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Abstract

Designing the illumination of a scene is a difficult task be-
cause one needs to render the whole scene in order to look at
the result. Obtaining the correct lighting effects may require
a long sequence of modeling/rendering steps. We propose
to use directly the highlights and shadows in the modeling
process. By creating and altering these lighting effects, the
lights themselves are indirectly modified. We believe this
new technique to design lighting is more intuitive and can
lead to a reduction of the number of modeling/rendering
steps required to obtain the desired image.

CR Categories and Subject Descriptors: 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.
Interaction techniques.

General Terms: Algorithms.

Additional Key Words and Phrases: extended light
source, shadow volume, soft shadows, hard shadows, inter-
active light modeling.

1 Introduction

An important research area of computer graphics consists in
simulating realistic pictures. Reality is modeled by observ-
ing and measuring its attributes. In a next step, the models
are rendered onto an image. In that sense, computer graph-
ics models the causes and renders the effects onto an image.
On the other hand, computer vision is interested in analyz-
ing an image. It tries to isolate certain effects in an image in
order to identify the causes. While the two processes might
seem to go on totally opposite directions, it is interesting to
consider how advances in one direction might actually help
the reverse process.

In computer vision, highlight information has been used
to determine light direction or local shape orientation. Babu
et al. [babu85] study contours of constant intensity in an im-
age to determine the orientation of planar surfaces under the
illumination of a directional light source. Buchanan [buch87]
fits ellipses to the highlights to obtain the same information

for planar surfaces illuminated by point light sources.

One important aspect of most of these algorithms con-
sists in identifying the highlight area. This is not an easy
task as many of the algorithms for shape from shading [horn88]
require almost entirely diffuse surfaces.

When techniques are not restricted to diffuse surfaces,
they often rely on some kind of thresholding. The un-
fortunate reality with thresholding is that different values
of threshold can lead to relatively different shape of the
highlight and therefore, to different shape/light recovery.
Other techniques like Wolff’s use of polarization [wolf91] are
promising although require the presence of polarizing lenses
on the cameras capturing the scene.

Much useful information can also be extracted from the
shadow areas in an image [walt75] [shaf85]. These areas pro-
vide additional information on the shape of the object cast-
ing a shadow and even on the shape of the object on which
the shadow is cast. Moreover, they provide information on
the direction and the shape of the light sources. Unfortu-
nately, very little work has been involved in recovering the
shape of an extended light source, as recovering shape from
shading under a directional or a point light source is already
a difficult task.

Shadows are not easy to extract from an image. De-
tecting shadows can be done in a similar way than edge
detection by applying various edge enhancing filters. For
extended lights, the shadow edges are soft and the shadow
must be detected based on changes in the gradients of the
shading. Gershon [gers87] use gradients in color space to
determine if the region corresponds to a shadow region or
simply to a change of material. Textures can also defeat
most of the techniques and must be carefully handled.

While modeling a scene, a user has access to important
information unavailable to computer vision, i.e. the geome-
try of the scene and the viewing projection parameters. To
better understand a 3D scene, the user can therefore move
the camera around, use at the same time several views of the
same scene, move objects, remove hidden surfaces, and all
of this in real time; however, so far, few applications use in-
formation about highlights and shadows in order to improve
on the modeling step in computer graphics.

This paper proposes to investigate how we can use high-
light and shadow information in order to help a user to define
the shape and position of a light source. It does not pre-
clude the previous ways of defining and positioning the light
sources, but enhances the whole process.



2 Defining and Manipulating Light Sources

With the advent of high performance graphics hardware,
it becomes possible to interactively create and manipulate
more and more complex models with a higher degree of re-
alism. Yesterday’s simple wireframe models can now be re-
placed by flat shaded polygons, Gouraud shaded and even
Phong shaded polygons, allowing for real time interaction
with the models. Hanrahan and Haeberli [hanr90] demon-
strate with their system how today’s graphics hardware could
be used to “paint” textures and various other surface param-
eters (transparency, perturbation of surface normals, etc.)
in a fully interactive system. This increase in rendering
power provides us with the possibility to investigate light
definition and manipulation from the highlights and shad-
ows 1t produces.

2.1 Lights from Highlights

In this section, the process of defining a light from its high-
lights 1s described. Its advantages are demonstrated and its
restrictions explained so one could better understand the
implications of using such a process.

Highlights are usually defined in the reflection models by
the specular term. Consider the specular term of Phong’s
shading [phon75] as expressed by Blinn [blin77]:
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H is the bisector vector of the eye direction and
the light direction
n is the surface roughness coefficient.

. . <1
is the surface normal at a given point

This formulation tells us that for a given point on the
surface specified as the mazimum intensity of the highlight,
a unique directional light source can be determined as

— —

L=2(N-E)N-E (2)

where F is the eye direction.

The term maximum intensity is not properly correct if
we think of it in the context of a complete shading model.
However we will use it here meaning maximizing equation
(1). It is interesting to note that other points on the surface
might reach this maximum but will never surpass it.

This simple relationship between the maximum inten-
sity of the highlight and light direction has been used in
the past. Hanrahan and Haeberli [hanr90] mention how
they can specify a light direction by dragging a highlight
on a sphere. This technique has also been previously imple-
mented in some modelers like a light modeler developed in
1983 at NYIT by Paul Heckbert (manipulating highlights
on a sphere) and a light editor written by Richard Chuang
around 1985 at PDI, which was used among others, to get
highlights to appear at the right time on flying logos. It also
came to the attention of the authors that a similar approach
to Chuang’s was used at LucasFilm to get the glare to ap-
pear at the crucial moment on a sword in the movie Young
Sherlock Holmes.

Our technique extends the basic approach in the above
systems by indirectly and interactively determining the sur-
face roughness coefficient n in relation with the size of the
highlight. Here is how it works.

T All vectors in this paper are assumed normalized

Once the maximum intensity point of the highlight has
been chosen, the user drags the cursor away from this point.
At a new position on the surface, the surface normal is com-
puted. This new point is used to determine the boundary
of the highlight, i.e. where the specular term of (1) reaches
a fixed threshold t¢. To satisfy this threshold, n, the only
unknown, is easily computed as

n— o8t (3)
log(N - H)

While only these two points on a surface are necessary
to orient a directional light source and establish the surface
roughness coefficient, they give almost no information on the
shape of the highlight. To approximate the contour of the
highlight, the pixel with the maximum intensity is used as a
seed point and the neighboring pixels covered by this surface
are visited in a boundary fill fashion until pixels on both
sides of the threshold are identified or until the boundary
of the surface is found. With this technique, the second
point might not appear within the contour of the highlight
determined from the seed point. If this happens, the second
point 1s also used as a seed. Unfortunately, unless each pixel
covered by this surface is visited, some of the other highlights
produced by this light on this surface might be missed. If
the position of every highlight is necessary, the whole surface
is visited by the filling algorithm only on request from the
user because such a request can lead to considerable increase
in computation time.

When n has already been determined for a given surface,
care must be taken in order to keep a unique value for n. If
another highlight is created on this surface, as soon as the
point with the maximum intensity is selected, the contour
of this new highlight is computed with the previous value
for n. However this value for n and the position of the high-
lights are not fixed and can be interactively changed because
some information is kept in a temporary frame buffer. In this
frame buffer, each previously visited pixel contains informa-
tion about its surface normal. The contour can therefore be
scaled down (i.e. a smaller highlight but a larger value for
n) very efficiently. If the contour is increased, only the un-
visited pixels need to have their surface normal determined.
Moving the contour on the surface is also possible although
more expensive if the highlight is moved to a completely
different location on the surface as many surface normals
might have to be computed. On some graphics hardware
like the VGX from SGI, information on the surface normals
can be obtained directly from the hardware and therefore al-
lows for even faster highlight manipulation. Figure 1 shows
the highlight produced by a directional light source over a
patch of the teapot. The white segment within the highlight
region represents the point of maximum intensity and points
towards the light direction.

Unfortunately, highlight information is dependent on the
eye position. Therefore, if the camera is moved, every high-
light in the scene must be recomputed. Also, the points of
maximum intensity are not valid any more and consequently
every surface has to be scanned to recover every highlight,
an expensive process that one should try to avoid as much as
possible. This means also that a highlight computed in one
window would have a different definition in another window
with a different projection. To avoid confusion and increas-
ing too much the computing time; we decided to remove
every highlight information when the viewing parameters
are changed although we keep the light definitions. These
highlights are recomputed on request from the user.



Figure 1: Creating a light by its highlight

Figure 2: Incomplete highlight information

Another limitation of using highlight information to de-
scribe a light source resides in the fact that a highlight spec-
ifies only a direction. We therefore need more constraints
to use 1t to determine other types of light source. Such con-
straints exist for instance for polygonal light sources. As-
sume a plane on which a polygonal light resides. By adding
a highlight, a direction is established. The intersection be-
tween this direction and such a plane® defines a point light
source, a vertex of a linear or polygonal light source.

To represent highlights created by extended light sources,
the contribution of each vertex of the light is not sufficient
to determine the shape of the complete highlight. To display
this information, the boundary fill algorithm would have to
compute the specular integral for a linear light [poul91] or a
polygonal light [tana91] for each pixel to visit. Such integrals
are rather expensive to compute and in order to achieve
real time, cheaper approximations based on precomputed
tables could be of some use here. We did not investigate
this approach in the context of this paper, relying solely
on the partial information provided by the light vertices as
shown in figure 2.

As it can be observed, highlight information can be very
useful to specify directional light sources and surface rough-
ness coefficients. With extra constraints, they can even be

?Note that there might not be any intersection

used to define point, linear and polygonal light sources al-
though creating an arbitrary plane in 3D is not necessarily
an easy task. Another technique, more flexible for extended
light sources, consists in using the shadow information to
define the light sources.

2.2 Lights from Shadows

Shadows are very important clues to help understanding the
geometry of the scene and the interrelationship between ob-
jects; in the context of this paper, shadows can reveal im-
portant information about the nature of the light sources.
We will define light sources by manipulating their shadow
volumes.® These shadow volumes have the advantage to de-
pend only on the lights and objects positions. Therefore, as
opposed to the case of the highlights, the camera position
can be changed without altering their description. More-
over, their definition is consistent for every projection, allow-
ing for multiple windows open with different orthographic
and perspective projections as used in most of the modeling
systems.

The shadow volume created by an object illuminated
by a directional light source consists of a sweep of the ob-
ject silhouette in the direction the light source shines. This
silhouette can be analytically determined for simple prim-
itives, computed for moderately complicated objects with
algorithms like in [bonf86], sampled by studying the varia-
tion of surface normals at the vertices of a tessellated object
or sampled using the information in a z-buffer projection of
this object. Specifying the direction of a directional light is
simply a question of choosing two arbitrary, although dif-
ferent, points in the scene. The second point will be along
the shadow cast by the first one. To move this shadow vol-
ume once defined, one needs to select a point on the shadow

3 A shadow volume formed by a single object and a directional or
a point light is the 3D volume within which every point is in shadow
of this object [crow77] [berg86]. For extended light sources (linear,
polygonal), the shadow volume is the 3D volume within which every
point is at least partly in shadow of this object.
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Figure 4: Going from a directional light source to a point
light source

volume. The point on the object casting this shadow is
then identified. By dragging the cursor to a new location,
a new direction is computed, the direction of a directional
light source. Figure 3 shows a cylinder illuminated by a di-
rectional light source. For some primitives, computing the
exact silhouette can be expensive and not carry much more
information. In the case of this cylinder, each polygon ver-
tex forming the cylinder is simply projected in the direction
the light shines.

A directional light source can be viewed as a point light
source at infinity. If the point light source is not at infin-
ity, the silhouette defining the shadow volume can be differ-
ent than the silhouette defined by a directional light source.
Figure 4 illustrates the process of going from a directional
light source (figure 4a) to a point light source (figure 4b) by
modifying its shadow volume.

A point sni on the shadow volume is chosen. The point
sn2 on the silhouette casting shadow on the point smq is
identified. This shadow segment sn1 — sny will now be con-
sidered as nailed and the point light source will reside on
the line extending this segment. By selecting another point
s1 on the shadow volume, the point s2 casting this shadow
on this point is identified. The nailed segment snq — sno
and the point sz define a plane (sn1 — SNo — 52). By moving
the cursor, a point s on this plane is located. s] now is on
the shadow cast by s2. The point light source is therefore
moved to p; as shown in figure 4b.

Once a point light source is created, it can be manipu-
lated in the scene by manipulating its volume shadow. This
can be done by fixing any shadow segment as previously
explained, or, if no shadow segment is nailed, by adding a
new constraint to the system by assuming for instance the
distance d from the light p; to the point s» casting a shadow
is constant. Combinations of these two actions are sufficient
to position almost any point light source in a scene.

In some rare configurations of a scene, some positions
might not be accessible. For instance, assume a scene is
made of a single flat polygon and of a directional light par-
allel to the plane of the polygon. In such a situation, the
light will never be able to escape the plane of the polygon.
Fortunately, this situation does not occur often in general
3D scenes, and so far combinations of moving the shadow
volumes with and without nailed segments proved to be suf-
ficient to position our lights.

It is important to note that the point so might not lie
on the boundary of the shadow volume while the point light
source is moved around. However the real shadow volume is
always displayed so the user has a direct view of the altered
shadow.

Figure 5: Umbra region in hatched undetected in the pro-
jection domain

To create extended light sources like linear or polygonal,
new point light sources are needed, defining the vertices of
the light source. The shadow volumes of each light vertex are
handled as normal point light sources although for polygonal
light sources with more than three vertices, care must be
taken so each light vertex will reside on the light plane.

Shadows of extended light sources are formed by the um-
bra and penumbra regions. The whole shadow region is de-
fined by the convolution of the object and the light source
in the projection domain [guib83]. The umbra is defined by
the intersection of each shadow volume (one shadow volume
per light vertex); the penumbra is the difference between the
whole shadow and the umbra. Nishita et al. [nish83] studied
the various parts of these shadow regions in 2D, once pro-
jected onto polygonal surfaces for shadow culling purposes.
Some problems occur when neither the object casting the
shadow or the light are limited to being convex. It can be
shown however that if both the light and the object are di-
vided into convex elements, the whole shadow is the union
in 3D of all the shadow convex hulls as:

For each convex light element
For each convex object element
Compute the convex hull of the shadow
volumes created by these two elements
Compute the 3D union of all these convex hulls

For now on, assume a polygonal convex light and a con-
vex object.

Assume an object does not intersect the light plane. All
the shadows lie on a plane parallel to the light plane but
located at infinity. As such, 2D convex hull algorithms can
be used to determine which part of the shadow volumes form
the 3D convex hull of the shadow volumes.

However computing the umbra region, i.e. the intersec-
tion of the convex hulls for each light vertex cannot be done
in 2D. Figure 5 shows an exemple where using only the in-
formation in the 2D projection plane would fail to identify
the umbra region showed in hatched.

To recover the umbra region, one could intersect each
shadow polygon® of a light vertex shadow volume with each
other shadow volume of the other vertices of a single light.
This process can be very expensive as it is O((ps)®) where
p 1s the number of vertices of the light and s is the number

4The silhouette of the object can be discretized. Each point cast
its shadow in one direction. Two consecutive points on this silhou-
ette and their shadow direction define a quadrilateral with two of its
vertices at infinity.



Figure 3: Creating a directional light by its shadow

of shadow polygons forming the shadow volume. However
some 1mprovements can be obtained by first projecting the
shadow quadrilateral onto the plane containing the convex
hull on the 2D projection plane.

Since we use Graham’s 2D convex hull algorithm [sedg90],
the points of the shadow quadrilateral, once projected in 2D,
are converted in pseudo angles and an efficient combination
of angle comparisons and boxing allows for faster intersec-
tion culling.

This process could also be improved by using a different
data structure that might be more suitable for faster inter-
sections of half planes defined by the shadow quadrilater-
als. In object space, the binary space subdivision algorithm
handling shadow volumes as presented by Chin and Feiner
[chin89] would be a good candidate to investigate, while in
screen space the algorithm described by Fournier and Fussell
[four88] could be of use.

3 Results

A very simple modeler has been implemented in order to
test the techniques presented in this paper. The modeler
includes primitives like conics (sphere, disk, cone, cylinder),
squares, cubes, triangular meshes and Bézier patches. Fig-
ure 6 shows a global view of the modeler itself.

The code, far from being optimized, is written under
GL and was developed and tested on an Iris 4D/20 with
z-buffer. This machine handles well a few primitives (=~ 10)
but as the scene complexity increases, a 4D/240 VGX be-
comes very handy. The VGX also allows for real time Phong
shading which is very useful to model a scene and when cre-
ating/manipulating shadows, but it can lead to some minor
difficulties when creating highlights, because the threshold
t must be adjusted to the SGI’s Phong’s shading implemen-
tation.

Figures 7 to 9 show a cone under a triangular light source.
At first, no convex hull is applied. In this image (figure 7),
it is easier to associate each shadow with a light vertex.
Once the convex hull is applied (figure 8), the silhouette

of the penumbra is easier to detect. Notice the umbra re-
gion just under the cone, within the penumbra region. In
figure 9, the umbra and penumbra volumes are filled with
a semi-transparent mask. This representation gives a more
complete impression of the shadows that can not really be
shown here with a single image.

4 Conclusion

In this paper, we investigated using lighting effects, i.e. high-
lights and shadows, to define the lights themselves and spec-
ify their location. We showed some inherent limitations
with these approaches but also demonstrated a powerful
new technique. This technique allows a user to interactively
manipulates highlights and shadows, which can be very im-
portant when designing a scene. In previous modeling sys-
tems, these effects were too often neglected. Therefore a
user needed to iterate between rendering the whole scene
and modifying the lights. It is a process that can be ex-
pensive depending of the quality of the rendering required.
Incorporating highlights and shadows in the modeling pro-
cess adds more information on the geometry of the scene
and its illumination which should help the user to under-
stand better the scene before even rendering it.

Our system, although simple, gives during the modeling
process direct information to the user on the lighting effects
since these effects are the objects being manipulated. This
direct manipulation is crucial as getting the right effect by
manipulating the causes is generally more difficult than ma-
nipulating the effects themselves.

We foresee that, as the graphics hardware improves and
as the CPU becomes faster, more and more effects available
once only at the rendering stage will become an inherent
part of the modeling stage itself. Real time Phong shading is
now becoming common with high-end modelers. These im-
provements will lead us to investigate more intuitive ways of
defining and controlling these special effects. Although the
separation between computer graphics and computer vision
is still strong, we believe this will lead us to more and more



Figure 6: Global view of the modeler

Figure 7: Cone under a triangular light: No convex hull



Figure 8: Cone under a triangular light: Convex hull applied

Figure 9: Cone under a triangular light: Convex hull with filled shadows



graphics in vision and more and more vision in graphics for
greater benefits to realism in graphics and scene analysis of
natural phenomena in vision.
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