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Abstract

A normal distribution function for a surface is a function defined for each point of the surface and
giving the density of normals as a function of direction. We examine the role such functions can
play in local illumination models, in particular how they can be used as a compact representation
of bidirectional reflectance distribution functions.

Such functions can be computed from the geometry of the surface at some intermediate level
between the micro and the macroscopic level (the mesoscopic level) (in particular from bump-
maps), computed from the overall BRDF and some basis BRDF, or custom-designed for special
effects.

We discuss the pluses and minuses of such an approach, the connection with bump-map filtering
and geometric modelling, and show examples of the use of the concept with multiple surfaces.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image Generation 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

General Terms: algorithms, models.

Additional Keywords and Phrases: local illumination, bump map filtering, normal distribution
function, mesoscopic level, multiples surfaces.

1. Introduction

To achieve any degree of realism in computer generated images, shape modelling is only the
beginning of the struggle. Another fundamental step is modelling the interaction with light. Of
course these steps cannot always be neatly separated. In most cases there are complex interactions
between shape models and illumination models. In fact the appearance of most objects results
from such interactions between their shape, as modelled by geometry, and the way they reflect
light. This dichotomy is only for descriptive convenience. This paper addresses more particularly
the modelling of local interaction between material surfaces and light. It is easy to overlook the
importance of these effects for our interpretation of the world, the subtlety of our visual system
and the distance between our current illumination models and the behaviour of real surfaces. As
an example, consider how easily we recognize material such as velvet, silk or denim, by their
colour and reflectivity structures, even at large distances where the details are not distinguishable
(see Figure 1).
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Figure 1.
Types of material (real; shown in presentation)

1.1. Scales

The type of interactions between light and matter is largely dependent on the scale at which we
consider the material. Even if we keep to a level of details well above the wavelength of light to
avoid considering interference and diffraction, we can either observe the effect of individual sur-
face details or merely the average of such, depending on the scale and viewing distance from the
surface. Taking woven cloth as an example, we might have to consider a geometric model for
each strand of material, each yarn, each thread, or the average of the whole weaving pattern,
depending on viewing conditions. ,

For most levels of details modelling and rendering techniques have been developed in computer
graphics. The best defined and studied are the the geometric model (such as polygons, parametric
surfaces), which can be called the macroscopic level, and the local reflection models', which can be
called the microscopic level. The level intermediary between these two, which we will dub the
mesoscopic level (from the Greek mesos, middle), is less explored and the level of most concern in
this paper. It includes such things as displacement maps and bump maps [Blin78, Max88].

Traditionally, reflection models have been divided into two components: diffuse and specular
[Torr66, Blin77, Cook82, Beck87]. The diffuse component takes into account the light that inter-
reflects onto elements of a same surface and is reemitted equally in all directions. To model the
specular reflection, Torrance and Sparrow({Torr66] assume that the surface is made of highly
reflective microscopic facets distributed in v-grooves. If the facets are randomly distributed over
the surface, shadowing and masking functions can be statistically estimated, and, for a given dis-
tribution of slopes of the facets, the light reflected in a particular direction can be approximated.
This is a clear example where the local illumination model is based on some model for the
geometry of the surface at a smaller scale than the visible details. One of course can go further.
In recent work to improve the generality of illumination models, He et al [He91] started from Kir-
chhoff equation for'the light reflected at a surface (approximated by its tangent plane at the point
considered) and added interreflection and self-shadowing/masking factors derived from statistical
techniques (the surface height is assumed to follow a Gaussian distribution). While their model
extends considerably the flexibility and accuracy of traditional local models, there are still many
surfaces which do not meet these assumptions.

In [Poul90a} we used a "hidden" level of geometry made of cylinders to allow the computation of
anisotropic reflection. Our anisotropic reflection model corresponds to inserting two new
geometric levels between the mapping (displacement or bump) and the isotropic reflection model.
The isotropic reflection model, like the facets model of Torrance and Sparrow, characterizes the
surface nature of each cylinder. Set of groups of adjacent cylinders can be used to represent yet
another intermediary level.

While all these techniques are effective within their intented scale, a major unsolved problem is to
allow their simultaneous use, and in particular ensure smooth transition between models when the
scale changes. For instance in our anisotropy model one cannot see the individual cylinders, no
matter how close one gets to the surface. Another way to formulate the same problem is that one
should be able to find a way to represent the average effect of one level in terms of the level

1. It is important to note that local is a relative term. In practice local means at a scale of the order of the area
which is to be represented by a single illumination computation.
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above. As it will turn out, one very constraining, though unnecessary, assumption made in all the
local models is that a single normal at each sampled point or area has to account for all the
reflection effects.

1.2. Loecal Ilumination Models

To begin to solve that problem, it is important to understand what "average" means in this con-
text. The smallest scale we will consider at the microscopic level is the one at which we can
define and compute an effective bidirectional reflectance distribution function (BRDF). Now of
course this function can be itself the result of considering a surface with a structure at a scale
below the one considered. The important point is that this structure will never be explicit or visi-
ble in the rendering. The BRDF is then probably itself an average. The trouble right away is
that a complete BRDF is a function of 4 variables p(8,¢,0r¢r), 2 for the incident direction and
two for the reflected direction?. This can (and most often is) reduced to two variables for isotro-
pic surfaces, but most natural surfaces are not isotropic (and even more important we are very
sensitive to the case where they are not).

To be able to develop models at the mesoscopic level we have to compute the light reflected by a
given area of the surface given the local BRDF, the local geometric characteristics of the surface
(tangent plane, curvatures), the masking/shadowing and the amount of interreflection. In other
words we need information from both the microscopic and the macroscopic level. This has to be
averaged over the area considered, preferably as a close form solution, but barring this in a form
that can be quickly computed. In addition, since at this scale the structure can actually be seen
under some viewing conditions, we should be able to vary smoothly from the values given by the
original BRDF to the average given by the new model.

2. Normal Distribution Function

A normal distribution function (NDF) for a surface is a function n(6,¢) defined for each point on
the surface, and giving for each direction (6,¢) at this point the density of normal vectors pointing
in that direction. The direction is defined in the surface local frame of reference (the Frenet
frame). In the following we will assume that the function has been normalized so that
x 2
[ n(8,6) sind df d¢ = 1 Eq.(1)
9=0 ¢=0
Most of the functions considered have a value of 0 at directions below the tangent plane.

This function can be used in formulas where the *normal” normal appears. To take for instance a
generic function of two directions, where the directions are in the surface’s Frenet frame, one uses:

Ra(0norOne) = [ [ n(6.6) R(T(0,0.0r6r),T(0,6,0,,¢1) sind db db Eq.(2)
=0 o¢=0

where T(8,6,0,4,¢ 4) is the direction (64,6 ,4) transformed to the frame of reference of the direction

(8,6). This is of course a form of the convolution of the two functions. It 1s not the ordinary con-

volution, since the transformations are not affine, but might be when on the right domain. It is

easy to see that when the NDF is a delta function, for instance® n(6,¢) = ﬂz{;(;;) from the () sift-
si

ing property R() regains its original definition, and the NDF corresponds to the usual concept of a

surface normal. The same observation applies when n() is the sum of delta functions:

] 0—61) %
ni6.0) = 300070 Eq.(3)

sinf;

1

In this case R,() is the sum of instances of the function R():

2. It is also a function of the wavelength. We will ignore this for the time being.

3. We assume everything is correct for 7= 0.
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Ra(0rorfrdr) = 32 R(T(8,6:,0m6R), T(0,6:0161) Eq.(4)

Consider a more general case when we have a function R,() that is exactly or approximately
equal to a linear combinations of some basis functions:

Ry(6rorbrér) = 33 ai B(0rérbrd1) Eq.(5)
We can equate the right hand side term by term to expressions of the kind:
x 2
Bi(eﬁy¢ﬂ?9ly¢l) = f fnt(97¢) Ft( 7(91(?3,0}?:'?55*), T‘(ev¢1gis¢l)) sind df dd) EQ(ﬁ)
§=0 ¢=0

This can be accomplished in a trivial way by making the nJ) functions be §() functions and the
F{) be identical to the B{).

A quite different way is to have all the Fy() functions be the same only with parameters depending
on i and the n{) functions be in effect selectors of the F(), and therefore the B():

n(9.¢) = 33 b n(6,9) Eq.(7)
and:
Ra(0rdrbro) = [ [ 3 b:nfb.6) F{T(0,60r0r), T(6,6,610)) sind df dé  Eq.(8)
=0 ¢=0 1

We have traded a sum of four-variable functions for a sum of two-variable functions plus a a fam-
ily of four-variable “transfer* functions (the F, ) functions). For arbitrary basis functions B{) it
might not be always possible to find F{) and a family of nJ) to verify equation (8), but we will
see that it is more useful to consider the inverse problem, and we will assume the latter to fit to
the function Ry() according to equation (8):

2.1. Simple Normal Distribution Functions

We can see equation (8) as stating that a sum of simple NDFs (the n()) and a transfer function
approximates an arbitrary BRDF, or as stating that a sum of simple BRDFs (the B{)) approxi-
mates an arbitrary BRDF. In fact there can be a shift in boundary between the simple NDFs and
the simple BDRFs. To take a familiar example, assume that the simple NDFs are delta functions:

n(6,6) = §(6-0,6-¢) Eq.(9)
and the transfer function is the Phong specular term:
F{T(0,6 0r4R), T(0.6.016)) = (N(6,6). H(0rdr0161)" Eq.(10)

N(8,¢) is the unit vector in the (8,¢) direction, and H(0p¢p0,¢)) is the unit vector bisector of
the directions (6p,¢5) and (6,,¢7). In this case equation (8) becomes:

Ru(Ondnind) = 33 b, (N(6,¢) . H(0porlr0))" Eq.(11)

in other words a sum of “Phong peaks” functions.
We can also have n() itself be a sum of "Phong peaks":
n(0.9) = 3 ¢ (N(8,6) H(8,6:0.6)" Eq.(12)

In this case we want to find a family of transfer functions F, () such that we obtain the same Ry()
as before. This is accomplished by setting F, () as:

5(0-8,6-0,) (N(8,6).H(0porbpon)™
£, (T(0.6.0595), T0.0.0167) = %) (N0 HOn0nT50r) Eq.(13)
(N(gnéz’yH(gb(ﬁhB)q))) '
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Another reasonable family of simple NDFs is provideﬂd by spherical harmonics, since they can be
used easily to approximate a given total NDF.

2.2. BRDF vs NDF

From the preceding equations and examples it is clear that there is a strong relationship between
BRDFs and NDFs. It is also trivially true that through the use of the transfer function we can
generate a NDF with an effect identical to an arbitrary BRDF. The more interesting issue is
whether for all, or for an acceptably wide range, of experimental BRDFs it is possible to define
NDFs which are sums of simple NDFs, and which along which a canonical family of transfer func-
tions approximate the BRDF to an acceptable precision®. At this point we cannot offer any
theoretical results, or even approximations based on non-trivial experimental BRDFs, but our
strong feeling is that the answer is affirmative.

3. Where do NDFs come from

It is clear that the motivation for defining NDFs is that for many surfaces® the light reflected by a
surface element is the result of reflection from a distribution of surface normals. The next ques-
tion is therefore how to obtain and store normal distribution functions.

3.1. Geometric Model of the Surface

If the analytical description of the surface over the area to be considered is available, one can con-
sider extracting the NDF from it. For some surfaces it is quite easy to go from one to the other.
For example for a sphere:

n(f,0) = 7:;; Eq.(14)

or for a cylinder with axis in the ¢ = 0 direction:

n(6.9) =  5(6) Ba.(15)

In general, however, it is not easy to go from the surface definition to the NDF. One of the most
serious complications is the fact that self-blocking and self-shadowing should be taken into
account for distributions on non-convex surfaces. For example consider positive and negative
cylinders (to use the terminology in [Poul90a]). They have the same distribution of normals, but
different BRDF due to different self-blocking characteristics.

3.2. Bump Map Filtering

One way to avoid some of the analytical difficulties, and more importantly to be able to design
and manipulate normal distributions at will is to extract them from bump-maps. The bump-map
can be in turn extracted from discrete sampling of a geometric model. The techniques to extract
NDFs from bump maps are discussed in another paper [Four92] in the context of the filtering of
bump maps. The advantages of this route is that self-blocking and self-shadowing information can
also be obtained. The NDF so obtained is expressed as a sum of §() functions, and the transfer
function is a Phong distribution. The presentation of this paper will include pictures illustrating
the NDF extracted and the resulting shading. The issue of self-shadowing and self-blocking, along
with the related issue of changes of colour of the surface according to the lighting and viewing
conditions, are discussed in more details in the previously quoted paper as well.

4. Actually the question is not so much about how well the BRDF is approximated, but how well the resulting distri-
bution of reflected light is approximated.

5. In fact all surfaces when seen from a sufficient distance.
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3.3. Measured BRDF

As shown above, one can directly fit a BRDF with a sum of simple NDFs. We have not done so
in practice yet, but my guess is that non-linear least-square techniques (similar to what was used
for the NDFs extracted from bump-maps) would be successful in that application as weil. The
process consists in taking the measured BRDF as discrete data points, and adjusting the positions,
amplitudes and exponents of the Phong peaks describing the NDF for an acceptable fit between
the measured and the computed reflectance values.

3.4. Making Them Up

The last way is the "traditional" computer graphics way, that is to twiddle with the NDFs until
"it looks good". In simple cases it is quite easy to do, and it also can be done for exploring possi-
bilities, but to be effective it requires an interactive setting, or at.the very least a fast rendering of
the resulting surface under revealing lighting and viewing conditions.

4. Multiple Surfaces, or How to Use NDF's

The general answer to the question of how to use NDFs is to compute the resulting BRDF and
use it as part of the local illumination equations. In practice, however, one does not want to use
to complex a BRDF, one would like to be able to use some or all of the hardware assist available
on modern graphics workstations, and one would like to be able to use formulae and strategies
painstakingly developed for extended light sources [Poul90b, Nish85]. This is why in particular
the approach described in [Dret90] was chosen. By treating the resulting surface as a multiple sur-
face, that is as oneswhere each point has more than one normal; each adding a Phong reflectance
function to the total, the shading operation is just a sum of traditional shading operations.

For example Figure 2

Figure 2.
Anisotropic surface and multiple surface with two, three and seven normals
(shown in presentation) :

shows a sphere with an anisotropic surface and with a muitiple surface with two, three and seven
normals. The normal vectors are defined in the surface local frame of reference (this means that a
consistent tangent has to be defined for each point on the surface). One can see than an anisotro-
pic surface is obtained in a very straightforward manner. In the case of the seven normals, the
values were obtained from the filtering of a bump-map extracted from a geometric model describ-
ing a cylinder. Figure 3 and Figure 4 show the same geometry

Figure 3.
Velvet {(shown in presentation)

with two different multiple surfaces, one defined to simulate the reflective behaviour of velvet, the
other a rough approximation of silk. The geometric models are identical (this is not of course the
case for real materials, the geometry is also a strong cue about the nature of the material) for
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Figure 4.
Silk (shown in presentation)

both examples.

5. Conclusions

We have introduced for local shading the concept of normal distribution functions, and shown
how they fit at the mesoscopic level between the microscopic level of the BRDF and the macros-
copic level of the geometric model. We have shown how they relate analytically to the BRDF

possible sources of NDFs, including their extraction from the filtering of bump maps and the
fitting from experimental BRDFs. Finally we have given few examples of the implementation of
simple NDFs in the form of multiple surfaces.

This is only the beginning of the exploration of this approach. The technique allows for the
smooth blending from a BRDF to another and for many simulations of natural textures, such as
sand, shark skin and leaves.
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