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Numerous algorithms for two-dimensional
image interpolation have been developed.
Many such techniques are unstable with re-
spect to changes in the input data, or they
rely on the user to specify object features
and even manually determine matches be-
tween features. We present a novel algo-
rithm for image interpolation aimed at ad-
dressing these issues. We use pixel intensi-
ty as the third dimension to form a union of
spheres volumetric model of an image. The
technique requires little preprocessing and
is not labour-intensive. It allows the user
a reasonable degree of control of the
matching process. Our method easily facil-
itates intuitive manual specification of fea-
tures where desired. The results of our tests
are very positive. The problems encoun-
tered in using our algorithm are largely pre-
dictable and suggest definite directions for
future work.

Key words: Feature representation ± Fea-
ture matching ± Image interpolation ±
Shape interpolation ± Union of spheres

1 Introduction

The general objective of two-dimensional (2D) im-
age interpolation is to derive a number of interme-
diate images between a beginning image and an
end image. There are numerous applications for
image interpolation, ranging from aesthetic pur-
poses (e.g. morphing) to scientific visualization
(e.g. 3D volumetric reconstruction from 2D slices).
Although the requirements for an interpolation al-
gorithm vary somewhat with the application (for
example, in medical imaging, accuracy is more im-
portant than aesthetic appeal), there are a number
of elements considered desirable in most algo-
rithms.
The interpolation of images requires a matching of
features that can humanly be identified as having a
certain degree of similarity. Most people would
consider the shapes of objects to be one of the most
important criteria for feature matching. In order for
an algorithm to generate ªgoodº interpolations, it
must take into account similarities in shape. Al-
though shape is a very intuitive and commonly
used property, it is also very difficult to define. Be-
cause the definition of shape itself tends to be im-
precise, it is difficult to explicate what constitutes
a good interpolation between two objects. For ex-
ample, most people would agree that the series of
images in Fig. 1 (Ranjan and Fournier 1996),
showing a vase morphing to a cross-section of
the brain, represents a good interpolation, but
few can describe in exact terms the properties that
make it so. Usually, shape is given as an important
factor, but rarely with a precise definition of the
term.
Although it is difficult to describe exactly what
good shape interpolation is, there are a number
of properties that are generally considered desir-
able. Because the quality of an interpolated im-
age is judged by comparison with the start and
end images, a particularly important property is
one that concerns the preservation of similarities
between objects. In an interpolation between two
objects, the intermediate forms should preserve
as many of the similarities between the original
objects as possible. For example, if the two ob-
jects have approximately the same area, the inter-
polated forms should not be significantly larger
or smaller. The similarity property also applies
to the image as a whole. For example, similarities
in the positioning and orientation of objects rela-
tive to each other should be preserved as much as
possible.
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Partly because of their importance to image inter-
polation, the representation and matching of
shapes have been the focal points of intense study.
Many successful algorithms have been developed
to interpolate between objects, but many of these
methods rely on the user to specify the features
and often the correspondences between them.
Manual specification of features can be a labour-
intensive task, especially when there are many ob-
jects or very complex objects in an image. In con-
trast, there are algorithms that attempt to automat-
ically extract all of the matchable features from
images. Some commonly used features include
points, edges, corners and skeletons. These algo-
rithms try to extract object features either directly
from the image data or from object boundaries ex-
tracted from the image by a segmentation algo-
rithm. A common problem with feature extraction
methods is instability with respect to changes in
the input data. For example, rescaling the intensi-
ties in a greyscale image can cause an edge detec-
tion algorithm to output a different set of edges.
Both object segmentation and feature extraction
can have stability problems. Ideally, an algorithm

should require little or no user assistance in form-
ing a representation of the image features, but
should have enough stability to be able to handle
reasonably large variations in input data.
Once the computer representation of the image
features is formed, the matching can begin. As
mentioned, the requirements for a good interpola-
tion are application- and user-dependent, so an al-
gorithm should allow users flexible control of the
matching process. For example, object A1 in
Fig. 2a should be matched to object B1 in Fig. 2b
if the main criterion for matching is object size, but
the same object in Fig. 2a should be matched to
object B2 in Fig. 2b if the main criterion is object
position.
In this paper, we present a new approach to image
interpolation that focusses on good shape interpo-
lation, as well as stability and flexible control of
feature matching. The central idea is to represent
each image by a union of spheres (UoS) volumet-
ric model. After a UoS is created, a simplification
process (clustering) is used to reduce the number
of spheres in the model. The spheres from the
two simplified UoSs are then matched, constrained
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Fig. 1. An example of good shape interpolation: morphing
from a vase to a cross-section of the brain

Fig. 2a, b. An example showing the need for user control
in the matching
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Fig. 3a±c. Test images: a faces; b CT slices; c Visible Man legs
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by a number of user-controlled parameters. The
matches are used to produce interpolated UoSs,
from which the intermediate images are derived.
There are a number of main advantages to using
this approach. All of the image features are ªcap-
turedº in the UoS representation without having
to be explicitly extracted from the image. The po-
sitions and sizes of the spheres and the relation-
ships between the spheres and their neighbours re-
present very well the shapes of objects in the im-
age, as well as representing the relationships be-
tween objects. Thus, for many applications, our al-
gorithm does not require any user input for the
specification of image features. In such cases, even
the selection of an isovalue (i.e. thresholding), a
task required in many algorithms for generating
boundary points, is not necessary. Although our
method is designed to be largely automatic, for
some applications, such as aesthetic morphing,
augmenting the algorithm with some user specifi-
cation of features may enhance the results. In such
cases, manual specification is done in a prepro-
cessing step by rescaling the pixel intensities of
the features that need to be highlighted. An exam-
ple of how this is done is given in Sect. 3.
Ranjan and Fournier (1994) show that UoS models
are stable with respect to changes in the input data.
No algorithm is immune to very large changes ±
features can actually appear or disappear from
the image as a result of such changes. However,
in most cases that we have studied, the UoS repre-
sentation allows for the reliable and intuitive pre-
diction of how the model will change in response.
This allows the user to compensate by adjusting
the parameters in the simplification and matching
processes. In cases where user specification of fea-
tures is used, the stability provided by the UoS rep-
resentation allows the algorithm to be reasonably
forgiving of human error.
Our algorithm allows for user control at two very
important stages. First, the user can specify the de-
gree of simplification to be done in the clustering
process. This corresponds to specifying the level
of detail to be used in the feature matching. Sec-
ond, the user can adjust several other parameters
to tune the matching process to suit the application
at hand. These parameters are explained in detail
in Sect. 2.
Figure 3 shows the images used as test cases in this
paper. For simplicity, we are only dealing with
greyscale images for this paper. We have chosen

these particular test cases to demonstrate the wide
range of input data that our algorithm can effec-
tively handle. Our data set consists of images from
three imaging modalities, and gives the reader a
good indication of the potential applicability of
our method.
Figure 3a shows two images of faces; the left im-
age (face 1) will undergo a morph to become the
right image (face 2). We use faces because morph-
ing faces is generally considered a difficult task ±
even minor artifacts in the interpolated images are
easily noticed by a human observer. In addition,
lighting effects such as shadows cause problems
in many automatic interpolation methods. In this
test case, some effects typical of photographic im-
ages, such as darker patches in certain areas of
each face, are clearly visible. These effects are a
good test of the robustness of our algorithm, in par-
ticular the stability of the UoS model. After illus-
trating the basic technique, we use the face data
to show how a small amount of user feature spec-
ification can be used to overcome some of the in-
herent limitations of automatic methods.
Figure 3b shows two consecutive slices from a
computed tomography (CT) data set. Each slice
shows a cross-section of an aorta (the largest artery
in the human body) surrounded by the wire sup-
ports of a stented graft implant. These supports
are visible as small, bright white patches around
the circumference of the blood vessel. Comparing
the second slice to the first, we can see that some
of the wires move closer together, while others
move farther apart. The shapes of some of the wires
also change. We use the CT slices as an example of
data that is particularly well suited for use in our al-
gorithm. Lighting effects are not a concern. The
features are fairly well defined, but it would still
be very time-consuming if the user had to specify
the boundary of each small wire support. This is es-
pecially true when some of the wires are partially
embedded in the aorta, making the definition of
boundaries between these wires and the aorta diffi-
cult. The problem is further compounded by the
fact that if a data set has many slices, it would be
difficult to maintain consistency in the segmenta-
tion between slices. We show that our algorithm
performs well in interpolating between the CT im-
ages with no user specification of features and very
little user input overall. The intermediate slices
generated by our algorithm can be used for volu-
metric reconstruction, as shown in Sect. 3.
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Fig. 3c shows a cross-sectional view of a man's
upper thighs. This image, from the Visible Man
data set, is a photographed image of a physical
cross-section of a cadaver. To demonstrate the
UoS feature matching capabilities, we take the
mirror image of the left leg and allow the algo-
rithm to automatically register it with the right
leg. We use this image because there are enough
similarities between the two legs for a human ob-
server to be able to qualitatively judge the results
of the registration procedure. At the same time,
the two legs are different enough to pose an inter-
esting challenge for any algorithm.

1.1 Related work

There is a large amount of literature that is related
to the work described in this paper, particularly in
the areas of feature representation and shape inter-
polation. Therefore, only a brief summary of the
major techniques is given here.
In general, there are two classes of algorithms that
perform shape interpolation. Some algorithms first
establish a correspondence between primitives in
the two objects, then interpolate between the
matched primitives; our algorithm falls into this cat-
egory. Others do not match explicitly, but use a glob-
al transformation that acts on all of the primitives si-
multaneously. Many algorithms in the first class
have the problem of being unstable with respect to
the input data. The main problem associated with
the second class is that it is very difficult to control
the intermediate shapes. Our algorithm is designed to
provide stability without sacrificing control.
A number of successful shape interpolation algo-
rithms that work in object space have been devel-
oped. Object space algorithms work on models of
objects (e.g. polygons, boundary points) and are
not concerned with the often difficult task of ex-
tracting the models from images. An example of
an object-space morphing algorithm is presented
by Carmel and Cohen-Or (1997). Their algorithm
requires a user to match individual points manual-
ly. An automatic object-space method for feature
representation and shape interpolation using un-
ions of circles is presented by Ranjan and Fournier
(1996). There are some similarities to our new al-
gorithm, but the Ranjan and Fournier (1996) algo-
rithm works completely within the 2D domain.
Our paper presents a method that starts in image

space, automatically forms 3D models to represent
the images in object space, and uses the models for
interpolation. The UoS model used in this paper
for the representation of volumetric data was de-
veloped by Ranjan and Fournier (1994).
The most popular methods of image interpolation
use specialized matching primitives drawn by the
user, such as strokes, skeletons or line segments.
Examples of this type of algorithm include work
by Beier and Neely (1992) and Lee et al. (1995).
In the case of Lee et al. (1995), energy-minimizing
splines are used to assist the user in specifying im-
age features. These algorithms are very effective in
dealing with object features that are well defined
and relatively straightforward to specify interac-
tively. The facial images in Fig. 3a are examples
of images with such features. The CT images in
Fig. 3b are examples of images for which interac-
tive specification of features can be problematic
and labour intensive because some of the wires
have fuzzy boundaries.
Many techniques have been developed for the au-
tomatic extraction of image features. These meth-
ods range from relatively simple ones, such as
thresholding and edge detection, to more complex
ones, such as skeleton extraction (e.g. Attali and
Montanvert 1997; Brandt and Algazi 1992). As ev-
idenced by the large number of techniques avail-
able, automatic feature extraction is a difficult task
and often a source of instability. Our use of the
UoS model allows image features to be represent-
ed without being explicitly extracted.
There is a significant overlap in the objectives and
techniques for image interpolation and image reg-
istration. The reader is referred to the paper by
Brown (1992) for a good survey of registration
methods.

2 Methodology

This section describes the main steps of our interpo-
lation algorithm. Steps 3 to 5 are explained in more
detail in two papers by Ranjan and Fournier (1994,
1996), so they are only summarized here. As illus-
trated in Fig. 4, the main algorithm steps are:

1. (Optional). Preprocess each image for input into
the interpolation algorithm (e.g. user feature
specification, scale pixel intensities, noise re-
moval, etc.).
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2. Generate the height field for each image from
pixel intensity data, and use the resulting point
set as boundary points for volume.

3. Generate UoS models from the two boundary
point sets.

4. Simplify the UoS models by clustering.

5. Match the spheres between the two simplified
UoS models.

6. Generate intermediate UoS models (one for
each intermediate frame in the interpolation).

7. Generate image data from each intermediate
UoS model.
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Matched &
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Grey Value to Z-Value
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Fig. 4. The main steps of the algorithm for image
interpolation using unions of spheres (UoSs)

Fig. 5. Face 1 with pixel intensities inverted

Fig. 6. Boundary points of the face 1 volume

Fig. 7. Definition of sphericity for �rR� clusters of circles:
a large sphericity; b small sphericity
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The amount of preprocessing required is dependent
on the application and the original image charac-
teristics. For example, in the facial images shown
in Fig. 3a we notice that most of the important fea-
tures (e.g. eyes, eyebrows, outline of the nose,
mouth, etc.) are lower in pixel intensity than the
rest of the face. To ensure that these features are
well represented in the UoS models, we invert
the pixel intensities, so that the darker features be-
come the lighter ones. Figure 5 shows face 1 from
Fig. 3a with the pixel intensities inverted. The
height field generated from this image would have
peaks where the important features are. In contrast,
the CT slices in Fig. 3b do not need to be prepro-
cessed at all for input into our algorithm. In this
case, the most important features to be matched
are the graft wire supports that appear as bright
white spots, which naturally become peaks in the
height field.
The generation of the height field is relatively
straight-forward. All that is required is a mapping
from the intensity value at each pixel to a z-value
in the height field. A simple linear mapping works
well in most cases. Scaling the z-values is often
useful for controlling the number of spheres in
the derived UoS. The points in the height field
are then used as the boundary points of a volume.
This volume is bounded by the image plane. Figure
6 shows the boundary points generated from the
face 1 image. The important facial features already
mentioned are visible as peaks in the height field.
(In this case, the positive z direction is perpendic-
ular to the face and points in the same direction as
the nose.)
After the boundary points are generated, the UoS
model can be formed. There are three basic steps
to forming a UoS from a set of boundary points.
The first step is to compute the Delaunay tetrahe-
dralization of the point set. The second step is to
compute the circumscribing sphere of each tetrahe-
dron. The last step is to discard all spheres that are
ªoutsideº the object. The remaining spheres form
the UoS. The Delaunay tetrahedralization is used
because of its empty sphere property, which guar-
antees that each sphere contains exactly four
boundary points, all of which lie on the surface
of the sphere. Since a sphere cannot contain any
other boundary points, all voxels contained within
a sphere must be either inside the object or outside
the object. In other words, no sphere contains both
inside and outside voxels. Using this property, we

have a quick test for determining whether a sphere
is inside or outside the object. For each sphere, we
only need to test one of its voxels to decide wheth-
er the sphere is outside and should be discarded.
The next main step in our algorithm is a simplifi-
cation process aimed at reducing the number of
spheres while preserving the features as much as
possible. The degree of simplification corresponds
to the level of detail in the UoS model. Reducing
the number of spheres has the advantage of in-
creased speed in the matching and visualization
processes. The simplification algorithm replaces
clusters of spheres within the UoS with larger en-
compassing spheres. Hence the process is called
clustering. The degree of simplification is con-
trolled by a user set parameter called sphericity,
which is a measure of how well a set of spheres
can be modelled by a single sphere. Mathematical-
ly, the sphericity of a cluster of spheres is defined
as the ratio of the radius of the largest sphere in the
cluster to the radius of the smallest sphere enclos-
ing all spheres in the cluster. Figure 7 shows how
sphericity is defined for circles; the extension to
spheres is trivial.
The clustering algorithm processes the spheres in
order of decreasing size. In each iteration, the al-
gorithm takes the largest unprocessed sphere a,
and calculates the smallest sphere encompassing
a and as many other unprocessed spheres as pos-
sible, under the constraint that the cluster must
have a sphericity greater than or equal to the us-
er-chosen threshold. The cluster is then replaced
by the newly formed encompassing sphere. Ran-
jan (1996) shows that the distance between the
surface of a simplified UoS and the original point
set is bounded; therefore, clustering is guaranteed
not to distort the original image features beyond
what is expected at a given sphericity. In addition,
the clustering process is very effective at greatly
simplifying areas of low detail while preserving
high detail where required. For example, Fig. 8
shows the unclustered and clustered UoSs of face
1. The unclustered version has about 7000
spheres, whereas the clustered one has about
700. Even with this great reduction in the number
of spheres, the important facial features are still
well represented in the simplified UoS. Notice
that, while most of the smaller spheres in the un-
simplified UoS are clustered and replaced by larg-
er spheres in the simplification process, some
small spheres still appear in the clustered UoS, es-
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Fig. 8. Clustering of the face 1
UoS model, reduction from �7000
to �700 spheres

Fig. 9. a Union of spheres (UoS) model of face 1 ± the facial features are well represented and clearly visible; b UoS model of face 2;
c UoS models of two CT slices superimposed to show their differences; d volume rendering of interpolated CT slices
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pecially in the areas with greater detail in the
original image, such as the eyebrows, eyes and
mouth.
Visualization of the UoS after simplification (using
Open Inventor) to assess qualitatively how well the
image features are being represented can help the
user determine if the current sphericity value is ap-
propriate. For example, Fig. 9a, b show the simpli-
fied UoSs of face 1 and face 2, respectively. The
sphericity used in this case (0.65) seems to result
in a suitable simplification of both volumes; the
number of spheres (approximately 700 in both
cases) is quite manageable, but the features of
the two faces are present in enough detail that
the user can see clearly which groups of spheres
from face 1 should be matched to which in face 2.
Once the simplification process is complete, the
matching process between the two UoSs can begin.
The first step in the matching process is the calcu-
lation of the distances d(a, b) between every a and
b, where a is a sphere in the first UoS, and b is a
sphere in the second. We define the distance be-
tween two spheres as a function of the differences
in their locations, sizes and characteristic features.
The definition of a feature in this case is a mathe-
matical relationship between a sphere and its four
largest neighbours. We use four neighbours be-
cause, in an unsimplified model, each sphere has
a maximum of four neighbours. In a simplified
model this choice is somewhat arbitrary. Between
a sphere and each neighbour, we take the gradient
dR
dD; where dR is the signed difference between the
radius of the sphere and the radius of the neigh-
bour, and dD is the unsigned distance between
the centres of the spheres. Figure 10 shows the
2D analog using circles. The gradients in the direc-
tions of the four largest neighbours of a sphere
form the feature of that sphere. If a sphere has less
than four neighbours, the value for each missing
neighbour is set to �¥ because in this direction
the neighbouring sphere shrinks to 0 for any dis-
tance moved. The dR

dD value is then mapped to the
range [0, 2], where �¥ is mapped to 0, 0 to 1,
and +¥ is mapped to 2.
The distance between the features of two spheres
can best be explained by a physical analogy. If
the two features have a common centre and are
free to rotate around it, and if, between the extrem-
ities of each pair of ªbranchesº (in the directions of
neighbours), there is a spring that has a pulling
force proportional to its length, then the system

will be at rest when the potential energy is at a
minimum. The sum of the residual distances be-
tween the branch extremities in this minimum en-
ergy state is taken to be the feature distance be-
tween the two spheres. Fig. 11 illustrates the fea-
ture distance between two circles, where the fea-
ture of a circle is defined by its relationship with
its three largest neighbours.
The overall distance between two spheres a, b is
given by:

d(a, b)=wp dp(a, b)+ws ds(a, b)+wf df(a, b)

where dp(a, b)=(xa�xb)2+(ya�yb)2+wz(za�zb)2, ds(a,
b)=(ra�rb)2, and df(a, b) is the feature distance be-
tween a and b. The user controls the matching pro-
cess by setting values of wp, ws, wf and wz; wp is the
position weight, ws is the size weight, wf is the fea-
ture weight, and wz is the z-value weight, normally
only used when there is a large difference in the z-
value ranges of the two UoSs. For example, to
match only by sphere size, the user would set
ws>0, but all other weights to 0. Appropriate scal-
ing of the height fields before UoS generation
makes wz somewhat redundant. The primary rea-
son for not setting wz to 1 permanently is that try-
ing different scale factors for the height fields can
be time consuming because a new UoS needs to be
generated for each new scale factor. With wz, the
user needs only to estimate the scale factors rough-
ly and can simply use wz to compensate for differ-
ences in the resulting height ranges.
The user selects the weights wp, ws, wf and wz by
experimentation and visualizing the UoSs. For ex-
ample, Fig. 9c shows the UoSs computed from the
CT data shown in Fig. 3b. In this visualization, the
two UoSs are superimposed, with the transparency
of one set to 50% to give the user a good idea of
how the spheres should be matched. In this case,
wp, ws and wz should be relatively large (0.90 to
1.0), with wf somewhat smaller (0.25 to 0.50) be-
cause we can see that the spheres that should be
matched are quite close in position and size. In
contrast, getting the desired matches between the
two UoSs shown in Fig. 9a, b would require a larg-
er feature weight because the neighbourhood con-
text of the spheres is more important for matching
in this case. After matching with some initial val-
ues for the weights, a number of interpolated UoSs
can be formed and visualized; the user can then
make adjustments if necessary. We find that ani-
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mating the interpolation is especially useful in
helping the user find appropriate values. Normally,
close to optimal values are attained within several
iterations.
After all the distances between spheres have been
calculated, a bipartite graph is built in which the

nodes correspond to the spheres and the weights
on the edges are the distances between them. A
maximum match is computed so that the sum of
the distances between all matched pairs is a mini-
mum. If the number of spheres in the two UoSs are
not the same, there will be a number of unmatched
spheres on one side. These spheres can be dealt
with in a number of ways. For example, they can
simply be matched to their nearest neighbours. In
other cases, the number and/or locations of the
spheres may be such that they do not affect the ap-
pearance of the derived image. In such cases, the
spheres can be discarded.
The interpolation step comes next in our algorithm.
For each pair of matched spheres a and b, a num-
ber (the number of frames required in the interpo-
lation) of intermediate spheres are produced. The
position and size of each intermediate sphere are
obtained by linear interpolation from the matched
spheres. In addition, because the features of a
and b have specific orientations, the intermediate
sphere should be rotated to reflect the change in
orientation. The degree of rotation is also linearly
interpolated. For most spheres on the positive z
surface, the axis of rotation is likely to be close
to the z-axis (i.e. within 30 degrees) because the
features of these spheres represent 2D image fea-
tures.
The final step in the algorithm is the generation of
the images from the interpolated UoSs. The basic
idea is to associate a pixel with a particular loca-
tion on a sphere, and track the movement of that
pixel as the sphere moves, scales and rotates across
frames in the interpolation. This is done by project-
ing the image onto the upper surface of the UoS.
For each pixel in the interpolated image, the algo-
rithm finds the corresponding pixels in the original
two images by comparing the locations, sizes and
orientations of the associated spheres. The final
value for that pixel is linearly interpolated from
the two values in the original images. Figure 12
shows a simple example of how this process
works. Consider the arrow-shaped pattern in the
centre of the interpolated image. The 2D projec-
tion of the surface sphere at that location is shown
as a dotted circle. The 2D projections of the
matched spheres are shown in Images 1 and 2.
The sphere from Image 1 moves to the right and
down, gets smaller in size, and rotates about the
z-axis as we move through the frames of the inter-
polation. The pixel values of the arrow in the cen-
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Fig. 10. The gradient for circle 1 in the direction for
circle 2

Fig. 11. The feature distance between two circles
(a+b+c)

Fig. 12. Computing an image from the interpolated
union of speres (UoS)
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tre image are interpolated from the arrows in Imag-
es 1 and 2.
Some problems may occur if there are areas where
spheres have an axis of rotation that is far from the
z-axis because, in such cases, parts of spheres not
initially associated with any pixels may appear at
the surface of an interpolated UoS. This may cause
artifacts in the image. So far, our tests have not had
these problems to any significant extent. This is
due to the fact that, for any given sphere in our
UoS model, its four largest neighbours are likely
to have very similar z-values. However, we intend
to investigate the possibilities of the occurrence of
this type of artifact further, as well as means of
ªfilling inº such areas.

3 Results

As shown in Fig. 3, the test images we use for this
paper are a pair of faces, two consecutive CT slices
and a cross-section of a man's legs. These test
cases are used to demonstrate the capabilities and
limitations of the method, as well as the wide
range of potential applications of our technique.
This section describes the results of applying our
algorithm to the test images. We believe the results
presented in this paper show great potential for
practical applications of the method.
Figure 13 shows the facial images produced with
our interpolation algorithm without any user spec-
ification of features. Frame 1 in the sequence is
face 1, and frame 11 is face 2. The most obvious
observation is that all of the intermediate frames
look like human faces. A human viewer normally
focusses on areas such as the eyes, eyebrows, nose,
mouth and the curvature of the face, all of which
are reasonably well interpolated, as shown in the
intermediate frames (2±10). For example, the nose
gets larger gradually, the eyes get smaller, the eye-
brows change shape and move towards the eyes in
a smooth manner, and the face gets thinner without
getting jagged. This is a good result, especially
considering that no user specification of features
is used.
However, a number of artifacts are visible. The
most noticeable problem is that the upper lip area
of face 1 gets matched to the lower lip of face 2,
causing a strange ªflipping overº of the upper
lip to form the lower lip. The main reason for this
is that the lower lip of face 1 is much smaller than

the rather prominent lower lip of face 2. In addi-
tion, the bottom edge of the lower lip of face 2
is similar in shape to the upper lip of face 1. Most
automatic methods would have problems with this
type of situation because most algorithms do not
know the difference between upper and lower lips.
In our case, the problem can be corrected by a
small amount of manual feature specification.
The mouth can be forced to match properly simply
by increasing the pixel intensities in the area be-
tween the lips to highlight this region in both fac-
es. In our case, we use a drawing program to
ªpaintº a white line between the lips in the two
original faces. Figure 14 shows the interpolation
done with this minor modification. The lips are
now interpolated nicely. If the user wants to fur-
ther enhance other parts of the interpolated imag-
es, he is free to manually specify other features as
desired.
For the CT data, the most important matches are in
the graft wire supports that appear as small, bright
white patches around the circumference of the
aorta in the original images. As can be seen in
Fig. 3b, some of the wires move toward one anoth-
er, while others move apart. In addition, the aorta
and some of the wires change shape between the
two images. The goals of this interpolation are
very similar to that of the contour correspondence
problem (Meyers et al. 1991), where the matching
and interpolation of the shapes of contours are pri-
mary objectives. Figure 15 shows the results from
applying our algorithm. Frame 1 is the first origi-
nal slice, frames 2 to 10 are interpolated images,
and frame 11 is the second original slice. Even
with no manual feature specification, our algo-
rithm effectively interpolates between the two
original slices. In order to further assess the quality
of the interpolation, we perform a 3D volumetric
reconstruction using the new slices. Figure 9d
shows a volume rendering of all 11 slices. It is very
clear in this figure that the wire supports are not
parallel, which reflects what is seen in a real graft.
Using our interpolation method, we are able to ob-
tain a reconstruction with great detail using only
two initial slices.
The data for our third test case is the image of the
two legs shown in Fig. 3c. The mirror image of the
left leg and the image of the right leg are the input
to our algorithm. Our software forms UoS repre-
sentations of the images, performs the sphere
matching, then calculates the transformation ma-
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trix that should be applied to the left side to regis-
ter the two images. Figure 16a shows the mirror
image of the left leg manually superimposed on
the image of the right leg. This shows that one
of the transformations should be a clockwise rota-
tion of left leg about the z-axis. Our results are
very positive because the transformation matrix

calculated by our algorithm performs a translation
and a rotation (6.6 degrees) about the z-axis and re-
sults in the image shown in Fig. 16b. Qualitatively
speaking, the two legs are well registered, with
similar features very close together. As with the
CT data, no manual feature specification is re-
quired for the matching process.
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Fig. 13. Interpolation between face 1 and face 2 with no manual feature specification

Fig. 14. Interpolation between face 1 and face 2 with manual feature specification for the lips
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3.1 Processing time

This subsection gives an example of the amount of
processing time required by the current version of
our algorithm to create a simplified UoS model
from an image, match the features between two
UoSs, and render a number of interpolated frames.
The facial images shown in Fig. 3a are used for the
timing tests. Each image is of size 72�66�16
(width�height�depth) bits. The number of spheres
in each unsimplified model is about 7000, and the
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Fig. 15. Interpolation between CT slices

Fig. 16a, b. Visible Man legs: a unregistered b registered

16

number of spheres in each simplified model is
about 700. The final output of the algorithm con-
sists of 11 images, 9 of which are interpolated
(the start and end images are re-rendered from
their respective UoSs to make sure they match
the original images). Our tests are performed on
a Silicon Graphics Indigo II Impact workstation
with an R1000 CPU. Table 1 summarizes the tim-
ing results.
While the UoS generation and rendering processes
take the most time, optimal efficiency is not criti-
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cal for these processes because they are only used
once in the entire procedure. In addition, they do
not require supervision while running. Therefore,
not much effort has been put into optimizing them.
In contrast, distance calculation, matching and in-
terpolation are usually performed several times
while the user determines the appropriate distance
weights. For these processes, the user has to wait
until completion, visualize the results, then make
adjustments as necessary. Work is currently being
done to reduce waiting time during these interac-
tive sessions.

4 Summary and conclusions

We have presented an algorithm for image inter-
polation using UoSs. The algorithm is designed
for good shape interpolation and increased stabil-
ity with respect to changes in the input data. It
also provides the user with a reasonable degree
of control. We have shown that this method can
interpolate between images with minimal prepro-
cessing. For many applications, our algorithm re-
quires no user specification of image features, but
the user still has flexible control of the matching
process. We have shown that the method easily
facilitates manual feature specification where de-
sired. Visualization of the UoSs allows the user to
select suitable values for a number of parameters
that control the simplification and matching of the
models.
Three test cases, one of facial images and two of
medical data, were used to demonstrate the capa-
bilities of the method. The face data revealed some
of the limitations inherent in automatic interpola-
tion methods, and we showed how manual specifi-
cation can be used to augment our technique to
overcome these limitations. The CT and Visible
Man leg images were used as examples of the

types of data for which no manual feature specifi-
cation is required for effective matching. The CT
data was used in a volumetric reconstruction ex-
ample to show the quality of the interpolation.
The Visible Man legs were used in a registration
example to demonstrate the feature matching capa-
bilities of our algorithm.
Even though our algorithm has a number of advan-
tages, it also has a number of weaknesses. Of pri-
mary concern is the fact that certain processes can
be computationally intensive and quite time con-
suming, especially for larger images (i.e.
³256�256 pixels). Work is currently being done
to improve the algorithm's efficiency.

5 Future work

There are many areas that we are currently explor-
ing or intend to work on in the future. While we
are experimenting to further test the capabilities
of the algorithm with a minimal amount of prepro-
cessing of the images, we are also investigating a
number of preprocessing methods that could en-
hance the results of using our method for certain
applications. For example, various nonlinear map-
pings from pixel intensities to height values are be-
ing tested.
We also plan to further extend the range of input
data to test the robustness and stability of the rep-
resentation. For example, in theory, our algorithm
should be able to handle pairs of images that differ
significantly in size or the amount of detail pres-
ent. Also, at present, we have only used greyscale
images; the extension to colour would be straight-
forward, but still very useful and interesting.
In addition, other applications of the use of the UoS
representation of images will be explored. For ex-
ample, because the method provides a way to mea-
sure distances between features, it can potentially
be used for searching images in a database. Another
potential application is image ªwarpingº via manu-
al manipulation of the UoS model.
We are also interested in extending the basic con-
cept of this paper to higher dimensions. The next
step would be to use four-dimensional models to
represent three-dimensional shapes, and to apply
simplification and matching techniques, analogous
to the ones used here, to the new models.

Table 1. Timing results for UoS interpolation algorithm

Process Time (seconds)

Height field generation 7 (per image)
UoS generation 104 (per image)
Clustering 39 (per model)
Distance calculation 4
Matching and interpolation 20
Rendering from interpolated UoS's 724 (11 frames)
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