optimal time-constrained capture sequence

can be described using two parameters: (1) the aperture, and (2) the number of equal-aperture

photos in the input sequence. Given these parameters, our simple assumptions fully de�ne the

exposure times and focus settings required for all photos in the input sequence.

Although our assumptions greatly reduce the space of capture sequences under considera-

tion, the parameters that remain still provide a rich range of strategies exploring themost impor-

tant tradeo� of time-constrained photography—balancing exposure level andDOF coverage. By

manipulating these parameters, we are selecting between the two extremes of capturing many

noisy photos spanning the whole DOF (Fig. 6.1b) and capturing a single photo with lower noise,

but increased defocus (Fig. 6.2b).

3�is argument relies on the assumption that the SNRs of the reconstructions for two sequences with “equiv-
alent” sized DOFs are comparable, despite the fact that these DOFs may be non-contiguous. �is simpli�cation
is reasonable, given the fact that our scene model is randomly distributed throughout the DOF, and we evenly
distribute the focus settings of the sequence as well.
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6.5 Results and Discussion

To investigate capture strategies for time-constrained photography, we modeled a particular

DOF, camera, and underlying scene in simulation. We took care that all the simulation pa-

rameters correspond to realistic cameras and capture con�gurations used for synthetic DOF

photography (Sec. 5.6).

More speci�cally, we used the same DOF and camera parameters as in Figs. 5.4–5.5, which

themselves were inspired by the Hamster and Face datasets (Sec. 5.6). We set the DOF to be

[110 cm, 124 cm] and we model a continuous-aperture lens with a focal length of 85mm and a

maximum aperture of f/1.2. As described in Fig. 5.4, the time-optimal sequence for this con�g-

uration consists of 13 photos using a wide aperture of f/1.23 (69.1mm), for a total capture time

of τ∗ = 115ms.

Tomodel the camera sensor, we assumed that the pixels are spaced 7.1µmapart, correspond-

ing to a 16MP sensor that is 35.4mm wide. We determined parameters for our noise model in

Eq. (6.8) according to an empirical evaluation of the CMOS sensor for the Canon EOS-1DMark

II [3]. In particular, we used the parameters σs = 0.049 and σc = 0.073, where pixel values are

scaled to the range [0, 255].
For the underlying scene, we used a 45-pixel 1D image patch that we generated randomly

according to our natural image prior (Sec. 6.2). In practice, the relative SNRs of di�erent capture

strategies are insensitive to the underlying scene, because the only scene-speci�c feature of our

analysis is the between-pixel variation in shot noise, whose in�uence on SNR is limited. We also

found that for the purpose of comparing di�erent time-constrained capture strategies, neither

using larger 1D patches nor using 2D patches produced any signi�cant qualitative di�erence in

overall results.

Largest aperture yields highest SNR. For our �rst experiment, we explored the in�uence

of aperture diameter on SNR.We exhaustively tested all time-constrained capture strategies de-

scribed in Sec. 6.4, varying the available parameters of aperture and number of photos, for a

several di�erent constrained time budgets (Figs. 6.4 and 6.5). For every time budget we tested,

we found that the optimal SNR increased monotonically with aperture size. More speci�cally,

the highest-SNR capture sequence for a given aperture exceeded the SNR of all sequences cap-

tured using narrower apertures.

Intuitively, the reason why wider apertures lead to higher SNR is similar to our argument for

the optimality of equal apertures (Sec. 6.4). Recall that according to�eorem 1, the time-optimal
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Figure 6.4: SNR for the two-parameter set of capture strategies that we consider, for a reduced time
budget of τ = 1
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τ∗. Each series corresponds to a di�erent aperture, and de�nes a set of equal-aperture

capture sequences, ranging from a single photo to fully spanning the DOF. �e black points indicate the
optimal number of photos to use for each aperture. �e highest overall SNR is achieved by fully spanning
the DOF using 13 photos at the widest aperture.
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Figure 6.5: SNR for the two-parameter set of capture strategies thatwe consider, for a reduced time budget
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τ∗. Each series corresponds to a di�erent aperture, and de�nes a set of equal-aperture capture

sequences, ranging from a single photo to fully spanning the DOF.�e black points indicate the optimal
number of photos to use for each aperture. �e highest overall SNR is achieved by incompletely spanning
the DOF using 9 photos at the widest aperture.

sequence consists of wide-aperture photos whose apertures have diameter D∗. Consequently,

any capture sequence consisting of narrower-aperture photos must be sub-optimal, in the sense

that there is some wider-aperture sequence that can span an equivalent DOF in less total time,

at the same exposure level. �erefore, under our �xed time budget, the time savings realized

from wider apertures can be traded for higher exposure level and therefore higher SNR.
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di�erent time budget, and illustrates how the SNR of the reconstruction changes over di�erent numbers
of photos in the capture sequence. �e black points indicate the optimal number of photos for each time
budget, each of which is taken with an f/1.23 aperture.

Densest focal stacks yield highest SNR (unless time extremely limited). For our

second experiment, we investigated how the optimal SNR capture strategy varies over di�erent

time budgets. Following the previous discussion, we �xed the aperture diameter to D∗ = f/1.23,

corresponding to the time-optimal sequence from�eorem 1. For each time budget, we varied

the number of photos taken, which a�ects both the exposure level and the DOF coverage, and

de�nes a range of capture strategies (Fig. 6.6).

In the case where the time budget is not restricted, meaning that the full time of τ∗ is avail-

able, our results show that the sequence with the highest SNR fully spans the DOF using 13

photos, reproducing our previous result from�eorem 1. In other words, when there is enough

time to capture all photos at their optimal exposure level, the time-optimal capture sequence

from our light-e�ciency analysis is also the sequence with the highest SNR.

For this example, fully spanning the DOF remains the highest-SNR capture strategy until

the time budget drops signi�cantly. Only at a time budget of 1
30
τ∗ or below does the relative

noise level become high enough that incompletely spanning the DOF to reduce per-photo noise

leads to an overall improvement in SNR. In the limit, for a time budget of 1
3000

τ∗ or below, the

signal is so degraded that little more than the DC component can be recovered, and the capture

sequence with highest SNR consists of single photo exposed for the entire time budget.

Effect of the natural image prior. To evaluate the e�ect of our natural image prior, we

redid the previous experiment without any prior image model (Fig. 6.7). As our results show, in
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Figure 6.7: E�ect of removing the natural image prior. We evaluated the SNR of the same capture se-
quences as in Fig. 6.6, but without an image prior. Each series corresponds to a di�erent time budget,
and the black points indicate the optimal number of photos for each time budget, each of which is taken
with an f/1.23 aperture.

the absence of the prior, the relative variation of SNR across di�erent numbers of photos in the

capture sequence does not depend on the time budget. In particular, for every time budget, the

capture sequence with the highest SNR involves 12 wide-aperture photos, nearly spanning the

DOF.4

Intuitively, whenever we use a smaller number of photos and incompletely span the DOF,

the loss of high-frequency information caused by the expected defocus will lead to large recon-

struction error in those high frequencies. Using an image prior helps us discount this error

by assigning low likelihood to high frequency image content. However, without such a prior,

the reconstruction of defocused high frequencies will signi�cantly magnify image noise and re-

duce the overall SNR. �erefore, without an image prior, much greater coverage of the DOF is

required.

Effectofoverhead. For our �nal experiment, we simulated the e�ect of overhead for a 60 fps

camera (16.7ms overhead per photo), but otherwise for the same scene and DOF as before

(Fig. 6.8). With this level of overhead, our previous light-e�ciency analysis tells us that the

time-optimal sequence involves 10 photos, each with a narrower aperture of f/1.6, for a total

capture time of τ∗ = 300ms (Fig. 5.5).

As shown in Fig. 6.8, when the time budget is signi�cantly reduced, many multi-photo cap-

4�e fact that the highest-SNR sequence does not fully span the DOF as in Fig. 6.6 is another “discretization”
artifact due to the speci�c form of our MTF.�e oscillating tails of the MTF interact with the spacing of the focus
settings in the input, which can potentially lead to higher SNR for slightly reduced DOF coverage.



140 Chapter 6. Time-Constrained Photography

5

15

25

35

45

S
N

R
 (

d
B

),
 e

x
p
ec

ta
ti
on

 o
v
er

 d
ep

th

2 4 6 8 10
number images in stack

1

1/3
1/10
1/30
1/100
1/300
1/1000
1/3000
1/10000
1/30000
1/100000

¿*
¿* ×

¿* ×

¿* ×

¿* ×

¿* ×

¿* ×

¿* ×

¿* ×

¿* ×

¿* ×

time budget
minimum optimal time budget *¿

Figure 6.8: E�ect of camera overhead. We evaluated SNR for the same scene and DOF as in Fig. 6.6,
but simulating the e�ect of 60 fps overhead (16.7ms per photo). �e overhead a�ects the time-optimal
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Each series corresponds to a di�erent time budget, and the black points indicate the optimal number of
photos for each time budget, each of which is taken with an f/1.6 aperture.

ture strategies simply cannot be realized, because overhead alone exceeds the time budget avail-

able. For this example, reducing the time budget below 1
10
τ∗ means that we only have time to

capture a single photo.

When overhead is considered, capture sequences consisting of fewer photos will enjoy rel-

atively higher exposure levels, because they spend a greater fraction of the total capture time

actually collecting light. �is leads to an e�ective increase in SNR for input sequences consist-

ing of fewer input photos.

In general, the results with camera overhead are qualitatively similar to the wider-aperture

overhead-free case shown in Fig. 6.6. As before, for an unconstrained time budget of τ∗, the

optimal-SNR sequence reproduces the previous time-optimal result. Furthermore, as the time

budget is reduced, the optimal strategy also shi�s toward capturing single photo exposed for the

entire time budget.

Summary

Although our results are still preliminary, and we have only tested our analysis in simulation,

we believe that our approach for time-constrained photography provides the groundwork nec-

essary for a more general analysis of conventional photography. �is new analysis accounts for

the tradeo�s between noise, defocus, and exposure level in a uni�ed framework. As such, it

subsumes our previous geometric view of DOF and exposure (Chapter 5) according to a more
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detailed model based on the MTF and an explicit model for noise.

So far, in analyzing the relative SNR of di�erent capture strategies, we have assumed that we

are able to accurately estimate the depth of the scene. Our ongoing experiments suggest that

standard depth-from-defocus methods (e.g., [120]) may actually be adequate for this purpose.

Note that when suchmethods are ambiguous (e.g., due to lack of texture, or high noise), accurate

depth estimation will have less e�ect on the quality of the reconstruction.

For improved performance at capture time, however, it could be valuable to integrate depth

recovery into the MAP reconstruction directly. In particular, by explicitly modeling the depth

uncertainty of the input photos, we should be able to derive a reconstruction whose SNR is

optimal over the depth distribution of the scene, conditioned on our observations.

We are also interested in addressing practical reconstruction challenges such generalizing

our reconstruction method to handle image patches that are not fronto-parallel (Sec. 2.3) or

contain depth discontinuities. In general, when the scene is signi�cantly tilted or contains depth

discontinuities, our frequency-based analysis, which locally assumes spatially-invariant convo-

lution will break down. From the point of view of generating visually realistic images it may be

valuable to �t a more detailed depth model to each image patch [71], or to revisit gradient-based

techniques for blending the reconstruction results from overlapping image patches [10].
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Chapter 7

Conclusions

Seeing much, su�ering much, and studying much, are the three
pillars of learning.

Benjamin Disraeli (1804–1881)

�e supreme accomplishment is to blur the line between work and
play.

Arnold Toynbee (1889–1975)

It is an exciting time to be thinking about photography. �e computational approach that has

coalesced in the past ��een years has prompted researchers across disciplines to revisit previous

assumptions about what can be accomplished with cameras, and what limits in photography are

truly fundamental.

Some of the techniques born from this programme, such high dynamic range photogra-

phy [31, 78] and automatic image stitching for panoramas [26], have already been adopted by a

worldwide cadre of technically-minded photographers. It is not di�cult to imagine these meth-

ods becoming more widespread, nor that our current approach to photography may be poised

for an even more radical shi�.

�e thrust of this dissertation has been an extended argument for replacing one-shot pho-

tography with multiple photographs captured with varying camera settings. As our methods

demonstrate, by applying computation and analyzing the defocus characteristics of sequences

of photos, we can realize richer capabilities that go beyond what is possible with conventional

photography. In particular, we have shown that:

• We can recover detailed 3D structure at the level of individual pixels, even for scenes with
complex geometry (Chapter 3).

• We can give the photographer the �exibility to manipulate all camera controls in post-
processing, by using the standard “aperture bracketing” function (Chapter 4).

143
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• We can capture a well-exposed photo with a given depth of �eld faster than conventional
photography allows, by taking multiple large-aperture photos (Chapter 5).

• �e sequence of photos best-suited for capturing a given depth of �eld in a speci�ed time
budget is the densest possible focal stack, up to the limit imposed by overhead and additive
noise (Chapter 6).

While all of our approaches can be applied immediately, using existing digital cameras without

modi�cation, we stand to bene�t from lower-overhead control of the camera settings and from

increased capture speed.

New computational techniques for photography have generally been inspired by real or an-

ticipated advances in camera technology. For example, the current glut of sensor resolution

has given rise to methods trading resolution for measurements along other dimensions, such

as viewing direction [9, 47, 73, 75, 85, 115]. We believe that a coming excess of capture speed will

inspire new methods capturing multiple high-resolution photographs with varying camera set-

tings, along the lines of the methods we suggest. �e trend toward higher capture speed is

supported by the recent Casio EX-F1 digital camera, which can record 6MP photos at 60 fps,

and by high-de�nition digital video cameras such as the Red One, which blur the line between

video and high-speed photography.

7.1 Future Research Directions

In the years ahead, we are interested in exploring new aspects of variable-aperture photography,

as well as more general capture scenarios, including changes in viewpoint and the addition of

controllable illumination. �e framework of enhancing photography with computation encom-

passes a vast space of possible camera designs, and there are a number of outstanding problems

relating to the nature of this space.

Efficient systems for computational photography. Because many scenes are inherently

dynamic, including scenes with people or �owing water, the capture time available is o�en lim-

ited by the amount of motion blur we can tolerate. A fundamental open question is how tomake

best use of the capture time and sensor resolution available, given a particular camera design.

�is dissertation has made several �rst steps in this direction, showing that when the camera

is programmable, it can be signi�cantly more e�cient to divide the available time and capture

multiple photos with di�erent settings (Chapters 5–6). Building on this work, we would like

to devise more general schemes for improving e�ciency. Another interesting extension would
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be to devise adaptive capture methods, where an online analysis of the photos captured so far

would determine the next camera setting in light of the remaining capture time.

Beyond these �rst problems, which all assume a given camera model, we would also like

to investigate the optimal spatial con�gurations of the sensor elements themselves. One would

expect such analysis to vary according to the goals we set, for example, accurately reconstructing

3D depth or capturing a given in-focus region. �is work is also exciting for its potential to

provide a uni�ed, fair comparison among a disparate set of existing imaging systems.

Focal stack stereo. A fundamental limitation of conventional photography is that the accu-

racy of 3D reconstruction from a given viewpoint depends on the size of the lens aperture [99].

Since large lenses are expensive to build, a more scalable idea is to combine focal stacks from

di�erent viewpoints instead, treating each photo as a discrete sample of some larger virtual aper-

ture. �e same idea applies to microscopy applications [75], but because microscopy images are

orthographic, having multiple viewpoints here corresponds to having multiple angles of view.

While viewpoint and defocus provide complementary information, existing methods have

analyzed this combination in a limited way [13]. By taking a uni�ed view and revisiting the

underlying geometry, we hope to develop more sophisticated 3D reconstruction methods that

incorporate the advantages of defocus-based analysis, but which also provide much greater po-

tential depth resolution. One application that could bene�t especially from this work is stereo

microscopy in medical imaging.

Global shape from focus anddefocus. Although reconstructionmethods such as confocal

stereo (Chapter 3) provide strong depth cues at the level of individual pixels, we would ideally be

able to reconstruct 3D scenes according to a model of defocus that fully accounts for occlusion

and global scene geometry [16]. Preliminary steps have already been made in this direction

[16, 42], but the proposed methods are computationally intensive, and do not seem to scale to

higher resolutions or to scenes composed of more than a few surfaces. One approach that seems

to hold promise is a space-sweep approach analogous to voxel-based stereo [68].

New visual effects. When capturing a scene over a variety of camera settings, we obtain

multi-dimensional datasets that are much richer than standard photos, since every pixel records

the integration of a di�erent cone of rays. Although we have already described methods for

compositing and resynthesis from themore compact scene descriptionswe recover (Chapters 4–

5), it could also be valuable to interpolate the raw pixel datamore directly, analogous to light �eld
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rendering techniques [48, 74].

It would also be interesting to use the captured dataset to develop new visualizations of the

scene, or to develop tools would enable photographers to create new artistic e�ects. For example,

a photographer might wish to specify a non-physical depth of �eld that follows a curved surface

in the scene, but have defocus respect the distorted optics as closely as possible.
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Evaluation of Relative Exitance Recovery

To obtain a more quantitative evaluation of how well the relative exitance Rxy(α, f ) can be re-

covered, and to validate that it not sensitive to experimental conditions, we ran several additional

experiments.

Experiment 1: Repeatability. To test repeatability across di�erent captures under �uores-

cent lighting, we repeated 5 trials of the radiometric calibration described in Sec. 3.5 for a di�use

white plane, for 13 aperture settings at a �xed focus setting. We used a Canon EF85mm 1.2L lens,

as in Sec. 3.8.

For each pixel and aperture setting, wemeasured the standard deviation of R over the 5 trials,

as a fraction of the mean. Over all pixels, the median of this fraction was 0.51% and its RMS

measure is 0.59%. �is indicates good repeatability a�er correcting for lighting �uctuations.

Experiment 2: Stability over new scenes. To validate that the ratio R measured in ra-

diometric calibration can be applied to new scenes, we redid the previous calibration for three

additional scenes, all at the same focus setting. To create the new scenes, we used the same

di�use white calibration plane, but tilted it (about 45°) to di�erent 3D con�gurations, yielding

calibration images with di�erent shading.

For each of the three new scenes, we computed the relative errors between the measured

ratios R, and the corresponding ratios from the previous calibration (Experiment 1, trial 1). �e

aggregate results (Table A.1) show that the median magnitude of the relative error is 1–2 gray

levels out of 255.

Experiment 3: Legacy calibration. We also compared the radiometric calibration from

these experiments to the calibration used in Sec. 3.8, captured several years beforehand using
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Table A.1: Evaluating the stability of the radiometric calibration over new scenes.

new scene median abs. relative error RMS relative error
tilted plane #1 0.76% 1.29%
tilted plane #2 0.83% 1.63%
tilted plane #3 0.78% 1.28%

the same lens.

For each pixel and aperture setting, we computed the relative error between the ratio R as

originally computed, and the corresponding ratio from the radiometric calibration in Exper-

iment 1, trial 1. Over all pixels, the median magnitude of the relative error was 1.10% and its

RMS measure is 2.21%. �is agreement is good, given the fact that we did not use the same

focus setting or calibration target for this experiment.

Experiment 4: Different lens. As a �nal test, we redid the calibration in Experiment 1 using

a di�erent lens, but of the same model, with the calibration target placed at approximately the

same distance.

We again computed relative errors between the recovered ratios R, and the corresponding

ratios from the Experiment 1, trial 1. Over the entire image, the median magnitude of the rel-

ative error was 0.87% and its RMS measure is 1.78%. �is error level is on the same order as

Experiment 2, suggesting that calibration parameters persist across lenses, and that radiometric

calibration can be done just once for eachmodel of lens, provided that manufacturing quality is

high.
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Conditions for Equi-Blur Constancy

In Sec. 3.7.2 we described how it is possible to approximate a pixel’s AFI using a set of equi-blur

regions where color and intensity remain constant. Here we establish conditions C1–C5 under

which this approximation becomes exact.

Suppose that scene point p̂ is in perfect focus for setting f̂ and projects to point (x , y) on
the sensor plane. Now suppose we defocus the lens to some setting (α, f ) (Fig. B.1). We assume

the following condition:

C1. Lens defocus can be described using the thin-lens model [16, 105].

�en the image irradiance at (x , y) is
Eα f (x , y) = π( ϝ

2α
)2 cos3 θ
z2 ∫

ω∈Cx y(α, f )

L(q(ω), ω) cos β(ω)∥ Cxy(α, f ) ∥ dω , (B.1)

where ϝ

α
is the aperture diameter; θ is the angle between the optical axis and the ray connecting

(x , y) and the lens center, C; z = ( 1
λ
−

1
dist( f ))−1 is the distance from the aperture to the sensor

plane; Cxy(α, f ) is the cone converging to the in-focus scene point p, which lies o� the scene

surface; q(ω) is the intersection of the scene with the ray from p in direction ω; L(q(ω),ω) is
the outgoing radiance from q(ω) in direction ω; and β(ω) is the angle between the optical axis

and the ray connecting p to q(ω).
Our goal is to show that Eα f (x , y) in Eq. (B.1) is constant for all points in an equi-blur region.

�at is, if (α′, f ′) is also in the same equi-blur region as (α, f ), with
bα′ f ′ = bα f =

ϝ

α

∣dist( f̂ ) − dist( f )∣
dist( f ) , (B.2)
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−
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Figure B.1: �in lens imaging model for defocus [16, 105]. At an out-of-focus setting f , a point on the
sensor plane (x , y) integrates radiance from a region of the scene as shown. By contrast, at the perfect
focus setting f̂ , all irradiance at (x , y) would be due to scene point p̂. We characterize the level of “blur”
using a fronto-parallel circle with diameter bα f and centered on p̂, which approximates the intersection
of cone Cxy(α, f ) with the scene surface. In our approximate model, the irradiance integrated at (x , y)
will remain constant for any other lens setting (α′, f ′) yielding the same blur circle diameter.

then Eα′ f ′(x , y) = Eα f (x , y). We show this by showing that Eα f (x , y) is independent of (α, f ),
for all (α, f ) in the same equi-blur region.

To do this, �rst we assume the following condition:

C2. From any scene point, the solid angle subtended by the largest aperture

approaches zero, i.e., ∥Cxy(α, f )∥→ 0.

�is allow us to simplify Eq. (B.1), because it implies that β(ω)→ θ, giving

Eα f (x , y) = π( ϝ

2α
)2 cos4 θ
z2 ∫

ω∈Cx y(α, f )

L(q(ω), ω)∥ Cxy(α, f ) ∥ dω . (B.3)

Note that the factor outside the integral in Eq. (B.3) is independent of the scene and accounted

for by radiometric calibration (Sec. 3.5). �erefore this factor is independent of (α, f ) and it

su�ces to show that the integral is independent of (α, f ) in the equi-blur region.

�e integrand in Eq. (B.3) is simply the contribution to irradiance of a di�erential patch dq,
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centered on point q(ω) and subtending a solid angle of dω from p. Now consider the following

two conditions:

C3. �e outgoing radiance for any defocused scene point is constant within

the cone subtended by the largest aperture, i.e., L (q(ω),ω) = L (q(ω)).
C4. For any defocused scene point, the cone subtended by the largest aperture

does not intersect the scene elsewhere.

Note that conditions C3–C4 are the same conditions required by confocal constancy (Sec. 3.3),

but applied to all points in the defocused region of the scene. �e radiance of the di�erential

patch, namely the factor L(q(ω),ω) in Eq. (B.3), is independent of (α, f ). Hence it su�ces to

show that the geometric factor dω
∥ Cx y(α, f ) ∥ is independent of (α, f ) in the same equi-blur region.

From the de�nition of solid angle, this factor is given by

dω∥ Cxy(α, f ) ∥ = dq cos γ(ω) cos2 β(ω)(Z − dist( f ))2 ⋅
dist( f )2

π( ϝ

2α
)2 cos3 θ , (B.4)

where dist( f ) is the distance from p to the aperture; Z is the distance from q(ω) to the aperture;
and γ(ω) is the angle between the surface normal of dq and the ray connecting q(ω) to p.

Now assume that the following condition also holds:

C5. Depth variations for points within the defocused region of the scene

approach zero, i.e., Z → dist( f̂ ).
�is condition implies that the depth, Z, of the di�erential patch dq can be approximated by the

distance to the scene point p̂. We thus take Z = dist( f̂ ) and substitute Eq. (B.2) into Eq. (B.4),

giving us a simpli�ed version of Eq. (B.3):

Eα f (x , y) = ( ϝα)
2
cos θ

z2 b2α f
∫
q∈Cx y(α, f )

L(q(ω), ω) cos2 β(ω) cos γ(ω) dq , (B.5)

where the blur diameter bα f is what we hold �xed, and the only remaining terms that depend

on lens setting are β(ω) and γ(ω). But from conditionC2, both β(ω) and γ(ω)will be constant
over all (α, f ). �erefore, the contribution of a di�erential scene patch dq to image irradiance

is constant over all lens settings corresponding to the same blur diameter.

�e only remaining issue concerns the domain of integration for Eq. (B.5), i.e., the scene

surface intersected by Cxy(α, f ), which varies in general with lens setting. However, given ap-

proximately constant depth at the boundary of the blur circle, as implied by condition C5, this
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domain will be constant as well.

In practice, equi-blur constancy can actually tolerate signi�cant depth variation within the

blur circle, because such variations will be averaged over the defocused region of the scene.



Appendix C

Analytic Gradients for Layer-Based

Restoration

Because our image formation model is a composition of linear operators plus clipping, the gra-

dients of the objective function de�ned in Eqs. (4.8)–(4.9) take a compact analytic form.

Intuitively, our image formationmodel can be thought of as spatially-varying linear �ltering,

analogous to convolution (“distributing” image intensity according to the blur diameters and

layering). �us, the adjoint operator that de�nes its gradients corresponds to spatially-varying

linear �ltering as well, analogous to correlation (“gathering” image intensity) [106].

Simplifiedgradientformulas. For clarity, we �rst present gradients of the objective function

assuming a single aperture, a, without inpainting:

∂O
∂L

= eaUa

K

∑
k=1
[AkMk∆ ⋆ Bσk] + ∂∥L∥β

∂L
(C.1)

∂O
∂σk

= eaUa∑
x ,y

⎡⎢⎢⎢⎢⎣
K

∑
j=1
[A jM j∆ ⋆

∂Bσ j

∂σ j

]⎤⎥⎥⎥⎥⎦AkL , (C.2)

where ⋆ denotes 2D correlation, and the binary mask

Ua = [eaL < 1] (C.3)

indicates which pixels in the synthesized input image are unsaturated, thereby assigning zero

gradients to over-saturated pixels. �is de�nition resolves the special case where eaL = 1 exactly,

at which point the gradient of Eq. (4.9) is discontinuous. Since all matrix multiplications above

are pixel-wise, we have omitted the operator ⋅ for brevity.
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�e only expression le� to specify is the gradient for the regularization term in Eq. (4.11):

∂∥L∥β
∂L

= −div
⎛⎜⎝

w(L)2∇L√(w(L) ∥∇L∥)2 + β
⎞⎟⎠ , (C.4)

where div is the divergence operator. �is formula is a slight generalization of a previous treat-

ment for the total variation norm [116], but it incorporates per-pixel weights, w(L), to account
for high dynamic range.

Multiple aperture settings. �e generalization to the multiple aperture settings is straight-

forward. We add an outer summation over aperture, and relate blur diameter across aperture

using scale factors that follow from Eq. (4.3), sa =
Da

DA
. See footnote 3 (p. 85) for more detail about

how we compute these scale factors in practice.

Inpainting. To generalize the gradient formulas to include inpainting, we assume that the

inpainting operator for each layer k,

Ik[L ] = A′kL +A′′kL′′k , (C.5)

can be expressed as a linear function of radiance. �is model covers many existing inpaint-

ing methods, including choosing the nearest unoccluded pixel, PDE-based di�usion [21], and

exemplar-based inpainting.

To compute the gradient, we need to determine the adjoint of the inpainting operator, I†k [⋅],
which has the e�ect of “gathering” the inpainted radiance from its occluded destination and

“returning” it to its unoccluded source. In matrix terms, if the inpainting operator is written as

a large matrix le�-multiplying the �attened scene radiance, III k, the adjoint operator is simply its

transpose, III T
k .

Gradient formulas. Putting everything together, we obtain the �nal gradients:

∂O
∂L

=

A

∑
a=1

eaUa [ K

∑
k=1
I†k [A′kMk∆a ⋆ B(saσk)]] + ∂∥L∥β

∂L
(C.6)

∂O
∂σk

=

A

∑
a=1

saeaUa

⎡⎢⎢⎢⎢⎣∑x ,y
⎡⎢⎢⎢⎢⎣

K

∑
j=1
I†k[A′jM j∆a ⋆

∂B(saσ j)

∂(saσ j)]
⎤⎥⎥⎥⎥⎦A
′
kL

⎤⎥⎥⎥⎥⎦ . (C.7)
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Light-Efficiency Proofs

�eorem 1 follows as a consequence of Lemma 1 and four additional lemmas, while proving

�eorem 2 is more direct. We �rst state Lemmas 2–5 and prove them below before addressing

the theorems.

Lemma 2 (E�ciency of Sequences with Sequential DOFs). For every sequence S , there is a

sequence S ′ with sequential DOFs that spans the same synthetic DOF and has a total exposure

time no larger than that of S .

Lemma 3 (Permutation of Sequences with Sequential DOFs). Given the le� endpoint, α, every

permutation of D1, . . . ,Dn de�nes a capture sequence with sequential DOFs that has the same

synthetic depth of �eld and the same total exposure time.

Lemma 4 (Optimality of Maximizing the Number of Photos). Among all sequences with up to n

tuples whose synthetic DOF is [α, β], the sequence that minimizes total exposure time has exactly

n of them.

Lemma 5 (Optimality of Equal-Aperture Sequences). If β < (7+4√3)α, then among all capture

sequences with n tuples whose synthetic DOF is [α, β], the sequence that minimizes total exposure

time uses the same aperture for all tuples. Furthermore, this aperture is equal to

D(n) = c
n
√
β + n
√
α

n
√
β − n
√
α

. (D.1)

Proof of Lemma 1. We proceed inductively, by de�ning photo tuples whose DOFs “tile” the

interval [α, β] from le� to right. For the base case, the le� endpoint of the �rst tuple’s DOF
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must be α1 = α. Now consider the i-th tuple. Eq. (5.5) implies that the le� endpoint αi and the

aperture diameter Di determine the DOF’s right endpoint uniquely:

βi =
Di + c

Di − c
αi . (D.2)

�e tuple’s focus setting in Eq. (5.11) now follows by applying Eq. (5.6) to the interval [αi , βi].
Finally, since the DOFs of tuple i and i + 1 are sequential, we have αi+1 = βi .

Proof of Lemma 2. Let ⟨ D, τ, v ⟩ be a tuple in S , and let [α1, β1] be its depth of �eld.

Now suppose that S contains another tuple whose depth of �eld, [α2, β2], overlaps with [α1, β1].
Without loss of generality, assume that α1 < α2 < β1 < β2. We now replace ⟨ D, τ, v ⟩with a new
tuple ⟨ D′, τ′, v′ ⟩ whose DOF is [α1, α2] by setting D′ according to Eq. (5.5) and v′ according

to Eq. (5.6). Since the DOF of the new tuple is narrower than the original, we have D′ > D

and, hence, τ′ < τ. Note that this tuple replacement preserves the synthetic DOF of the origi-

nal sequence. We can apply this construction repeatedly until no tuples exist with overlapping

DOFs.

Proof of Lemma 3. From Eq. (5.11) it follows that the total exposure time is

τ =
n

∑
i=1

L∗

Di
2
, (D.3)

which is invariant to the permutation. To show that the synthetic DOF is also permutation

invariant, we apply Eq. (D.2) recursively n times to obtain the right endpoint of the synthetic

DOF:

βn = α
n

∏
i=1

Di + c

Di − c
. (D.4)

It follows that βn is invariant to the permutation.

Proof of Lemma 4. From Lemma 2 it follows that among all sequences up to length n whose

DOF is [α, β], there is a sequence S∗ with minimum total exposure time whose tuples have

sequential DOFs. Furthermore, Lemmas 1 and 3 imply that this capture sequence is fully deter-

mined by a sequence of n′ aperture settings, D1 ≤ D2 ≤ ⋯ ≤ Dn′ , for some n′ ≤ n. �ese settings

partition the interval [α, β] into n′ sub-intervals, whose endpoints are given by Eq. (5.12):

α = α1 <

determined by S∗³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
α2 < ⋯ < αn′ < βn′ = β . (D.5)
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It therefore su�ces to show that placing n′ − 1 points in [α, β] is most e�cient when n′ = n. To

do this, we show that splitting a sub-interval always produces a more e�cient capture sequence.

Consider the case n = 2, where the sub-interval to be split is actually equal to [α, β]. Let
x ∈ [α, β] be a splitting point. �e exposure time for the sub-intervals [α, x] and [x , β] can be

obtained by combining Eqs. (5.5) and (5.1):

τ(x) = L

c2
(x − α
x + α

)2 + L

c2
(β − x
β + x

)2 , (D.6)

Di�erentiating Eq. (D.6) and evaluating it for x = α we obtain

dτ

dx
∣
x=α
= −

4L

c2
(β − α) β(β + α)3 < 0 . (D.7)

Similarly, it is possible to show that dτ
dx

is positive for x = β. Since τ(x) is continuous in [α, β], it
follows that theminimumof τ(x) occurs strictly inside the interval. Hence, splitting the interval
always reduces total exposure time. �e general case for n intervals follows by induction.

Proof of Lemma 5. As in the proof of Lemma 4, we consider the case where n = 2. From

that lemma it follows that the most e�cient sequence involves splitting [α, β] into two sub-

intervals [α, x] and [x , β]. To prove Lemma 5 we now show that the optimal split corresponds

to a sequence with two identical aperture settings. Solving for dτ
dx
= 0 we obtain four solutions:

x = { ±√αβ ,
(8αβ + ∆) ± (β − α)√∆

2(β + α) } , (D.8)

where ∆ = α2 − 14αβ + β2. �e inequality condition of Lemma 5 implies that ∆ < 0. Hence,

the only real and positive solution is x =
√
αβ. From Eq. (5.5) it now follows that the intervals

[α,√αβ] and [√αβ, β] both correspond to an aperture equal to c
√

β+√α√
β−√α

. To prove the Lemma

for n > 2, we replace the sum in Eq. (D.6) with a sum of n terms corresponding to the sub-

divisions of [α, β], and then apply the above proof to each endpoint of that subdivision. �is

generates a set of relations, {αi =
√
αi−1αi+1}ni=2, which combine to de�ne Eq. (D.1) uniquely.

Proof Sketch of Theorem 1. We proceed in four steps. First, we consider sequences whose

synthetic DOF is equal to [α, β]. From Lemmas 4 and 5 it follows that the most e�cient se-

quence, S ′, among this set has diameter and length given by Eq. (5.9). Second, we show that

sequences with a larger synthetic DOF that are potentially more e�cient can have at most one
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more tuple. �ird, we show that the most e�cient of these sequences, S ′′, uses a single diameter

equal to Dmax. Finally, the decision rule in Eq. (5.10) follows by comparing the total exposure

times of S ′ and S ′′.

Proof of Theorem 1. We �rst consider the most e�cient capture sequence, S ′, among all

sequences whose synthetic DOF is identical to [α, β]. Lemmas 4 and 5 imply that the most

e�cient sequence (1) has maximal length and (2) uses the same aperture for all tuples. More

speci�cally, consider such a sequence of n photos with diameter Di = D(n), for all i, according
to Eq. (D.1). �is sequence satis�es Eq. (D.4) with βn = β, and we can manipulate this equation

to obtain:

n =
log α

β

log (D(n)−c
D(n)+c) . (D.9)

Note thatwhile n increasesmonotonicallywith aperture diameter, themaximumaperture diam-

eter Dmax restricts the maximal n for which such an even subdivision is possible. �is maximal

n, whose formula is provided by Eq. (5.9), can be found by evaluating Eq. (D.9) with an aperture

diameter of Dmax .

While S ′ is the most e�cient sequence among those whose synthetic DOFs equal to [α, β],
there may be sequences whose DOF strictly contains this interval that are even more e�cient.

We now seek the most e�cient sequence, S ′′ among this class. To �nd it, we use two observa-

tions. First, S ′′ must have length at most n + 1. �is is because longer sequences must include

a tuple whose DOF lies entirely outside [α, β]. Second, among all sequences of length n + 1,

the most e�cient sequence is the one whose aperture diameters are all equal to the maximum

possible value, Dmax . �is follows from the fact that any choice of n + 1 apertures is su�cient to

span the DOF, so the most e�cient such choice involves the largest apertures possible.

From the above considerations it follows that the optimal capture sequence will be an equal-

aperture sequence whose aperture will be eitherD(n) orDmax . �e test in Eq. (5.10) comes from

comparing the total exposure times of the sequences S ′ and S ′′ using Eq. (D.3). �e theorem’s

inequality condition comes from Lemma 5.

Proof of Theorem 2. �e formulation of the integer linear program in Eqs. (5.13)–(5.16)

follows in a straightforward fashion from our objective of minimizing total exposure time, plus

the constraint that the apertures used in the optimal capture sequence must span the desired

DOF.

First, note that the multiplicities ni are non-negative integers, since they correspond to the
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number of photos taken with each discrete aperture Di . �is is expressed in Eqs. (5.15)–(5.16).

Second, we can rewrite the total exposure time given by Eq. (D.3) in terms of the multiplicities:

τ =
m

∑
i=1

ni

L∗

Di
2
, (D.10)

�is corresponds directly to Eq. (5.13), and is linear in themultiplicities being optimized. Finally,

we can rewrite the expression for the right endpoint of the synthetic DOF provided by Eq. (D.4)

in terms of the multiplicities as well:

βm = α
m

∏
i=1
(Di + c

Di − c
)n i

. (D.11)

Because all sequences we consider are sequential, the DOF [α, β] will be spanned without any

gaps provided that the right endpoint satis�es βm ≥ β. By combining this constraint with

Eq. (D.11) and taking logarithms, we obtain the inequality in Eq. (5.14), which is linear in the

multiplicities being optimized as well.
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