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Abstract 

Radiative flux transfer between Lambertian surfaces can be described in terms of linear 

resistive networks with voltage sources. This thesis examines how these “radiative 

transfer networks” provide a physical interpretation for the eigenvalues and eigenvectors 

of form factor matrices. This leads to a novel approach to photorealistic image synthesis 

and radiative flux transfer analysis called eigenvector radiosity. 
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Preface 

Nine Years 

This thesis is the culmination of a nine-year odyssey to answer a single question: What is 

the physical meaning of the eigensystem of a form factor matrix? 

In 1992, I presented my first academic paper (“Near-Field Photometry: A New 

Approach”) at the annual conference of the Illuminating Engineering Society of North 

America. Another conference paper that caught my attention at that time was “On Setting 

Up and Solving Large Radiative Transfer Systems” by David DiLaura and Peter Franck. 

In this paper, the authors demonstrated that the radiosity equation – a finite element 

method for determining the transfer of radiant flux between perfectly diffusing surfaces – 

could be reformulated in terms of the eigensystem of the form factor matrix associated 

with the equation. Unfortunately, it applied only to radiative transfer systems where all 

surfaces had the same area and there were no occlusions – the proverbial empty 

rectangular room. It was at best an interesting theoretical result with little practical 

application. 

Being more comfortable with physical concepts than I was at that time with abstract 

mathematics, I asked David DiLaura whether there was a physical interpretation of their 

technique. He replied that the physical meaning of eigenvectors in terms of radiative 

transfer systems was unknown. 

Their meaning was unknown … this question became a quiet obsession for me. It was 

on my mind while I was writing my book, “Radiosity: A Programmer’s Perspective” 

[ashd94], to the extent that I wrote an (unpublished) appendix devoted to what I called 
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“eigenvector radiosity.” This was mostly a rewrite of the original paper; all I had to 

contribute then was the name. 

In 1998, I decided to devote some serious thought to the question by enrolling as a 

computer science graduate student at my alma mater, the University of British Columbia. 

It was my intention to write a master’s thesis on eigenvector radiosity. 

After two years of research and numerous journeys down blind alleys (including 

principal components analysis, the Karhunen-Loeve transform, singular value 

decomposition, eigenspectra of graphs, probability theory, and neural networks), I still 

did not have an answer. I did know however that the question had been addressed – albeit 

without much success – by a number of other researchers in illumination engineering, 

computer vision, and computer graphics. Sixty years of investigation and the question 

was still open. 

This all changed in October 2000 when I was reminded during a discussion on 

thermal analysis that a radiative transfer system could be represented as a lumped 

electrical network. 

For some unknown reason, I decided to review the original paper on the topic. 

(Judging by the layer of dust on the library copy, I was the first person to do so in forty 

years.) I casually noted that the electrical network analogy required a slightly different 

formulation of the radiosity equation. Apart from this, there appeared to be nothing of 

interest. Another blind alley. 

It was on the evening of December 25th, 2000 that everything suddenly fell into place. 

While doing little more than doodling with the equations, I realized that there was indeed 
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a fundamental relationship between the electrical network analogy and the eigensystem 

of a form factor matrix. This was a much-appreciated Christmas present! 

In retrospect, the answer is almost embarrassingly simple: 1) multiplying the form 

factor matrix by the diagonal matrix of the surface areas produces the conductance matrix 

for the network representation of the radiative transfer system; and 2) each eigenvector of 

the conductance matrix represents a physically realizable network (if you allow for 

“negative” light). The spectral decomposition theorem states that the parallel node-by-

node summation of these networks is equivalent to the original network. 

This revelation solved a second and more fundamental problem: reformulation of 

DiLaura and Franck’s equations in terms of the conductance matrix rather than the form 

factor matrix generalized their technique to all physically realizable radiative transfer 

systems. 

As with any research project, answering one question raises many more. In this case, 

it appears that eigenvector radiosity may offer a practical technique for a number of 

engineering disciplines. This includes any physical system that can be modeled as a 

lumped electrical network, including gas distribution networks, structural frameworks, 

communication networks, nuclear reactors, neural networks, transportation systems, and 

more. 

Due to time and space constraints, this thesis addresses eigenvector radiosity only in 

the related contexts of radiative transfer analysis and photorealistic image synthesis. 

Investigating its potential applications in other disciplines is for future consideration. 

… and so it begins. Nine years is a long time to ponder any question. Regardless, it 

was one well worth answering. 
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Thesis Outline 

This thesis consists of six chapters and three appendices. 

Chapter One (“Introduction”) introduces the topic of radiosity as an engineering tool, 

followed by a discussion of form factors and the radiosity equation. Much of the material 

is adapted from my book on the topic [ashd94]. 

Chapter Two (“Solving the Radiosity Equation”) discusses three iterative techniques: 

Jacobi, Gauss-Seidel, and the lesser-known Southwell iteration (better known in 

computer graphics as progressive radiosity). As discussed in Chapter Four, it is this latter 

technique that provides the foundation for a practical implementation of eigenvector 

radiosity. Again, much of the material is adapted from [ashd94]. 

Chapter Three (“Eigenvector Radiosity – Theory”) presents the mathematical basis of 

eigenvector radiosity in terms of equivalent electrical networks and their conductance 

matrices. 

Chapter Four (“Eigenvector Radiosity – Practice”) presents an extension of 

eigenvector radiosity that does not require knowledge of the full form factor matrix. This 

allows the technique to be used in conjunction with progressive radiosity and related 

global illumination methods. 

Chapter Five (“Numerical Experiments”) presents the application of eigenvector 

radiosity to several exemplars of architectural lighting design. These illustrate both the 

advantages and limitations of eigenvector radiosity within the context of typical 

illumination engineering problems. (The experiments were conducted using a modified 

version of the author’s commercial Helios Radiosity Renderer®.) 
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Chapter Six (“Conclusions”) discusses the results and considers future research 

directions for eigenvector radiosity. 

Appendix A (“MATLAB Experiments”) presents a MATLAB implementation of 

eigenvector radiosity using analytic form factors and a discussion of the results for an 

empty rectangular room. 

Appendix B (“Eigenspectra”) reviews various theorems concerning eigenspectra and 

their bounds as they relate to eigenvector radiosity. 

Finally, Appendix C (“Radiometric and Photometric Units”) reviews the not-always-

intuitive measurements units of radiometry and photometry. The material is adapted from 

[ashd94]. 

Will eigenvector radiosity prove to be a useful computer graphics rendering 

technique? This remains to be seen, as there is much work to be done between the proof 

of concept presented in this thesis and a commercial software product. 

Will eigenvector radiosity prove to be useful in other engineering disciplines? This 

also remains to be seen. Chapter Five demonstrates that the technique is not a panacea for 

all illumination engineering problems; the same issues will likely occur in other fields. 

Nonetheless, there are potential applications waiting to be addressed, particularly in 

acoustics research. 

I can see that this will be an ongoing project … 

                                                           
 Helios Radiosity Renderer is a registered trademark of byHeart Consultants Limited. 
 MATLAB is a registered trademark of The MathWorks, Inc. 
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Chapter 1 

Introduction 

1.1 Radiosity – An Engineering Tool 

Radiosity is a finite element method that simulates the transfer of radiant flux1 between 

Lambertian surfaces. Originally proposed in 1926 as a calculation tool for architectural 

lighting design [yama26], radiosity methods have since been successfully applied to 

photorealistic image synthesis in computer graphics [e.g., cohe93, sill94]. 

While a phenomenal amount of research effort has gone into developing various 

radiosity methods as robust and practical rendering tools for computer graphics 

applications, they have also been developed into calculation tools for a variety of 

engineering disciplines. These include illumination engineering (architectural and 

roadway lighting design), thermal engineering (furnace and radiator design), aerospace 

engineering (spacecraft and satellite design), military hardware engineering (battlefield 

simulations for infrared vision and imaging radar systems), remote sensing applications 

(light transport in forest canopies and crops), and astronomy (stellar atmosphere 

modeling). 

The principles of radiant flux transfer between surfaces have also been applied to the 

acoustic domain, where acoustic radiosity methods [e.g., dale96, tsin98] allow architects 

and engineers to analyze the impulse responses of concert halls and other large 

architectural spaces. 

                                                           
1 Radiometric and photometric terminology is reviewed in Appendix C. 
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Somewhat surprisingly, relatively little research effort has been devoted to 

developing radiosity methods as engineering design tools. In thermal engineering, for 

example, many commercial applications still rely on algorithms developed in the 1950’s. 

The computer graphics community has focused its research efforts mostly on 

photorealism – the computer synthesis of images that are difficult to distinguish from 

photographs of physical spaces. While this makes sense in terms of computer graphics, 

engineers are more interested in physically correct simulations and accurate radiometric 

and photometric predictions. 

The requirements of illumination engineering provide a good example. Given a three-

dimensional CAD model of a virtual architectural space, the lighting designer must 

choose and position light fixtures (referred to in the industry as luminaires) to provide 

artificial illumination for the space. 

Radiosity methods allow the lighting designer to produce architectural visualizations 

that accurately represent how light behaves in a physical environment (e.g., Figure 1.1). 

Because these methods are based on physical principles, they also enable the designer to 

prepare point-by-point illuminance distribution (isolux) plots, luminance distribution 

summaries, and statistical reports that accurately characterize the luminous environment. 

Radiosity methods therefore provide the basis for both visual communication with the 

client and reliable engineering calculations. 

Other engineering disciplines have similar requirements. While it is often useful to 

visualize a design or problem, it is more important to be able to derive quantitative 

radiometric or photometric predictions. 
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Figure 1.1 – Architectural lighting design example. (Image courtesy Matthew Walters, 

Thorlux Lighting.) 

Engineers may not require photorealistic image synthesis, but they will demand 

calculation tools that are as fast as possible. Unfortunately, the radiosity method is 

compute-intensive. 

An architectural lighting design visualization (e.g., Figure 1.1) may require several 

minutes of calculation time on a desktop personal computer. While this is in itself 
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reasonable, it is only a small portion of the design process. On viewing the associated 

isolux plots, the lighting designer may choose to change or reposition the luminaires. 

Similarly, the architect or client may request changes to the wall finishes and floor 

coverings. 

It is therefore desirable to have the ability to quickly recalculate the luminous flux 

distribution within an architectural environment when such design changes are made. 

Ideally the calculations should take seconds rather than minutes – this would provide 

lighting designer and architects with a truly interactive engineering design tool. 

The benefits of such a design tool would not be limited to lighting designers and 

illumination engineering. As another example, aerospace engineers need to analyze the 

solar heating characteristics of satellites. Because the distribution of solar radiant flux 

changes as the satellite rotates, radiosity calculations must be performed for dozens to 

hundreds of different orientations. Any improvement in the calculation times would be 

welcome. 

Acoustical engineers would also benefit from an interactive acoustic radiosity design 

tool. Ideally, this tool would allow for real-time playback of arbitrary sound sources 

where both the source and the listener are moving through the environment. 

The goal of this thesis is to develop a radiosity method that will meet these 

requirements. 

1.2 Radiosity Explained 

The underlying principles of radiosity are most easily explained with an example. 

Consider the rectangular room shown in Figure 1.2. It has a luminaire mounted on the 
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ceiling and a table sitting on the floor. Radiosity simulates the physical flow of light 

within this environment. 

 

Figure 1.2 – Modeling the flow of light in a rectangular room. 

In reality, this flow of light consists of photons that travel through space and optically 

homogeneous media (air, water, glass, and so forth) in straight lines. By modeling these 

paths as geometrical rays, we can (in principle) determine the distribution of radiant flux2 

within the room using ray-tracing techniques. 

Radiosity methods take a fundamentally different approach. Each surface is divided 

into a mesh of elements called patches (Figure 1.3) – a prerequisite for any finite element 

method. Also, most radiosity methods make two simplifying assumptions: each surface is 

an ideal diffuse (Lambertian) reflector, and each light source is a Lambertian emitter. 

(Fortunately, most architectural finishes exhibit approximately Lambertian reflectance 

characteristics.) 

The assumption that all surfaces are Lambertian is important – they have a constant 

radiance that is independent of the viewing direction. For a Lambertian reflector, the 

distribution of reflected radiant flux is independent of the angle of the incident flux. From 

                                                           
2 For the sake of convenience, radiosity will henceforth be discussed in radiometric terms. The conversion 
of radiometric units to their photometric equivalents is immaterial to the discussion. 
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the point of view of a single patch, it does not matter where the light is coming from; if 

we know its irradiance and reflectance, we can easily calculate its radiant exitance and 

radiance. 

 

Figure 1.3 – A rectangular room with surfaces divided into patches. 

We know that the distribution of flux leaving a Lambertian surface (or emitter) is 

given by Lambert’s Cosine Law (Equation C.15). We can therefore calculate the flux 

emitted in any given direction by the light source (i.e., luminaire) patches. Simple 

geometry allows us to determine which patches are visible from each light source patch; 

this allows us to determine their irradiances. Each irradiated patch in turn reflects some of 

its incident flux back into the room. Again using Lambert’s Cosine Law, we can 

determine the irradiances of all the patches visible to it. 

This process is clearly iterative, and proceeds until all of the reflected flux is finally 

absorbed. If we keep a record of how much flux each patch reflects and/or emits, we end 

up knowing its radiant exitance M. Since the patch is Lambertian, we can divide M by π 

to determine its radiance L (from Equation C.17). 

Finally, we know the geometry of each patch in the room. If we know its radiance 

(and consequently its luminance), we can use a 3-D graphics package to directly render a 
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photorealistic image of the room as a collection of shaded 3-D polygons from any 

viewpoint. 

1.3 Form Factors 

The most difficult aspect of developing a radiosity rendering program has nothing 

whatsoever to do with light per se. The claim in Section 1.2 that “simple geometry allows 

us to determine which patches are visible from each patch” is true, but only in an intuitive 

sense. Solving this problem analytically is anything but simple! 

Stated in more formal terms, the problem is this: knowing the radiant exitance of one 

Lambertian patch, what portion of its flux will be received by a second patch in an 

environment? 

Figure 1.4 shows this problem in its simplest form. The relative position and 

orientation of the two patches Ei and Ej is entirely arbitrary. Patch Ei is a Lambertian 

emitter that is emitting some quantity of flux Φi, while patch Ej is receiving a portion of 

its emitted flux, Φij. The dimensionless fraction Φij / Φi is called the form factor from Ei 

to Ej, and is denoted as either FEi-Ej or, more compactly, Fij. 

Figure 1.4 – Patch Ej receiving flux Φij from patch Ei. 

nj ni 
Φij 

Ej 

Ei 
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The problem is deceptively simple. The total flux emitted by patch Ei is Φi = MiAi, 

where Mi is its radiant exitance and Ai is its area. The flux received by Ej is Φij = FijΦi. 

Unfortunately, calculating Fij can be an extremely difficult problem in analytic geometry. 

1.3.1 Form Factor Geometry 

Consider the two differential area (that is, infinitesimally small) patches dEi and dEj 

shown in Figure 1.5, where dEi is a Lambertian emitter. The fraction of flux emitted by 

dEi that is received by dEj is the differential form factor from dEi to dEj, denoted as 

dFdEi-dEj. 

 

Figure 1.5 – Form factor geometry between two differential patches. 

The solid angle dω subtended by dEj as seen from dEi is: 

2cos rdAd jjθω =  (1.1) 

where dAj is the differential area of dEj. From Equation C.8, the differential flux Φ(θi) 

leaving dEi in the direction θi is: 

( ) ( ) ijiiii ddAL Φ==Φ ωθθθ cos  (1.2) 

dEj 

dEi 

ni 

nj 

dω 
θi 

θj 

r 
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where L(θi) is the radiance of dEi in the direction θi. Since dEi is a Lambertian emitter, 

L(θi) = Li (a constant) for all directions θi. Substituting this and Equation 1.1 for dω 

gives: 

2coscos rdAdAL jijiiij θθ=Φ  (1.3) 

Since dEi is a Lambertian emitter, the total emitted flux Φi is given by Equation C.17, 

or: 

iiiii dALdAM π==Φ  (1.4) 

The form factor dFdEi-dEj for two differential area patches is thus: 

2
2 coscos

coscos
rdA

rdAL
dAdAL

dF jji
ii

jijii
dEjdEi πθθ

π
θθ

==−  (1.5) 

Now, suppose that dEj is the Lambertian emitter and dEi is receiving its flux, namely 

Φji. We can determine the reciprocal differential form factor dFdEj-dEi by simply reversing 

the patch subscripts in Equation 1.5. Doing so illustrates the reciprocity relation for form 

factors between any two differential areas dEi and dEj: 

dEidEjjdEjdEii dFdAdFdA −− =  (1.6) 

We can compute the form factor FdEi-Ej from a differential Lambertian emitter dEi to a 

finite area Ej by integrating over the area of Ej: 

j
A

ji

A
dEjdEiEjdEi dA

r
dFF

jj

∫∫ == −− 2

coscos
π

θθ
 (1.7) 

Next, we need to determine the form factor FEi-dEj from a finite area Lambertian 

emitter Ei with a uniform radiance distribution across its surface to a differential area 

patch dEj. We note that the total flux Φi emitted by Ei is: 
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iii AM=Φ  (1.8) 

while the flux Φij received by dEj is: 

i
A

dEjdEiiij dAdFM
i

∫ −=Φ  (1.9) 

(Note that we are now integrating over the area of Ei rather than Ej.) 

 

Figure 1.6 – Determining the form factor FdEi-Ej by area integration over Ej. 

From our definition of a form factor, we then have: 

∫
∫

−

−

− ==
Φ
Φ

=
i

i

A
idEjdEi

iii

A
idEjdEii

i

ij
dEjEi dAdF

AAM

dAdFM
F 1  (1.10) 

which yields: 

i
A

ji

i

j
dEjEi dA

rA
dA

F
i

∫=− 2

coscos
π

θθ
 (1.11) 

Of course, our interest is in patch-to-patch form factors, or the form factor from a 

finite area Ei to another finite area Ej. For this, we need to integrate over the areas of Ei 

and Ej. (In physical terms, we need to consider the contribution of each differential area 

of Ei to the illuminance of Ej). The flux received by Ej is then: 

i
A

EjdEiiij dAFM
i

∫ −=Φ  (1.12) 

dEjn 

Ej 

dEi 
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so that the form factor FEi-Ej is: 

∫
∫

−

−

− ==
i

i

A
iEjdEi

iii

A
iEjdEii

EjEi dAF
AAM

dAFM
F 1  (1.13) 

From Equation 1.7, this yields the double area integral equation: 

ij
A A

ji

i
EjEi dAdA

rA
F

i j

∫ ∫=− 2

coscos1
π

θθ
 (1.14) 

The reciprocal form factor FEj-Ei is obtained by reversing the patch subscripts. This 

demonstrates that the reciprocity relation (Equation 1.6) also holds true for finite area 

patches. In other words: 

jijiji FAFA =  (1.15) 

The importance of the reciprocity relation cannot be overstated. It says that if we can 

somehow calculate the form factor Fij from an patch Ei to another patch Ej, then we can 

trivially calculate the reciprocal form factor Fji. This is a key concept in radiosity theory. 

The above equations implicitly assume that the two patches Ei and Ej are fully visible 

to each other. In a complex environment, two patches may be partially hidden by one or 

more occluding objects. If so, then a suitable term must be added to account for the 

occlusions, such as: 

ijij
A A

ji

i
EjEi dAdAHID

rA
F

i j

∫ ∫=− 2

coscos1
π

θθ
 (1.16) 

where the term HIDij accounts for the possible occlusion of each point of patch Ej as seen 

from each point of patch Ei. 
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There are unfortunately no practical analytical methods for solving this equation; it 

must typically be solved using numerical quadrature or Monte Carlo ray tracing methods 

[e.g., cohe93]. 

1.3.2 Form Factor Properties 

A form factor is a dimensionless constant representing the fraction of flux emitted by one 

surface patch that is received by another. It takes into account the shape and relative 

orientation of both surfaces and the presence of any obstructions, but is otherwise 

independent of any surface properties. 

Form factors were first developed for use in thermal and illumination engineering, 

where they have been variously called shape, configuration, and angle and view factors. 

The thermal engineering literature is filled with discussions of form factor algebra, of 

which the reciprocity relation is only one example. Most of these discussions relate to a 

time when form factors were calculated by hand. Some properties, however, are still 

useful. For example, the summation relation states that: 

1
1

=∑
=

n

j
ijF  (1.17) 

for any patch Ei in a closed environment with n patches. (A closed environment is one 

where all of the flux emitted by any one patch must be received by one or more patches 

in the environment. In other words, none of it can escape into free space.) This 

summation includes the form factor Fii, which is defined as the fraction of flux emitted by 

Ei that is also directly received by Ei. Clearly, Fii can only be nonzero if Ei is concave. 

Thus: 

0=iiF  if Ei is planar (i.e., flat) or convex, and 
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0≠iiF  if Ei is concave 

Most radiosity methods model surface patches as planar polygons, so that Fii is 

always zero. 

1.4 The Radiosity Equation 

If patches Ei and Ej are both Lambertian surfaces, the form factor Fij indicates the fraction 

of flux emitted by Ei that is received by Ej. Similarly, the reciprocal form factor Fji 

indicates the fraction of flux emitted by Ej that is received by Ei. However, form factors 

in themselves do not consider the flux that is subsequently reflected from these receiving 

patches. 

Remember that we are trying to determine the radiant exitance Mi of each patch Ei in 

an n-patch environment. This exitance is clearly due to the flux initially emitted by the 

patch plus that reflected by it. The reflected flux comes from all of the other patches Ej 

visible to Ei in the environment. 

Consider any patch Ej that is fully visible to Ei. The flux leaving patch Ej is Φj = MjAj. 

The fraction of this flux received by patch Ei is Φji = MjAjFji. Of this, the flux 

subsequently reflected by Ei is ρiMjAjFji, where ρi is the reflectance of Ei. This gives us: 

ijijjiij AFAMM ρ=  (1.18) 

where Mij is defined as the exitance of Ei due to the flux received from Ej. Using the 

reciprocity relation, we can rewrite this as: 

ijjiij FMM ρ=  (1.19) 

To calculate the final exitance Mi of patch Ei, we must consider the flux received by 

Ei from all other patches Ej. Thus: 
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ij

n

j
jioii FMMM ∑

=

+=
1

ρ  (1.20) 

where Moi is the initial exitance of patch Ei due to its emitted flux only. Rearranging 

terms results in: 

∑
=

−=
n

j
ijjiioi FMMM

1

ρ  (1.21) 

We can express this equation for all the patches E1 through En as a set of n 

simultaneous linear equations: 
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which we can write in matrix form as: 
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 (1.23) 

In matrix notation, this can be succinctly expressed as: 

( )MTIM −=o  (1.24) 

where I is the n × n identity matrix, M is the final n × 1 exitance vector, Mo is the initial 

n × 1 exitance vector, and T is an n × n matrix whose (i,j)th element is ρiFij. The matrix 

( )TI −  is called the radiosity matrix. 

This is the elegantly simple radiosity equation: a set of simultaneous linear equations 

involving only surface reflectances, patch form factors, and patch exitances. Solving 
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these equations provides us with the radiant exitance, radiance, and ultimately luminance 

of every patch in the environment it describes3. 

Given a set of initial patch exitances Moi, we need to solve the radiosity equation for 

the final patch exitances Mi. The matrix order is typically too large for direct methods 

such as Gaussian elimination. However, the radiosity equation is ideally suited for 

iterative techniques such as the Jacobi and Gauss-Seidel methods [e.g., golu96]. These 

methods are guaranteed to converge to a solution, because the matrix is always strictly 

diagonally dominant for flat and convex patches. That is, ρiFij is always less than one, 

while Fii is always zero. Furthermore, they converge very quickly, typically in six to eight 

iterations [cohe86]. We will examine these methods and a more powerful and useful 

variation called Southwell iteration (also known as “progressive radiosity”) in the next 

chapter. 

                                                           
3 Solving the radiosity equation for an environment is equivalent to determining its “energy balance.” 

The amount of radiant flux reflected and absorbed by a patch must equal the amount of flux incident on its 

surface. Flux is energy per unit time. If this balance is not maintained, the patch will steadily accumulate or 

lose energy over time. The final solution to the radiosity equation therefore ensures that the flow of energy 

is balanced for all patches in the environment. 
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Chapter 2 

Solving the Radiosity Equation 

2.1 Full Radiosity 

We saw in Chapter One that the radiosity equation is a system of n linear equations of the 

form: 
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 (2.1) 

where n is the number of surface patches in the environment. We know the initial 

exitance vector; its entries Moi will be mostly zeroes. The only non-zero entries are for 

those patches representing Lambertian light sources. We also know the reflectivity ρi of 

each patch, and we can estimate the form factor Fij between any two patches i and j. All 

we have to do to obtain the final exitances Mi is to solve these equations. 

Most environments result in linear systems that are far too large to solve using direct 

methods such as Gaussian elimination. The classic alternative is to use iterative 

techniques such as the Gauss-Seidel method [e.g. golu96]. This was the original approach 

taken by Goral et al. [gora84]. Baum et al. [baum89] referred to it as the full radiosity 

algorithm. 

Unfortunately, this gives us a radiosity algorithm with O(n2) time and space 

complexity. Even a moderately complex environment with 50,000 patches can easily 



 17 

consume one to ten gigabytes of memory for its form factors and take days of CPU time 

to compute a single image. We clearly need a better approach. 

What we really want is an algorithm that consumes a minimal amount of memory and 

that generates a reasonable approximation of the final image almost immediately. More 

generally, we need to maintain a careful balance between the requirement for 

photorealistic images and the demands of interactive computing. 

In a perfect world, our algorithm would generate a reasonable first approximation 

(that can be displayed as a bitmap image) and then progressively and gracefully refine the 

solution until it reaches its final form. This essentially describes how iterative techniques 

work, except that we need a much more effective algorithm than the Gauss-Seidel 

method. 

The great surprise is that such an algorithm actually exists. Before examining it, 

however, we should review the basic principles of iterative techniques. 

2.2 Iterative Techniques 

Referring to Equation 1.24, we can express Equation 2.1 more succinctly in matrix 

notation as: 

( )MTIM −=o  (2.2) 

where I is the identity matrix and T is: 
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where R is the (diagonal) reflectance matrix and F is the form factor matrix. 

If we consider the radiosity matrix (I–T) as an n × n matrix – call it K for 

convenience – we have a linear system of the form: 

KMM =o  (2.4) 

which can be solved using any one of several iterative techniques.  

A quick review of iterative techniques for solving linear systems may be in order. 

Suppose we are given a system of linear equations such as: 

Axb =  

where x is the unknown n × 1 vector, A is a square n × n matrix and b is a known n × 1 

vector. Most iterative techniques convert this system into an equivalent system with the 

form: 

x Qx c= +  

where the n × n matrix Q and the n × 1 vector c are derived from A and b. The details of 

the derivation depend on the particular iterative technique. 

To solve for x, we start with an initial n × 1 vector x(0) that hopefully approximates 

the final solution. At worst, it can have entirely random values for its elements. With it, 

we can generate a sequence of vectors x(k) by repeatedly computing: 

( ) ( ) K,1,1 =+= − kkk cQxx  
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This is the iterative component of the technique. The sequence of vectors x(k) will be 

such that the elements of the vector either converge to those of the unknown vector x, or 

else diverge into some random vector, as k increases. 

While it is unlikely that x(k) will exactly equal x for any finite value of k, the error 

between them will tend to grow progressively smaller as k increases (and if the sequence 

converges). This means that we can stop when: 

( ) ( )

( ) nithreshold
k

i

k
i

k
i ,,1,

1

1

K=≤
−

−

−

x

xx
 

for some “threshold” value. At this point, the approximate solution vector x(k) is such that 

the fractional error between it and the unknown vector x is guaranteed to be equal to or 

less than this value for each of its elements. The iterative method is then said to have 

converged to an acceptable solution. 

Of critical importance to the user is the convergence rate. That is, what value of k is 

needed in order to attain an acceptable solution? This is determined by the characteristics 

of the chosen iterative method, the choice of x(0), and the particular problem being solved. 

There are two issues of concern here. First, there are linear systems where the 

solution vector diverges rather than converges to a solution. Fortunately, the radiosity 

equation is guaranteed to converge to a solution using either the Jacobi or Gauss-Seidel 

iterative methods. (The sum of any row of form factors is equal to or less than unity by 

virtue of the summation relation (Equation 1.17), and each form factor is multiplied by a 

reflectance value ρ that is less than unity. Also, the main diagonal term of K in Equation 

2.4 is always unity, since Fii = 0 for all planar or convex patches. Thus, K is strictly 

diagonally dominant, which guarantees convergence for any choice of M(0).) 
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Second, we need to consider what our choice of M(0) should be. The closer it is to the 

unknown final exitance vector M, the more quickly our chosen iterative method will 

converge. Of course, the only a priori information we have concerns the initial exitances 

of the patches representing Lambertian light sources1. In other words, our best choice is 

to assign the initial exitance vector Mo to M(0). Interestingly enough, this choice has some 

physical significance. 

2.2.1 Follow the Bouncing ………… Light 

Returning to Equation 2.2, suppose we rearrange it slightly to solve for M. We then have: 

( ) oMTIM 1−−=  (2.5) 

Again, we cannot solve this equation directly, since calculating the inverse of a 

matrix is rarely an easy task. However, we can approximate it with a MacLaurin power 

series expansion. It can be shown that: 

( ) K++++==
− ∑

∞

=

32

0

1
1

1 xxxx
x n

n  (2.6) 

which converges for –1 < x < 1. There is a similar series expansion for matrices [e.g., 

golu96]: 

( ) K++++=− − 321 TTTITI  (2.7) 

which gives us: 

K++++= oooo MTMTTMMM 32  (2.8) 

                                                           
1 If the light sources have non-Lambertian radiant flux distributions, it is necessary to first calculate the 
direct irradiance and consequent initial radiant exitance of every patch in the environment due to these light 
sources. Each such irradiated patch then becomes a “secondary” Lambertian light source. 



 21 

that converges if the spectral radius of T (i.e., the absolute value of its largest eigenvalue) 

is less than one. Fortunately, this condition is true for any physically possible radiosity 

equation [e.g., heck91]. 

There is an important physical significance to Equation 2.8 [e.g., kaji86]. Each 

successive term TkM represents the kth bounce of the initially emitted light. The term Mo 

represents the initial flux (i.e., the direct illumination), TMo represents the first bounce 

component, T2Mo the second bounce and so on. We can intuitively see this by observing 

that the patch reflectances ρ are multiplied with each successive bounce. This represents 

the accumulating light losses due to absorption. 

We can express Equation 2.8 in its iterative form as: 

( ) ( ) 0,1 >+= − ko
kk MTMM  (2.9) 

In other words, the behavior of light flowing through an environment is itself an iterative 

method. Moreover, the initial exitance vector Mo serves as its initial estimate to the final 

exitance vector M. 

Comparing Equation 2.9 to iterative techniques for solving linear systems, it becomes 

clear why the radiosity equation always converges to a solution when we apply these 

techniques. To do otherwise – that is, for the approximate solution vector M(k) to diverge 

with increasing values of k – would require the total quantity of light in an environment 

to increase with each successive bounce. This would in turn contravene the energy 

balance discussed in Section 1.4. 

There is in fact only one iterative technique that faithfully models the physical reality 

of light’s behavior as expressed by Equation 2.9. It is the Jacobi iterative method, the 

simplest iterative technique for solving systems of linear equations. While it may not be 
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necessary for our development of a practical algorithm for solving the radiosity equation, 

we should ask how the Jacobi method works for two reasons.. First, it will provide us 

with a better understanding of how and why iterative techniques work. More important, 

however, the Jacobi method offers a fascinating and instructive insight into the physical 

reality of the radiosity equation. 

2.2.2 Jacobi Iteration 

The Jacobi method splits (or decomposes) an n × n matrix A into a diagonal matrix D, a 

strictly lower diagonal matrix –L and a strictly upper diagonal matrix –U. Written in 

matrix form, this becomes: 
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From this, we get: 

( ) bxULDAx =−−=  (2.11) 

which becomes: 

( ) bxULDx ++=  (2.12) 

and so: 

( )
D
bx

D
ULx ++=  (2.13) 

The Jacobi iterative method is thus: 
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( ) ( ) ( )
D
bx

D
ULx ++= −1kk  (2.14) 

or, expressed in its more familiar form: 
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In plain English, this equation states that we can solve each element xi
(k) of our 

approximate solution vector x(k) by using the values of all the other elements xj
(k-1) of our 

previously calculated solution vector. 

2.2.3 Modeling Light 

The Jacobi iterative method models the flow of light in an environment. We can confirm 

this by deriving Equation 2.9 in terms of the Jacobi iteration. Following the development 

of the Jacobi method above, we start with Equation 2.2 and decompose T into a diagonal 

matrix TD, a strictly lower diagonal matrix –TL and a strictly upper diagonal matrix –TU 

to get: 

( ) ULD TTTITI ++−=−  (2.16) 

and thus: 

( )MTTTIM ULD ++−=0  (2.17) 

This becomes: 

( ) ( ) oULD MMTTMTI ++−=−  (2.18) 

and: 

( )
( ) ( )D
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UL
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TI
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−
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−
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This is equivalent to the Jacobi iterative method presented in Equation 2.14. 

However, the form factor Fii for planar or convex patches is always zero, which means 

each diagonal element of T equals zero and so (I – TD) = I. Also, T = –(TL + TU). Thus: 

( ) ooUL MTMMMTTM +=++−=  (2.20) 

which results in the Jacobi iterative method: 

( ) ( ) 0,1 >+= − ko
kk MTMM  (2.21) 

for solving the radiosity equation. This is identical to Equation 2.9. Referring to Equation 

2.3, this becomes: 

( ) ( )1−+= k
o

k RFMMM  (2.22) 

which, expressed in the form of Equation 2.15, is: 

( ) ( ) niMFMM k
j

n

j
ijioi

k
i ,,1,1

1

K=+= −

=
∑ρ  (2.23) 

This is the radiosity equation that we saw in Chapter One (Equation 1.20), expressed 

as an iterative method. 

2.2.4 Gauss-Seidel Iteration 

The problem with Jacobi iteration is that it is often slow to converge to a solution. The 

Gauss-Seidel iterative method takes a simple but effective approach to improving this 

situation. We saw in Equation 2.15 that the Jacobi method calculates the value of each 

element xi
(k) in sequence by using the values of the other elements from x(k–1). Since the 

elements xj
(k) (where j < i) have already been calculated and are presumably closer 

approximations to the final solution vector elements than their xj
(k–1) counterparts, why 

not use these values instead when calculating xi
(k)? 

This is exactly what the Gauss-Seidel method does. Its iterative equation is: 
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( )
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or, expressed in its more familiar form: 
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A derivation of Equation 2.24 can be found in most elementary linear algebra and 

numerical analysis texts [e.g., burd85]. 

The Jacobi method can be seen in terms of modeling light bouncing from surface to 

surface in an environment. This is not the case for the Gauss-Seidel method. In a sense, it 

tries to anticipate the light each surface will receive from the next iteration of reflections. 

There is no physical analogue to this process, but it does work in that the Gauss-Seidel 

method usually converges more quickly than the Jacobi method does. Cohen and 

Greenberg [cohe85] found that the Gauss-Seidel method solved the radiosity equation for 

typical environments in six to eight iterations. 

2.2.5 Full Radiosity Disadvantages 

When it was first introduced to the computer graphics research community by Goral et al. 

[gora84] and Nishita and Nakamae [nish85], radiosity rendering was for the most part 

viewed as an interesting mathematical curiosity. The Jacobi and Gauss-Seidel methods 

have a time complexity of O(n2) for each iteration. Given the available computer 

technology at the time, this made the full radiosity algorithm an impractical rendering 

technique for all but the simplest of environments. 

Another disadvantage of full radiosity is that it requires storage for n2 / 2 form factors 

[e.g., Ashd94]. This means that the memory space complexity of the full radiosity 
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algorithm is O(n2) as well. We could possibly avoid this requirement by recomputing 

form factors “on the fly” for each patch during each iteration. However, the high cost of 

form factor determination (typically 90 percent of the run-time cost) means that we 

would have to wait much longer between each iteration. This is exactly what we are 

trying to avoid. We need to obtain an initial image as quickly as possible. 

We can gain some relief by substructuring the environment into a two-level hierarchy 

of patches and elements [cohe86]. This brings both the time and space complexities down 

to O(mn) for n patches and m elements. Substructuring is a useful technique, but we can 

do better. 

2.3 Shooting Versus Gathering 

There is an interesting and instructive physical interpretation of the Jacobi and Gauss-

Seidel methods. We can think of each execution of Equation 2.15 (Jacobi) or 2.25 

(Gauss-Seidel) as being one step; it takes n steps to complete one iteration of the method. 

At each step, we are updating the estimated exitance of one patch by processing one row 

of the radiosity equation. For the Jacobi method, this is Equation 2.23, repeated here as: 
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We can show this diagrammatically as: 
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 (2.27) 

The physical interpretation of this process is straightforward: we are simply summing the 

contribution of flux from all the other patches in the environment to the exitance of the 

current patch. Looking at Figure 2.1 and referring to Equation 2.26, each patch Ej has an 
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exitance Mj and an area Aj. Referring to Equation 2.26, the portion of the flux Φj emitted 

by Ej that is received by Ei is: 

jijjij FAM=Φ  (2.28) 

The amount of exitance ∆Mi of Ei that is due to this flux subsequently being reflected 

by Ei is thus: 

ijijjiijiii AFAMAM ρρ =Φ=∆  (2.29) 

However, we can apply the reciprocity relation AiFij = AjFji (Section 1.5.1) to obtain: 

ijjii FMM ρ=∆  (2.30) 

More colloquially, this can be seen as the current patch Ei gathering exitance from all 

other patches Ej in the environment in order to determine its exitance due to these 

patches. The term Moi in Equation 2.26 simply accounts for any initial exitance of Ei. 

This will be non-zero only if Ei is a Lambertian light source. 

Figure 2.1 – Gathering flux from the environment. 

It may be somewhat difficult to visualize exitance being transferred between patches. 

It becomes clearer when we multiply both sides of Equation 2.30 by Ai to obtain: 

iijjiiii AFMAM ρ=∆=∆Φ  (2.31) 

Again applying the reciprocity relation, we get: 

jjiijjijii FAFM Φ==∆Φ ρρ  (2.32) 

Ej 

Ei 
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which shows that we are in fact gathering and subsequently reflecting radiant flux. 

Equation 2.30 is more useful in terms of Equation 2.26, however, and so we “gather” 

exitance to Ei. The difference is solely semantic. 

A number of authors have loosely referred to this process as gathering “energy.” 

However, the physical quantity being discussed is radiant exitance (i.e., watts per unit 

area) times area. This is power, or radiant flux. Energy is “gathered” only in the sense 

that solving the radiosity equation balances the flow of energy (which is power) between 

elements in the environment. 

The problem with this approach is that it can be excruciatingly slow. Consider a 

complex environment with perhaps 50,000 patches. Using the Jacobi or Gauss-Seidel 

method, we must perform one complete iteration before we have an image of the first 

bounce of light from the environment. That means we must execute Equation 2.26 50,000 

times! This clearly does not satisfy our requirement for an “immediate but approximate” 

image. 

This is where the physical interpretation becomes useful. If we think for a moment 

about how light flows in an environment, it becomes evident that we should be interested 

in those elements that emit or reflect the most light. It logically does not matter in what 

order we consider the distribution of light from patch to patch, as long as we eventually 

account for it being completely absorbed. 

This leads to an entirely different paradigm. Given an environment with one or more 

light sources, we can think of them shooting flux to the other patches (Figure 2.2). These 

patches then become in effect secondary light sources, shooting some of the flux they 

receive back into the environment. By always selecting the patch that has the greatest 



 29 

amount of flux to “shoot,” we will drastically improve our convergence rate. Again, it 

makes intuitive sense that the more quickly the light is absorbed, the more quickly our as-

yet-unspecified iterative method will converge to a solution. 

Figure 2.2 – Shooting flux into the environment. 

It also becomes evident that this idea answers our need for both an immediate image 

and progressive convergence to the final solution. By shooting flux from one patch to all 

other patches in the environment, we immediately obtain an initial estimate for all patch 

exitances. This occurs in one step rather than a complete iteration. In fact, the concept of 

iteration no longer applies, for we may end up choosing one patch several times before 

we cycle through the entire set. It all depends on which patch currently has the greatest 

amount of flux to shoot. 

Of course, we also obtain improved estimates for all the patch exitances at each step. 

This means that the rendered image will continuously and gracefully converge to the final 

photorealistic image. 

Now, all we have to do is to express this idea in the form of a practical algorithm. 

2.4 Progressive Radiosity (Southwell Iteration) 

What we are looking for is the progressive radiosity algorithm [cohe88]. Based on the 

concept of shooting flux, it offers not only an immediate image with continuous and 

graceful convergence, but also O(n) space complexity. Given an environment with n 

Ej 

Ei 
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patches, it requires memory space for only n form factors. Even better, it can generate an 

initial image almost immediately, and can generate if necessary updated images after 

each step (as opposed to each iteration). 

So how does it work? To shoot flux or exitance back into the environment, we simply 

reverse the subscripts of Equation 2.30. For exitance, this becomes: 

jiij
j

i
ijijj FM

A
AFMM ρρ ==∆  (2.33) 

Multiplying both sides of this equation by the area of patch Ej gives us the equation for 

shooting flux. 

Unlike the full radiosity algorithm (i.e., Equation 2.26), this equation acts on one 

column of the radiosity equation at a time. Shown diagrammatically, this is: 
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 for all patches Ej (2.34) 

This means we can now display an image of the environment whenever one column of 

the radiosity equation has been processed. This has a time complexity of O(n) as opposed 

to O(n2) for the full radiosity algorithm. 

The progressive radiosity algorithm proceeds as follows. First, we assign an “unsent 

exitance” value ∆Mi
unsent to each patch in the environment. This is in addition to its final 

exitance Mi, which we are trying to determine. The amount of flux each patch has to 

shoot is ∆Mi
unsent times its area, Ai. Initially, only the patches representing Lambertian 

light sources will have non-zero values of flux, and so ∆Mi
unsent is initialized to Moi. The 

final exitance values Mi are also initialized to Moi. 
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Choosing the patch Ei with the greatest amount of flux (not exitance) to shoot, we 

execute Equation 2.33 for every other patch Ej in the environment. Each of these patches 

“receives” a delta exitance ∆Mj; this value is added to both its unsent exitance ∆Mj
unsent 

and its final exitance Mj. 

After the flux has been shot to every patch Ej, ∆Mi
unsent is reset to zero. This patch can 

only shoot again after receiving more flux from other patches during subsequent steps. 

This process continues until the total amount of flux remaining in the environment is 

less than some predetermined fraction ε of the original amount, or: 

ε≤∆∑
=

n

i
i

unsent
i AM

1

 (2.35) 

At this point, the algorithm is considered to have converged to a solution. 

Expressing this in pseudocode, we have: 

FOR each patch i 
 oi

unsent
ii MMM =∆=  

ENDFOR 

WHILE ε>∆∑
=

n

i
i

unsent
i AM

1

 

 Select patch i with greatest unsent flux i
unsent
i AM∆  

 Calculate all form factors ijF  

 FOR each patch j 

  
j

iunsent
iijj A

A
MFM ∆=∆ ρ  

  MMM unsent
j

unsent
j ∆+∆=∆  

  MMM jj ∆+=  

 ENDFOR 
 0=∆ unsent

iM  
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ENDWHILE 

Figure 2.3 – Progressive radiosity algorithm 

Progressive radiosity does not – repeat, does not – require any less time to completely 

solve the radiosity equation to some vanishingly small margin of error. It is an iterative 

approach that, like full radiosity, progressively refines the patch exitances as it converges 

to a solution. However, its overwhelming advantage is that usable images can be 

displayed almost immediately, and that each succeeding image takes much less time to 

calculate. 

We still have the form factors to contend with. However, we only need to calculate 

the n form factors Fij from the current patch Ei to all other patches Ej between displaying 

images. We have to recompute these form factors on the fly for each step of the 

progressive radiosity algorithm. However, the convergence rate is much faster than it is 

for full radiosity. Cohen et al. [cohe88] compared progressive refinement and full 

radiosity algorithms using an environment consisting of 500 patches and 7,000 elements. 

The progressive radiosity implementation converged to a visually acceptable image after 

approximately 100 steps. At this point, the full radiosity implementation was only 20 

percent of its way through its first iteration. 

Gortler and Cohen [gort93] established that the progressive radiosity algorithm is a 

variant of the Southwell iteration method [e.g., gast70]. Like the Jacobi and Gauss-Seidel 

methods, Southwell iteration will always converge to a solution for any physically 

possible radiosity equation. 

2.5 Convergence Behaviour 

Shao and Badler [shao93] presented a detailed and informative discussion of the 

convergence behavior of the progressive refinement radiosity algorithm. They observed 
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that while the algorithm may quickly converge to a visually appealing image, many more 

steps are often required to capture the nuances of color bleeding and soft shadows. They 

demonstrated that it took 2,000 or more steps to achieve full convergence in a complex 

environment of some 1,000 patches. 

Much of the problem lies in how progressive refinement works. By always selecting 

the patch with the most flux to shoot, it concentrates first on the light sources. Most of 

their flux will be shot to what Shao and Badler called global patches – those patches 

which are relatively large and can be seen from much of the environment. For an 

architectural interior, these are typically the walls, floor and ceiling of a room. Their 

patches receive most of the flux from the light sources and consequently shoot it to the 

other global patches. 

The local patches are those patches which are small and are usually hidden from 

much of the environment. Their flux will not be shot until that of the global patches has 

been exhausted. This is undesirable for two reasons. First, their small areas means that 

they will receive relatively little flux in comparison to the global patches. It may take 

several hundred steps before they shoot for the first time. 

The second reason is that when these local patches do shoot, much of their flux often 

goes no further than their immediate neighbors. While this does not affect the global 

environment to any great extent, it does account for color bleeding and soft shadow 

effects. In this sense, a better error metric is the worst-case difference between the 

estimated and converged element exitances. In their experiments, Shao and Badler 

observed that it took twice as many iterations as there were patches in the environment. 
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One strategy to overcome this problem involves de-emphasizing the contributions due 

to the global patches, ensuring that all patches shoot their flux in a reasonable number of 

steps. This requires a modification of the progressive refinement radiosity algorithm that 

is described next. 

2.6 Positive Overshooting 

Convergence of the Gauss-Seidel algorithm can often be accelerated by using one of 

several techniques known as successive overrelaxation [e.g., nobl69]. Applied to the 

radiosity equation, these techniques can be interpreted as “overshooting” the amount of 

flux from a patch into the environment. That is, the amount of flux shot from the patch is 

more than the amount of unsent flux the patch actually has. The flux shot in subsequent 

steps by the receiving patches will tend to cancel this overshooting. In the meantime, the 

total amount of unsent flux in the environment is shot and absorbed more quickly. This 

tends to result in faster convergence rates. 

Shao and Badler [shao93] presented a modified version of the progressive refinement 

radiosity algorithm that incorporates positive overshooting to accelerate the convergence 

rate by a factor of two or more. At the same time, it tends to prioritize the ordering of 

patches being shot such that the local patches are shot sooner, thereby enhancing the 

rendering of subtle lighting effects such color bleeding and soft shadows. 

The modification to the radiosity algorithm (Figure. 2.3), based on an earlier proposal 

by Feda and Purgathofer [feda92], is: 

… 
Select patch i with greatest positive unsent 
    flux i

unsent
i AM∆  

Estimate overshooting parameter overshoot
iM∆  

Calculate all form factors ijF  

FOR each patch j 
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  ( )
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iijj A

AMMFM ∆+∆=∆ ρ  

  MMM unsent
j

unsent
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  MMM jj ∆+=  

ENDFOR 
overshoot
i

unsent
i MM ∆−=∆  

… 

Figure 2.4 – Progressive refinement radiosity algorithm with positive overshooting 

Shao and Badler [shao93] based their calculation of the overshooting parameter 

overshoot
iM∆  on the following heuristic: 
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This essentially sums the amount of unsent flux the patch will later receive from the 

elements in the environment and multiplies it by the reflectance of the patch. The patch 

effectively gathers the unsent flux it would otherwise receive in later steps and shoots it 

along with its own unsent flux. 

Equation 2.37 ensures that the patch will never receive a negative amount of flux 

from any element. Thus, only positive overshooting can occur. On the other hand, the 

patch may shoot a negative amount of flux; this serves to cancel the overshot flux in later 

steps. 

Since we can now have both positive and negative unsent flux, we need to modify our 

convergence criterion. Equation 2.35 becomes: 
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ε≤∆∑
=

n

i
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unsent
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1

 (2.38) 

Experiments performed by Shao and Badler on two complex environments 

demonstrated that the convergence rate with positive overshooting can be accelerated by 

a factor of two or more over that of conventional progressive radiosity. There was also 

strong evidence that the appearance of subtle color bleeding and soft shadow effects may 

appear as much as three to five times more quickly. Positive overshooting is clearly a 

useful addition to the basic progressive radiosity algorithm. 

Other overrelaxation techniques for solving the radiosity equation are described by 

Gortler and Cohen [gort93] and Greiner et al. [grei93]. 

2.7 Environment Changes 

Progressive radiosity is typically used to calculate the radiant flux distribution of static 

environments. If the initial distribution is changed (by changing or repositioning the light 

sources) or the surface reflectances are modified, the radiosity solution for the 

environment has to be recalculated. 

2.7.1 Changes in Lighting 

Suppose we want to change or reposition the light sources. The form factor matrix will 

remain unchanged, but this is little consolation where progressive radiosity is concerned. 

In general, we have to solve the radiosity equation, form factors and all, whenever the 

initial exitance due to a light source is changed. 

If the changes are relatively minor, we can use the final exitance vector of the 

previous solution as the initial exitance vector Mo. In most cases, progressive radiosity 

will quickly converge to the new solution. (At worst, Mo will be no different than a 

random estimate, and progressive radiosity will eventually converge.) 
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Of course, if any of the light sources are dimmed, this will imply a negative quantity 

of unsent exitance [chen90]. Several minor changes to the progressive radiosity equation 

algorithm presented in Figure 2.3 will be needed to accommodate this physically 

impossible but eminently useful possibility. 

If there are many lighting changes to be modeled – theatre lighting, for example – it 

may be useful to calculate separate solutions for each individual group of light sources 

[aire90]. These solutions are independent of one another, and can be scaled and summed 

to represent any possible combination of light sources and their final exitances. 

Another approach is to precalculate a set of solutions for a range of initial radiant flux 

distributions and decompose them into a series of basis functions [nime94, doba97]. This 

is useful mostly for image synthesis of outdoor environments and daylighting analysis, 

where numerous solar positions must be accounted for. Approximate solutions for 

intermediate solar positions that have not been previously calculated can be obtained 

through blending of the basis functions. 

The difficulty with this approach is that it is difficult to determine a priori how many 

solar positions need to be calculated to obtain a reasonable set of basis functions. In 

particular, it does not take into account the geometry of the environment – a small change 

in solar position may produce drastically different final radiant exitance distributions. 

2.7.2 Changes in Surface Reflectances 

A second challenge comes when the surface reflectances are changed. One typical 

example is in architectural design where the designer may want to compare the visual 

appearance and effect of different wall or floor finishes. Again, the form factor matrix 
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remains unchanged. However, the solution may change drastically if the surface area is 

large and its reflectance is changed by any significant amount. 

Chen [chen90] noted that the previous solution often provides a satisfactory initial 

exitance vector Mo, particularly when the number of surfaces whose reflectances have 

been changed is small in number. From Equation 1.20, we know that the exitance of a 

surface patch is given by: 

ij

n

j
jioii FMMM ∑

=

+=
1

ρ  (2.39) 

If we define M′oi as the new initial exitance and ρ′i as the new surface reflectance, 

then the incremental change in final exitance is given by: 

( ) ij

n
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jiioioii FMMMM ∑
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1

ρρ  (2.40) 

Substituting Equation 2.36 into this equation gives us: 

( )( )
i

oiiii
oioii

MMMMM
ρ

ρρ −−′
+−′=∆  (2.41) 

where the previous surface reflectance ρi is assumed to be greater than zero. We can add 

this value (which may be negative) to the current calculated patch exitance Mi and also its 

remaining unsent exitance (if any). From this, we can shoot the exitance until the 

radiosity algorithm converges to a new solution. 

This approach does not however help when there are significant changes to the 

surface reflectances. As with changes to the light sources, major changes often result in 

completely different final exitance distributions. Calculating these distributions often 

takes as much effort when using the previous solution as when using the initial radiant 

flux distribution Moi. 
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2.8 A New Approach 

While progressive radiosity is a useful technique for producing architectural 

visualizations and generating photometric predictions for static environments, it requires 

too much computational effort to determine the effect of significant changes in the 

lighting or surface reflectances. The next chapter will introduce a new approach to 

solving the radiosity equation that addresses this problem. 
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Chapter 3 

Eigenvector Radiosity – Theory 

3.1 Eigenanalysis 

Eigenanalysis is a well-known technique with many scientific and engineering 

applications, including structural vibration analysis, electrical power system stability, 

pattern recognition, radar and acoustic signal processing, quantum mechanics, and much 

more. As an analysis tool, it identifies the principal vibrational modes (or their abstract 

analogues) of a physical system. As a computational tool, it offers time and space savings 

by providing approximate solutions using only the principal modes. 

Applying eigenanalysis techniques to a problem domain generally requires that the 

physical meaning of the resultant eigensystem be known. In the example of structural 

vibration analysis, eigenanalysis of the stiffness matrix associated with a finite element 

model identifies the natural vibration modes and frequencies of the structure. However, 

the physical meaning of eigenanalysis in terms of the radiosity equation has been an open 

question for the past sixty years. 

3.1.1 The Radiosity Kernel 

Moon [moon40] appears to have been the first researcher to consider this question. He 

noted that the continuous form of the radiosity equation could be expressed as a 

Fredholm integral equation of the second kind: 

( ) ( ) ( ) ( ) yyxyxx dKMMM
S

o ,∫+= λ  (3.1) 
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where ( )xoM  is the initial exitance at point x on a surface in the environment S, ( )xM  is 

the final exitance at point x, ( )yM  is the final exitance at point y, λ is a constant, and the 

radiosity kernel ( )yx,K  is integrated over all surfaces. 

Moon also noted that the associated homogeneous equation: 

( ) ( ) ( ) yyxyx dKMM
S

,∫=′ λ  (3.2) 

has solutions K,, 21 MMM ′′=′  that are its eigenfunctions, with corresponding eigenvalues 

K,, 21 λλλ =  Once these functions are found for a given radiosity kernel, the solution for 

Equation 3.1 can be determined. 

Moon was able to develop closed-form analytic solutions for a number of simple 

environments, including the sphere, infinite cylinder, and parallel and perpendicular 

plates. He later expanded on this work with his co-author Spencer in their book, “The 

Photic Field” [moon81]. However, each kernel required its own analysis, and so the 

eigenanalysis of arbitrary environments was still an open problem. 

Koenderink and van Doorn [koen83] examined eigenfunctions of the radiosity kernel 

from the perspective of computer vision research. Given a complex geometric object such 

as a marble bust with Lambertian surfaces, the radiosity equation models the multiple 

interreflections of flux between these surfaces. Koenderink and van Doorn demonstrated 

that the eigenfunctions of the radiosity kernel describe “geometrical modes” that are 

dependent on the object geometry and invariant with respect to the initial irradiance. 

These modes were interpreted as pseudofacets on an equivalent convex object. 

Langer [lang98] extended the work of Koenderink and van Doorn by examining the 

relationship between interreflections and shadows. He noted that the geometrical mode 
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corresponding to the eigenfunction of the radiosity kernel with the largest magnitude 

eigenvalue is a non-negative function that is physically realizable. Langer called this the 

“principal mode” of the environment. Further, given an environment with constant 

surface reflectance throughout, the principal mode is constant over x, and may be 

interpreted as the “ambient light” term used in computer graphics. (This was also noted 

by Moon in [moon40].) 

3.1.2 The Radiosity Matrix 

Baranoski et al. [bara97] and Baranoski [bara98] attempted to elucidate the physical 

significance of the radiosity matrix eigensystem by interpreting and visualizing the 

eigenvectors with the largest and smallest eigenvalues as patch exitance vectors. (The 

exitance vector elements were interpreted as patch luminances, which after appropriate 

shifting and scaling allowed images of the environments to be displayed.) 

These authors also investigated the dominant eigenvectors of the “symmetric” 

radiosity matrix formed by multiplying the radiosity matrix by a diagonal matrix whose 

elements consisted of the quotient of the patch areas and their reflectances. 

Unfortunately, qualitative analysis of the images proved inconclusive. The authors 

inferred some general properties relating to the flow of light within simple environments, 

but were unable to offer any quantitative physical interpretation of their results. 

Ramamoorthi [rama99] performed similar experiments on the symmetric radiosity 

matrix, but for more complex environments with 2,600 and 4,500 patches. In addition to 

visualizing the individual eigenvectors (which he called “eigenmodes”), he generated 

visualizations using only the dominant eigenvectors. 
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Ramamoorthi noted that only a small fraction of the eigenvectors had significant 

eigenvalues. For the larger environment (a room with a table and four chairs), fewer than 

20 of the 4,500 eigenvalues exceeded 10 percent of the spectral radius. A reasonably 

accurate (in the sense of 2-norm relative error) global approximation could be obtained 

with as few as 10 of the 4,500 eigenvectors. However, it required 150 to 200 eigenvectors 

to provide patch exitances that were locally accurate. (That is, where both the 2-norm and 

∞-norm relative errors for the patch exitance vector were small.) 

3.1.3 The Form Factor Matrix 

Finally, DiLaura and Franck [dila93] demonstrated that the iterative formulation of the 

radiosity equation (Equation 2.22) could be reformulated in terms of the eigensystem of 

the form factor matrix. Unfortunately, their technique applied only to symmetric form 

factor (not radiosity) matrices, which generally occur only in unoccluded environments 

where all surface patches are the same size. 

This leaves open the fundamental question: What is the physical significance of the 

eigensystem of a form factor (or radiosity) matrix? Curiously, the answer involves a 

physical analogy of radiative transfer systems that has been completely ignored for the 

past forty or so years. 

3.2 Radiative Transfer Networks 

Suppose we are given a system of n discrete surface patches Ai with Lambertian 

reflectance ρi, irradiance Ei, and possibly zero initial radiant exitance Moi for each patch i. 

The radiosity equation: 

∑
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describes the final radiant exitance Mi of each patch i, where Fij is the form factor from 

patch i to patch j, and where E and M are assumed to be constant over each patch. 

Expressed in matrix form, this becomes: 

RFMMREMM +=+= oo  (3.4) 

where M is the final radiant exitance vector, Mo is the initial radiant exitance vector, E is 

the irradiance vector, R is the diagonal reflectance matrix (where Rii = ρi and Rij = 0, i ≠ 

j), and F is the form factor matrix. 

Rearranged slightly, this becomes: 

( )MRFIM −=o  (3.5) 

which is the familiar matrix form of the radiosity equation. 

As shown by Oppenheim [oppe54, oppe56] and O’Brien [obri55], the radiative flux 

transfer between these patches can be described in terms of a linear resistive network 

with one or more voltage sources. For a given patch Ai, the net flux transfer away from 

the patch is given by: 

( )iii
net
i EMA −=Φ  (3.6) 

which is analogous to current in an electrical circuit. 

Substituting Ei from Equation 3.3 into Equation 3.6 gives: 
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where from Ohm’s Law [e.g., thom94], the term ( ) 




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
−

− i
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ρ1
 is analogous to voltage, 

and the term 
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i

iiA
ρ

ρ−1
 is analogous to conductance (i.e., the inverse of resistance). 
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Now to conserve energy in the system, the summation relation must hold for each 

patch Ai: 

∑
=

=
n

j
ijF

1

1 (3.8) 

This means that if the system is not fully enclosed, it must be enclosed in a box whose 

interior surfaces have zero reflectance and zero initial radiant exitance. This box will act 

as an energy sink to maintain the energy balance. 

Therefore, by again substituting Ei from Equation 3.3 into Equation 3.6, we also have: 
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which gives: 
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This is analogous to Kirchoff’s Current Law [e.g., thom94], which states that the 

algebraic sum of the currents entering a node in an electrical circuit is always zero. 

This completes the analogy: each patch represents a node in an electrical circuit, with 

radiative flux (current) flowing between these patches (nodes). The amount of flux is 

determined by the analogies of voltage and conductance. 

Figure 3.1 shows as an example the RT network for an enclosed system defined by 

three surface patches with finite width and infinite length. The conductances go1, go2, and 

go3 represent the initial radiant exitances, and have the form: 
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while the other conductances represent the interreflections of flux between the patches, 

and have the form (from the reciprocity relationship AiFij = AjFji): 

 jijijijiij gFAFAg ===  (3.12) 

for any two patches Ai and Aj. 

Figure 3.1 – Example radiative transfer network. 

The patch exitances Mi are analogous to the circuit node voltages, while the initial 

patch exitances Moi are analogous to the node voltages Moi / ρi. If Moi is zero, the node is 

connected to ground; otherwise it is connected to a voltage source. 

All other RT networks are topologically similar to Figure 3.1. That is, each patch Ai 

will have associated with it a resistor with conductance goi that has one terminal 

connected to either a fixed voltage source if it has an initial radiant exitance Moi or 

ground. The other terminal will be connected through resistors with conductances gij to 

every other patch Aj. Where Fij = 0, these resistors will have zero conductance – in other 

words, an open circuit. 
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The RT network analogy represents an environment solely in terms of radiative flux 

transfer between its surface patches. If we are interested in simplifying an environment to 

reduce the computational effort needed to solve its radiosity equation, then it is 

reasonable to begin with its RT network. 

3.3 Symmetric Matrices 

From Equation 3.10 we can derive these simultaneous linear equations [obri55]: 
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 (3.13) 

Expressed in matrix form, these become: 

( )MRFIARMAR −= −− 11
o  (3.14) 

which is equivalent to Equation 3.5. As noted by Nievergelt [niev97], multiplying both 

sides of Equation 3.5 by AR–1 in Equation 3.14 replaces exitances with equivalent radiant 

fluxes that produce the same exitances from the system’s Lambertian surface patches. 

Neumann [neum94] and Nievergelt [niev97] both noted that this operation produces a 

version of the radiosity matrix AR–1 (I – RF), which is symmetric positive definite. 

Trivially rearranging terms in Equation 3.4, we also have: 

( ) SGMMMAFRAMM +=+= −
oo

1  (3.15) 

where with reference to radiative transfer networks, the matrix G is the symmetric 

conductance matrix for the interconnected conductances gij. 
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3.4 Spectral Decomposition 

Given any square n × n matrix B, the spectral decomposition theorem [e.g., deif91] states 

that: 

∑
=

==
n

i
iii

1

** vvVDVB λ  (3.16) 

where ( )nvvV ,,1 K=  is a matrix of the orthonormalized eigenvectors of B, 

( )ndiag λλ ,,1 K=D  is a diagonal matrix of their associated eigenvalues, and *
ii vv  is the 

ith eigenprojection of B corresponding to the eigenvalue λi. 

In many cases, the matrix B can be approximated by a subset of the eigenvectors with 

the largest magnitude eigenvalues. That is, if the eigenvectors are ordered such that 

nλλλ ≥≥≥ K21 , then: 
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*vvBB λ  (3.17) 

where B' is rank deficient. (For a symmetric matrix, the complex conjugate vector *
iv  

becomes the transpose vector Τ
iv .) 

3.5 Approximate Conductance Networks 

Applying the spectral theorem to the symmetric radiative transfer conductance matrix G, 

we have: 

∑
=

ΤΤ ==
n

i
iii

1
vvVDVG λ  (3.18) 

The question is whether this spectral decomposition of G has any physical meaning. 

If it does, it may offer a useful approach to solving the radiosity equation. 
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As an example, consider the empty rectangular room shown in Figure 3.2 with 

measurements: 

Length Width Height 
5.0 m 3.0 m 2.5 m 

and surface reflectances: 

Ceiling Walls Floor 
80 % 70 % 20 % 

Figure 3.2 – Empty rectangular room. 

From the analytic form factors equations for parallel and perpendicular rectangles 

(see Appendix A) and symmetry considerations, we have: 

F11 = F22 = F33 = F44 = F55 = F66 = 0.0000 

F12 = F13 = F62 = F63 = 0.1249 

F14 = F15 = F64 = F65 = 0.2145 

F16 = F61 = 0.3213 

F21 = F26 = F31 = F36 = 0.2498 

F23 = F32 = 0.0800 

F24 = F25 = F34 = F35 = 0.2102 

F41 = F46= F51 = F56 = 0.2573 

F42 = F43 = F52 = F53 = 0.1261 

F45= F54 = 0.2331 

A3 

A6 

A1 

A5 
A2 

A4 
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This gives the symmetric conductance matrix: 



























=

000.0216.3216.3873.1873.1819.4
216.3000.0913.2576.1576.1216.3
216.3913.2000.0576.1576.1216.3
873.1576.1576.1000.0600.0873.1
873.1576.1576.1600.0000.0873.1
819.4216.3216.3873.1873.1000.0

G  

which has the eigenvalues: 

600.0,429.1,639.2,913.2,819.4,401.12 −−−−−  

and their associated eigenvectors: 



























+
+
+
+
−
+



























−
−
−
+
+
−



























−
+
+
+
+
−



























+
+
−
+
+
+



























−
+
+
+
+
+



























−
−
−
−
−
−

=

000.0
000.0
000.0
707.0
707.0
000.0

,

183.0
201.0
201.0
652.0
652.0
183.0

,

470.0
527.0
527.0
030.0
030.0
470.0

,

000.0
707.0
707.0
000.0
000.0
000.0

,

707.0
000.0
000.0
000.0
000.0
707.0

,

495.0
425.0
425.0
271.0
271.0
495.0

V  

Using the five eigenvectors with the largest magnitude eigenvalues to reconstruct G' 

according to Equation 3.17, we have: 



























=′

000.0216.3216.3873.1873.1819.4
216.3000.0913.2576.1576.1216.3
216.3913.2000.0576.1576.1216.3
873.1576.1576.1873.1
873.1576.1576.1873.1
819.4216.3216.3873.1873.1000.0

0.3000.300
0.3000.300

G  

where the differences between G and G' are highlighted. 

We may interpret each eigenvector vi and its associated eigenvalue λi of matrix G as 

describing a radiative transfer network with the same topology as that described by G, 
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but with different conductances between its nodes (patches). From Equation 3.18, its 

conductance matrix is seen to be ( ) Τ= iiii vvvG λ . 

Knowing that the conductance of n resistors connected in parallel is: 

∑
=

=
n

i
itotal gg

1

 (3.19) 

it is therefore evident that Equation 3.18 describes the superposition of the networks 

represented by the eigenprojections of G. Moreover, those eigenvectors with the largest 

magnitude conductances describe the dominant paths (i.e., largest conductances) for 

radiative flux transfer between the patches.  

There are several points to note here. First, these paths do not indicate the net flow of 

radiant flux between patches – this is dependent on the initial patch exitances. The 

eigenprojections describe the network itself rather than any network state. 

Second, the diagonal elements 22g ′  and 33g ′  have non-zero values. These can possibly 

be interpreted as loop conductances connecting the nodes to themselves, as shown in 

Figure 3.3. 

Figure 3.3 – Loop conductance. 

In an electrical network, a loop conductance has no effect – the voltage is the same at 

both terminals, and so there is no net flow of current through the conductance. 
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The same argument applies to radiative transfer networks – there can be no net flow 

of flux through a loop conductance. This is evident from Equation 3.8, where the 

contribution of the form factor Fii is cancelled by the null term ( )ii MM − . 

The argument against this interpretation is that if the loop conductance do not affect  

the net flow of flux within the network, then their values should be arbitrary. This is not 

the case – changing the diagonal elements by arbitrary amounts changes the conductance 

matrix eigensystem. The interpretation of the diagonal matrix elements as loop 

conductances must therefore be considered tentative and open to further investigation. 

One more point regarding the approximate conductance matrix G' requires a different 

example. The following conductance matrix G was generated randomly: 



























=

000.0586.0190.0015.0035.0012.0
586.0000.0016.0608.0092.0312.0
190.0016.0000.0612.0683.0027.0
015.0608.0612.0000.0384.0043.0
035.0092.0683.0384.0000.0451.0
012.0312.0027.0043.0451.0000.0

G  

and, using the fact that the sum of each column i represents the associated area ai to 

obtain: 

[ ]841.0,617.1,529.1,664.1,646.1,848.0diag=A  

the associated form factor matrix GAF 1−= is: 



























=

000.0697.0226.0018.0042.0015.0
362.0000.0010.0376.0057.0193.0
124.0010.0000.0400.0446.0017.0
009.0365.0367.0000.0230.0026.0
021.0056.0414.0233.0000.0274.0
015.0368.0032.0051.0532.0000.0

F  
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Using the four eigenvectors with the largest magnitude eigenvalues to reconstruct G' 

according to Equation 3.17 gives: 



























++−++
++++++
++++++
−+++++
++++++
+++++−

=′

078.0551.0221.0069.0017.0
551.0016.0002.0641.0077.0310.0
221.0002.0003.0568.0706.0057.0

641.0568.0044.0367.0083.0
069.0077.0706.0367.0004.0424.0
017.0310.0057.0083.0424.0

0.057

0.057

0.084

G  

where the highlighted elements represent negative conductances. 

In electrical networks, the linear amplifier has the transfer characteristic i = mv, 

where v is the input current, i is the output voltage, and m is a constant. From Ohm’s law, 

the device conductance is m. If m is negative, the amplifier inverts the input signal. If in 

addition the amplifier gain is less than unity, it behaves as if it were a negative 

conductance. 

Moon [moon40] described a radiant flux analogue of a linear amplifier with positive 

m. It consisted of an opal glass diffuser with lamps behind it that were controlled by a 

photocell and dimmer. The radiant flux emitted from the diffuser is directly proportional 

to the incident flux. An equivalent linear amplifier with negative m (representing negative 

conductance) can easily be constructed by proportionately dimming the lamps in 

response to increased incident flux. 

This of course requires that the linear amplifier be biased such that it produces a 

constant non-zero flux output in the absence of incident flux. Otherwise, the amplifier 

will have to produce “negative” light, a physical impossibility. 

This situation is not unusual in electrical networks. For example, tunnel diodes have 

nonlinear transfer characteristics that include negative conductance behavior over a 
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restricted range of positive input voltages. Within this range, the transfer characteristic is 

approximately i = mv +  c, where m is negative and c is a positive constant. By applying 

a constant bias voltage to the diode, it behaves as if it were a negative conductance 

resistor over a range of input voltages. 

The same situation may apply to an RT network that includes an inverting linear 

amplifier – the adjoining conductances may sufficiently “bias” the amplifier such that it 

behaves like a negative conductance over a range of initial patch exitances. 

From Equations 3.18 and 3.19, it is therefore evident that any approximate 

conductance matrix G' can be represented by a radiative transfer network, even if 

contains loop and negative conductances. Whether this network is physically realizable 

(i.e., it does not require “negative” light) depends on the network conductances and the 

initial patch exitances. 

Another problem with negative conductances in both electrical and radiative transfer 

networks is that they can lead to uncontrolled positive feedback where the solution goes 

to infinity. Whether this situation will occur in an RT network depends on both the initial 

patch exitances and the relative magnitude of the negative conductances. (In particular, 

the non-zero diagonal elements may result in a radiosity matrix that is not diagonally 

dominant.) This is unlikely to occur however where the differences between G and G' are 

small. 

3.6 Approximation Accuracy 

Knowing that an approximate conductance matrix can be represented by a radiative 

transfer network does not unfortunately indicate how accurate the approximation will be. 

While this will depend on the particular network, it is instructive to consider the empty 
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rectangular room example presented in Figure 3.2 (and where the detailed calculations 

are presented in Appendix A). 

Suppose that the initial exitance vector is: 

[ ]Τ= 0.00.00.00.00.00.1oM  

Solving for M directly using the equation: 

( ) oMGRAIM 11 −−−=  (3.20) 

we have: 

[ ]Τ= 1296.03713.03713.03684.03684.02343.1M  

If we construct the approximate conductance G' using only the two largest magnitude 

eigenvectors of G, we have: 



























=′

6316.06153.26153.26643.16643.14514.5
6153.22488.22488.24311.14311.16153.2
6153.22488.22488.24311.14311.16153.2
6643.14311.14311.19107.09107.06643.1
6643.14311.14311.19107.09107.06643.1
4514.56153.26153.26643.16643.16316.0

2G  

which in comparison with G does not look at all promising. However, substituting 2G′  

for G in Equation 3.20 yields: 

[ ]Τ=′ 1322.03484.03484.03695.03695.02431.12M  

and subtracting M' from M gives: 

[ ]Τ−++−−−=′− 0026.00229.00229.00011.00011.00088.02MM  

Somewhat remarkably, the maximum per-element error between M and 2M′  is less 

than 6.2%, and the relative 2-norm error between the two solution vectors is only 2.7%. 
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Thus, while the approximate conductance matrix G' may not resemble G through visual 

inspection, it produces almost the same results when used to solve the radiosity equation. 

While it difficult to extrapolate these results to more complex environments, they 

clearly illustrate the potential of approximate conductance networks. 

3.7 Eigenvector Radiosity 

Approximating the radiosity matrix G with the rank deficient approximation G' does not 

assist in solving the radiosity equation using conventional solvers such as Gauss-Seidel or 

Southwell iteration [e.g. cohe94]. This is because G' is still an n × n matrix. However, 

Equation 3.5 can be reformulated to take full advantage of G'. 

To begin with, Equation 3.4 can be solved iteratively as: 

( ) ( )1−+= r
o

r RFMMM  (3.21) 

which, following Equation 3.15, can be reformulated as: 

( ) ( )1−+= r
o

r SGMMM  (3.22) 

where 1−= RAS , AFG = , and ( )
oMM =0 . 

Because G is real and symmetric, its eigenvectors iv  form an orthonormal set 

spanning an n-dimensional space, where n is the matrix order. An arbitrary n-dimensional 

vector u can always be expressed as a weighted sum of these eigenvectors as: 

nia
n

i
ii ,,1,

1

K== ∑
=

vu  (3.23) 

where the coefficients ai are given by: 

nia ii ,,1, K== Τvu  (3.24) 

The initial exitance vector Mo can therefore be expressed in terms of iv  as: 
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i

n

i
ioo vvMM ∑

=

Τ=
1

 (3.25) 

Substituting this result into Equation 3.22 gives the first estimate of the exitance 

vector M as: 

( ) ∑∑
=

Τ

=

Τ +=+=
n

i
iio

n

i
iiooo

11

1 vvMSGvvMSGMMM  (3.26) 

From the definition of an eigenvector as: 

niiii ,,1, K== vGv λ  (3.27) 

we also have: 

∑∑∑
=

Τ

=

Τ

=

Τ ==
n

i
iiio

n

i
iio

n

i
iio

111

vvMGvvMvvMG λ  (3.28) 

which gives: 

( ) ∑∑∑∑
=

Τ

=

Τ

=

Τ

=

Τ +=+=
n

i
iiio

n

i
iio

n

i
iiio

n

i
iio

1111

1 wvMvvMvvMSvvMM λλ  (3.29) 

where wi = Svi. 

Using Equation 3.22 again, the second estimate of the exitance vector M is: 

( ) ( )12 SGMMM += o  (3.30) 

where from Equations 3.23 and 3.24, we have: 

( ) ( )( )∑
=

Τ=
n

i
ii

1

11 vvMM  (3.31) 

which gives: 

( ) ( )( )∑ ∑
= =

ΤΤ +=
n

i

n

i
iiiiio M

1 1

12 wvvvMM λ  (3.32) 

Using Equation 3.29 to expand coefficients, we have: 
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( )( ) ( ) iooi vSGMMvM ΤΤ +=1  (3.33) 

which becomes: 

( )( ) ni
n

j
jijioioi ,,1,

1

1 K=+= ∑
=

ΤΤΤΤ wvvMvMvM λ  (3.34) 

Therefore: 

( ) ∑∑∑∑
=

Τ

=

Τ

=

Τ

=

Τ ++=
n

j
jjji

n

i
iio

n

i
iiio

n

i
iio

1 111

2 wvwvMwvMvvMM λλλ  (3.35) 

The third estimate is then: 

( )

kkk

n

k

n

j
jjji

n

i
iio

n

j
jjji

n

i
iio

n

i
iiioo

wvwvwvM

wvwvMwvMMM

λλλ

λλλ

∑∑∑

∑∑∑

= =

Τ

=

Τ

=

Τ

=

Τ

=

Τ +++=

1 1 1

1 11

3

 (3.36) 

Applying induction to the first three estimates, it is evident that if: 

( )
oMK =0  (3.37) 

then: 

( ) ( )( ) 1,
1

1 ≥= ∑
=

Τ− r
n

i
iii

rr wvKK λ  (3.38) 

and: 

( ) ( ) ( ) 1,1 ≥+= − rrrr KMM  (3.39) 

where to summarize: 

Mo is the initial exitance vector; 

( )rM  is the rth estimate of the exitance vector M; 

iλ  is the ith eigenvalue of the conductance matrix G; 

iv  is the ith eigenvector of the conductance matrix G; and 
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iii vRASvw 1−== . 

The above reformulation of the radiosity equation in terms of eigenvectors is derived 

from DiLaura and Franck [dila93]. Their work was based on Equation 3.21 and the form 

factor matrix F rather than Equation 3.22 and the conductance matrix G. This limited 

their derivation to symmetric form factor matrices, which generally occur only in 

unoccluded environments where all patch elements are the same size. Substituting the 

conductance matrix G generalizes eigenvector radiosity to all physically realizable 

environments. 

There are several unique advantages to eigenvector radiosity: 

1. The eigenvalues and eigenvectors only need to be calculated once for the conductance 

matrix G; 

2. Changing the initial exitances of the source elements in the environment only affects 

the initial exitance vector Mo; 

3. Changing the patch reflectances only affects the reflectance matrix R and the vectors 

wi; and 

4. In many environments, relatively few of the eigenvalues λi will have significantly 

large magnitude values. 

The fourth advantage has several extremely important consequences. Equations 3.38 

and 3.39 show that only the largest magnitude eigenvalues will result in significant 

contributions to ( )rK  and so to incremental changes in ( )rM . This being the case, only the 

eigenvectors with the largest magnitude eigenvalues are required to determine the 

exitance vector M using Equation 3.39. 
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By using a subset of the eigenvectors of G, eigenvector radiosity implicitly uses the 

approximate conductance matrix G'. Understanding the physical significance of these 

eigenvectors in terms of dominant paths through the RT network provides a better 

understanding of how and why eigenvector radiosity works. 

DiLaura and Franck [dila93] used a symmetric form factor matrix representing some 

200 random patch elements. They purposely did not model a physical environment in 

order to avoid having any geometrical properties of the environment skewing their 

results. What they found was that only a few eigenvalues had absolute magnitudes 

exceeding 15 percent of the maximum. They also found that ( )rK  rapidly approached 

zero in five or so iterations, and then oscillated about an asymptotic value. (This was 

probably due to negative values in the equivalent approximate conductance matrix.) 

It is important to realize that Equations 3.38 and 3.39 converge towards a solution of 

the approximate radiosity matrix G' rather than G. Whether this approximation is 

sufficiently accurate will depend upon the application and how closely G' approximates 

G. If more accuracy is required, the solution can be used as the initial exitance vector for 

further refinement using Gauss-Seidel or Southwell iteration with the radiosity matrix G. 

3.8 Jacobi Iteration 

We again consider the empty rectangular room example presented in Figure 3.2, with an 

initial exitance vector: 

[ ]Τ= 0.00.00.00.00.00.1oM  

We can iteratively solve for the final exitance vector M using Equations 3.21 or 3.22, 

which are both examples of Jacobi iteration. (As shown Section 2.2.3, Jacobi iteration 
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exactly models the physical “bouncing” of light between diffuse reflectance surface 

patches in an environment.) 

Convergence to within a 2-norm relative error of less than 0.1% occurs within 13 

iterations. (See Appendix A for details). This is typical behavior for Jacobi iteration when 

applied to the solution of radiative transfer systems [cohe85]. 

It is important to recognize that Equations 3.37 through 3.39 are simply a 

reformulation of Jacobi iteration in terms of the eigenpairs of G. Consequently, solving 

for M using these equations will produce exactly the same convergence behavior if all of 

the eigenpairs are used. 

Using a subset of the eigenpairs to generate the approximate conductance matrix G' 

simply means that Jacobi iteration will be applied to a similar RT network. The 

convergence behavior will be similar, but the final exitance vector M will be different. 

For example, substituting 2G′  for G in Equations 3.37 through 3.39 gives: 

[ ]Τ=′ 1322.03484.03484.03695.03695.02431.12M  

after 12 iterations (again to within a 2-norm relative error of less than 0.1%). This is the 

same result that was obtained by solving for 2M′  directly using Equation 3.20. (See 

Appendix A for details.) 

3.9 Form Factor Matrix Interpretation 

While eigenvector radiosity has been formulated and interpreted within the context of the 

symmetric conductance matrix and Equation 3.22 in Section 3.7, it should also possible 

to formulate and interpret it within the context of the unsymmetric form factor matrix and 

Equation 3.21. 
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The spectral decomposition theorem expressed in Equation 3.16 applies to any square 

matrix. For unsymmetric matrices, the eigenprojections are generated using the 

eigenvectors and their complex conjugates. Substituting the complex conjugate for the 

eigenvector transpose in Section 3.7 should yield an eigenvector radiosity formulation 

based on the form factor matrix. 

In terms of a physical interpretation, the complex-valued elements of the 

eigenprojections may be interpreted as admittances rather than conductances. For the 

electrical circuit analogy, these can be physically realized using passive resistors, 

capacitators, and inductors or active elements comprising resistors, capacitators, and 

linear amplifiers. 

This interpretation however obscures the physical interpretation of the network as 

paths for the net flow of radiant flux. In particular, an electrical admittance network has a 

frequency-dependent impulse response that does not have a physical analogy in the 

equivalent radiative transfer network. 

3.10 Time and Space 

As presented in this chapter, eigenvector radiosity offers the potential of significant time 

and space savings when solving the radiosity equation. However, it has the disadvantage 

of requiring that the full form factor matrix be known in order to calculate its 

eigensystem. 

The goal is to develop eigenvector radiosity as an adjunct to progressive radiosity, 

such that the patch form factors do not need to be recalculated when the initial patch 

exitances or reflectances are changed. Indeed, one of the advantages of progressive 
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radiosity is that it generally does not calculate the full form factor matrix before 

converging to a useful solution. 

Solving this problem requires a closer look at progressive radiosity and the form 

factor matrix. 
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Chapter 4 

Eigenvector Radiosity – Practice 

4.1 Eigensolvers 

Having developed a theoretical basis for eigenvector radiosity, it remains to consider how 

we might implement it in software as an engineering tool. This immediately brings up the 

issue of eigensolvers – given a symmetric conductance matrix, we need to determine its 

eigensystem. 

While there are many eigensolvers to choose from, the choice is largely determined 

by the conductance matrix order, which is equivalent to the number of patches in the 

environment. 

4.1.1 Small Environments 

For small environments consisting of fewer than (say) 400 patches, orthogonal similarity 

transformation techniques such as Householder tridiagonalization and the QL algorithm 

are preferred [parl98]. They are simple, reliable, and well documented. The standard 

implementations are the EISPACK functions tred2 and tql2, which were originally 

presented as Algol routines in [wilk71]. 

The QL algorithm will determine the entire eigensystem of the conductance matrix. 

This should not be a problem for most applications in that the time and space 

requirements for small environments are almost insignificant. 
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Once the eigensystem has been determined, the dominant eigenvectors (that is, those 

eigenvectors with the numerically largest and smallest eigenvalues) can be selected and 

the radiosity equation solved used Equations 3.37 through 3.39. 

4.1.2 Large Environments 

The situation for medium to large environments is considerably more interesting. 

Orthogonal similarity transformation techniques quickly become unworkable due to 

matrix fill-in, and so iterative techniques are necessary. These are dominated by the 

Lanczos algorithm. 

The simple Lanczos algorithm works with exact arithmetic, but suffers from loss of 

orthogonality using finite precision arithmetic. This has led to numerous variants of the 

Lanczos algorithm; two of the more useful are Lanczos with Selective Orthogonalization 

[parl79] and Block Lanczos [unde75, golu77]. 

Closely spaced eigenvalues may occur for surface elements that are tightly coupled 

(that is, whose mutual conductance dominates the RT network), and so Block Lanczos is 

probably the better choice. These eigenvalues occur in pairs, and so a block size of two or 

four is appropriate [parl98]. 

The Block Lanczos algorithm has several important advantages as a conductance 

matrix eigensolver: 

1. Unlike orthogonal similarity transformation algorithms, it does not need to store the 

full matrix in memory. In general, the memory requirements are not much more than 

that required to store the desired number of eigenvectors; 

2. It can compute a user-specified number of eigenpairs at either end of the spectrum, 

and can be iterated to obtain more if needed; and 
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3. The matrix is accessed through a user-defined matrix-vector multiplication function. 

The Block Lanczos algorithm is not well suited to determining more than about 25 

percent of the dominant eigenvectors of an eigensystem. This however is not a concern 

for eigenvector radiosity, which is useful only if the dominant eigenvectors comprise a 

small portion of the eigensystem. 

4.2 Progressive Radiosity 

A more difficult problem arises when the full conductance matrix is not available. This 

situation occurs for example with progressive radiosity techniques [e.g., ashd94, sill94] 

that use Southwell iteration to solve the radiosity equation. Unlike Gauss-Seidel iteration, 

Southwell iteration requires only one column of the form factor matrix to be available at 

each step. This allows form factors to be calculated “on the fly” and then immediately 

discarded in order to conserve memory. 

4.2.1 Patches and Elements 

A second complication with respect to progressive radiosity is that it commonly relies on 

a two-level hierarchy of patches and elements (Figure 4.1) to model surfaces. 

Figure 4.1 – Subdividing a surface into a hierarc

t
Elemen
Patch
hy of patches and elements. 
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The basic idea is that the form factors between a group of adjacent shooting patches 

and a receiving patch will (in the absence of occluding surfaces) be almost identical. 

Rather than repeatedly calculating these form factors then, it is reasonable to shoot flux 

from the center of the group of patches [cohe85]. 

Rather than group patches, each patch is subdivided into an array of elements. 

Radiant flux is then sent from each shooting patch to the set of all elements visible to the 

patch in the environment. 

This substructuring technique is useful for progressive radiosity in that it reduces the 

time complexity of the Southwell iteration from O(n2) for an n-patch environment to 

O(mn) for an equivalent environment with m patches and n elements. It is even more 

useful for eigenvector radiosity in that form factors are calculated from each finite area 

element to the center of each shooting patch (modeled as a differential area). 

Given a set of patch-to-element form factors as generated by one step of the 

Southwell iteration, the patch-to-patch form factors can be quickly calculated as the sum 

of the patch-to-element form factors for each receiving patch. Multiplying each patch-to-

patch form factor by the receiving patch area produces a row/column of the symmetric 

conductance matrix, which has order m. 

This patch-to-patch approach offers two advantages. First, the time complexity of the 

Block Lanczos algorithm is roughly O(n2). Calculating the eigensystem of a patch-to-

patch conductance matrix rather than a patch-to-element matrix (which must be modeled 

as a symmetric matrix of order n) reduces the time complexity to O(m2). 
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Second, the memory required to store the desired number of eigenvectors is reduced 

by a factor of n / m. Together, these advantages allow considerably larger environments 

to be addressed with the same computer resources. 

4.2.2 Further Refinement 

The disadvantage of the patch-to-patch approach is that progressive radiosity generates 

an n-element exitance vector, where each element corresponds to the exitance of a 

surface element. While the patch conductance matrix requires less time and memory to 

determine its eigensystem, the resultant m-element exitance vector necessarily averages 

the element exitance values across their parent patches. (That is, each element exitance 

must be assigned the calculated exitance of it’s parent patch.) 

On the other hand, the m-element exitance vector should provide an excellent 

estimate of the final n-element exitance vector. It can therefore be used as the initial 

exitance vector for further progressive radiosity steps. Because the initial estimate is 

close to the final solution vector, progressive radiosity should quickly converge in 

relatively few steps. 

This approach does not appear to be particularly useful in that the radiosity equation 

is solved by Southwell iteration, leaving no need for an eigenvector radiosity solution. 

However, there are many applications where a given radiosity equation must be 

repeatedly solved for different initial surface exitances and reflectances. After using 

Southwell iteration to determine an approximate sparse matrix representation of the form 

factor matrix, we can use eigenvector radiosity to more quickly solve for subsequent 

initial conditions. 
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4.3 Sparse Form Factor Matrices 

Southwell iteration often converges to an approximate but useful solution within several 

hundred to several thousand steps for complex environments with tens of thousands of 

surface elements. In doing so, it may not calculate the full form factor matrix. 

 Not having a full form factor matrix available for determination of the patch 

conductance matrix and determination of its eigensystem might appear to be a serious 

problem. However, it is actually an advantage. 

If a useful solution can be obtained without having to calculate the full form factor 

matrix, this suggests that a sparse matrix consisting only of those form factors calculated 

during Southwell iteration can be used to approximate the full form factor matrix. This 

works well with the Lanczos algorithm, which requires only a user-defined matrix-vector 

multiply function for sparse matrices. 

For very large environments with several million elements, several tens of thousands 

of Southwell iteration steps may be needed to converge to a solution. This may require 

impractical amounts of memory to store the calculated form factors, even as a sparse 

matrix. We therefore need to determine which form factors will produce a sparse matrix 

that acceptably approximates the full matrix. 

4.4 Eigenvalue Bounds 

A corollary to the Courant-Fischer lemma [e.g., axel96] states that given two symmetric 

matrices A and B, changes in each eigenvalue of A for the matrix A + B will be between 

the smallest and largest eigenvalues of B. (See Appendix B for a proof.) Suppose then 

that we have a sparse conductance matrix nG  as determined through n steps of Southwell 

iteration. The form factors determined by the next step will produce a matrix 
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GGG ~
1 +=+ nn , where G~  is the conductance matrix due the current set of form factors 

Fki. 

The bounds of the eigenvalues of G~  are determined by the Gerschgorin Circle 

theorem [axel96]. If the largest magnitude eigenvalue of G~  (i.e., its spectral norm) is 

much less than the spectral norm of nG , then Equation 3.18 shows that adding G~  to nG  

will not significantly change this eigensystem, and it can be safely ignored. 

Given the structure of G~  (which has only one non-zero row gik and column gki), the 

Gerschgorin Circle theorem reduces to: 

∑
=

≤
n

i
ikk FA

1
maxλ  (4.1) 

where the bound is the sum of the conductances from surface k to all other surfaces. (See 

Appendix B for a proof.) In physical terms, this bound represents the degree of radiative 

coupling between surface k and its surrounding environment. For enclosed environments 

where Equation 3.8 holds true, the bound is equal to the surface area. 

This makes it practical to compute an upper bound on the spectral norm of 1+nG  for 

each step of Southwell iteration. By comparing the eigenvalue bounds to those of 

previously calculated sets of form factors, only those sets that will significantly affect the 

eigensystem of the approximate conductance matrix G~  need be cached in memory.  

An additional benefit of calculating the eigenvalue bounds for each set of form 

factors is that it provides an a priori estimate of the number of eigenvectors that will need 

to be calculated using the Lanczos algorithm. 
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4.5 Locally Dominant Paths 

The choice of a “shooting” patch for each step of the Southwell iteration is determined by 

the maximum amount of unsent radiant flux. Therefore, depending on the initial exitance 

distribution, the sequence of flux transfers between patches and elements may not follow 

the globally dominant paths of the RT network. 

A good example is roadway lighting, where the streetlights may directly illuminate 

only a small portion of the exterior environment. A progressive radiosity solution for this 

environment may not consider the form factors between the patches and elements of 

surfaces that would be illuminated under (say) daylight conditions. 

In terms of the associated RT network, the conductance matrix nG  for this example 

will represent locally dominant paths relative to the nodes representing the streetlights. 

This may not be a concern if changes in the initial exitance distribution are due to 

changes in the radiant flux from the existing streetlights. However, changes such as 

adding street lights in previously unlit areas of the environment may involve portions of 

the RT network that were not considered by the initial progressive radiosity solution. This 

may require updating nG  using progressive radiosity. 

The situation with interior lighting is different in that interreflections will generally 

cause the entire environment to be illuminated. In terms of the associated RT network 

then, the conductance matrix nG  will usually represent globally dominant paths. 

Changing the initial exitance distribution or surface reflectances should not in general be 

influenced by the approximation of nG  to G when solving the associated radiosity 

equation. 
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4.6 Environment Partitioning 

Given the availability of a conductance matrix (full or sparse), it is possible to select any 

surface patch and perform a breadth-first path traversal through the associated RT 

network to determine the total conductance between any two given surfaces. Individual 

paths (corresponding to multiple reflections of flux between surface patches) need only 

be followed only as long as their path conductances are significant with respect to the 

parallel summation of the conductances of the previously determined paths. 

This principle can possibly be used to partition an environment into sub-environments 

that are weakly coupled (in terms of radiative flux transfer) for a given light source. 

While it is clearly subject to combinatorial explosion, it may be possible to combine the 

approach with geometric visibility information to quickly and reliably partition large 

environments. 

4.7 An Engineering Tool 

This chapter has examined some of the issues involved in implementing eigenvector 

radiosity as an engineering tool. The Block Lanczos algorithm has been suggested as a 

suitable eigensolver, but its performance compared to other solvers has not been 

examined. In particular, more modern variants such as the thick-restart Lanczos method 

[wu98] may prove more efficient. 

The use of eigenvalue bounds to construct an approximate sparse matrix 

representation of the conductance matrix is also an issue. While it may appear to be a 

reasonable approach, it is necessary to perform numerical experiments on non-trivial 

environments to determine its effectiveness. 
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Chapter 5 

Numerical Experiments 

5.1 Motivation 

The empty rectangular room examined in Chapter 3 was useful for the purposes of 

elucidating the principles of eigenvector radiosity. However, it is obviously not 

representative of the complex environments that are of interest to architects and lighting 

designers. This leaves open the question of whether a small subset of the eigenvectors of 

a conductance matrix is sufficient to model the flow of light within complex 

environments. 

In this chapter we examine three such environments: the Warehouse, the Tatami 

Room and the Ashdown Residence. Each environment is representative of the levels of 

complexity generally favored by architectural lighting designers – on the order of 5,000 

to 50,000 elements. 

5.2 Warehouse 

The Warehouse is a single rectangular room with four long rectangular obstructions that 

represent stacked warehouse shelves. This deliberately simple design is representative of 

the environments that lighting designers may generate when they are interested only in 

the illuminance distribution for building code compliance. In these situations, 

architectural visualization is not an issue. 
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Figure 5.1 – Warehouse (wireframe). 

 

Figure 5.2 – Warehouse (progressive radiosity). 
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The Warehouse environment consists of 5,952 patches and 26,924 elements, where 

most of the patches have an area of approximately 5.0 square meters. The warehouse 

shelves are illuminated by 40 overhead luminaires. 

Using progressive radiosity techniques, the environment reached 1.0% convergence 

in 1,996 steps, including 40 steps for direct irradiance distribution determination due to 

each of the physical (that is, non-diffuse) light sources. A total of 354 seconds of CPU 

time were required for the calculations, including 26 seconds for the direct irradiance 

calculations. (A 450 MHz Pentium II desktop computer was used for the experiments.) 

During the progressive radiosity calculations, the eigenvalue bound for each 

conductance matrix row was calculated in accordance with Equation 4.1. Those rows 

with the largest magnitude eigenvalue bounds were saved in the conductance matrix row 

cache. The cache size was set a priori to 200, which means that only 3.3% of the full 

conductance matrix was saved. 

Because the environment is closed, these bounds should be equal to the shooting 

patch area Ai for each patch i. This illustrates a disadvantage of using eigenvalue bounds 

based on the Gerschgorin Circle theorem. If most of the environment patches have 

approximately the same area, their corresponding eigenvalue bounds will also be similar. 

This is evident in Figure 5.3, where the bounds range from 52.4 to 47.2 for the first 200 

conductance matrix rows. (The environment is modeled in feet rather than meters.) 

The eigenvalues calculated for the sparse conductance matrix indicate that there are 

181 eigenvalues with magnitudes greater than 10% of the spectral radius (3.0% of the 

total), and 194 eigenvalues with magnitudes greater than 5% of the spectral radius (3.3% 

of the total). However, the eigenvalue bounds indicate that the conductance matrix rows 
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have probably been selected for caching more or less at random during the progressive 

radiosity calculations. Given that the cached rows represent only 3.3% of the full 

conductance matrix, the calculated eigensystem of the sparse matrix may not be similar to 

that of the full matrix. 
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Figure 5.3 – Conductance array eigenvalues for Warehouse environment. 

Surprisingly, eigenvector radiosity appears to be a remarkably robust technique. 

Figure 5.4 shows an eigenvector radiosity solution for the Warehouse using only 40 

eigenvectors. Convergence to 0.1% was reached in only 2 iterations, and required 0.38 

seconds of CPU time. 

The visual artifacts due to displaying the patch exitances as opposed to the element 

exitances are clearly visible. Otherwise, there appears to be little difference (at least 

visually) between Figures 5.2 and 5.4. 

What is truly remarkable is that the 40 eigenvectors represent only 0.7% of the total 

and 22% of those with eigenvalues greater than 10% of the spectral radius. The sparse 

conductance matrix clearly contains most of the dominant path information within its 

largest few eigenvectors. 
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Figure 5.4 – Warehouse (40 eigenvectors). 

5.3 Tatami Room 

The Tatami Room1 is a single rectangular room with a small number of occluded 

surfaces. It is representative of a visual environment that an architect or lighting designer 

would generate for presentation to the client. The emphasis is more on the photorealistic 

image than it is on illuminance or luminance distributions. 

The Tatami Room environment consists of 1,192 patches and 3,798 elements (Figure 

5.5). Direct illumination is provided by two electric ceiling luminaires and diffuse 

daylight through two windows. These light sources are modeled as diffuse self-luminous 

patches. 

                                                           
1 The word tatami means "floor mat" in Japanese. However, a tatami room in North American 

usage generally refers to a private dining room in a Japanese restaurant. 
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Figure 5.5 – Tatami Room (wireframe). 

 

Figure 5.6 – Tatami Room (progressive radiosity). 
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Unlike the Warehouse environment, the patch areas in the Tatami Room environment 

range from approximately 1.8 square meters for the floor and ceiling to 10-3 square 

meters for the branches in the vase. The shoji screens are also partially open, which 

means that the environment itself is not fully closed. 

5.3.1 Patch-Element Solution 

Using progressive radiosity techniques, the environment reached 1.0% convergence in 

2,228 steps (Figure 5.6). During the calculations, the conductance matrix rows with the 

100 largest magnitude eigenvalues were cached, producing a sparse matrix with 8.3% 

fill-in. 

Figure 5.7 shows both the eigenvalue bounds and calculated eigenvalues for this 

matrix. There are 35 eigenvalues with magnitudes greater than 10% of the spectral radius 

(2.9% of the total), and 78 eigenvalues with magnitudes greater than 5% of the spectral 

radius (6.5% of the total). Equally important are the eigenvalue bounds: the Tatami Room 

environment has only 84 bounds greater than 10% of the maximum bound (7.0% of the 

total). 

The important point here is that the significant conductance matrix rows can be 

cached using a reasonable amount of memory (in this case approximately 1/2 megabyte). 

This implies that the sparse conductance matrix is similar to the full matrix, and that their 

eigensystems should also be similar. 

As noted in Chapter 4, it is not necessary that these two eigensystems be identical. All 

that is needed is an eigensystem for which the iterative eigenvector radiosity calculations 

converge to a reasonably stable solution. The solution vector can then be iteratively 

refined using progressive radiosity techniques. 
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Figure 5.7 – Conductance array eigenvalues for Tatami Room environment. 

Given a suitable subset of the dominant eigenvcctors, an eigenvector radiosity 

solution can be calculated using Equations 3.37 through 3.38. Moreover, the environment 

can be displayed by assigning the calculated exitances of the patches to their respective 

elements. 

Figure 5.8 shows an eigenvector radiosity solution for the Tatami Room using 35 

eigenvectors. Convergence to 0.1% was reached in only 11 iterations, and required only 

0.55 seconds of CPU time (By comparison, the progressive radiosity solution required 

115 seconds of CPU time.) 

Figure 5.9 shows an eigenvector radiosity solution for the Tatami Room using 78 

eigenvectors. Convergence to 0.1% was reached in 14 iterations, and required 0.60 

seconds of CPU time. 
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Figure 5.8 – Tatami Room (35 eigenvectors). 

 

Figure 5.9 – Tatami Room (78 eigenvectors). 
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These approximate solutions are surprisingly close to the progressive radiosity 

solution shown in Figure 5.6. There are some visual artifacts evident (such as the 

abnormally dark ceiling areas over the shoji screens in Figure 5.8), but otherwise the 

images are very similar. (As might be expected, the solution using 78 eigenvectors has 

fewer artifacts than the solution using 35 eigenvectors.) 

5.3.2 Modified Patch-Element Solution 

The preceding experiment was based on progressive radiosity using the conventional 

patch-element hierarchy. In the following experiment, the geometric database was 

modified to minimize the number of elements per patch. (The Helios radiosity renderer 

generates quadrilateral patches and triangular elements wherever possible when it 

subdivides planar surfaces.) The resultant consists of 840 patches and 1,197 elements 

(Figure 5.10). 

 

Figure 5.10 – Modified Tatami Room (wireframe). 
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Again using progressive radiosity, the environment reached 1.0% convergence in 

1,112 steps and 41 seconds of CPU time (Figure 5.11). During the calculations, the 

conductance matrix rows with the 100 largest magnitude eigenvalues were cached, 

producing a sparse matrix with 11.9% fill-in. 

 

Figure 5.11 – Modified Tatami Room (progressive radiosity). 

Figure 5.12 shows both the eigenvalue bounds and calculated eigenvalues for this 

matrix. There are 27 eigenvalues with magnitudes greater than 10% of the spectral radius 

(3.2% of the total), and 44 eigenvalues with magnitudes greater than 5% of the spectral 

radius (5.2% of the total). In addition, the modified Tatami Room environment has only 

60 bounds greater than 10% of the maximum bound (7.1% of the total). 
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Figure 5.12 – Conductance array eigenvalues for modified Tatami Room environment. 

Figure 5.13 shows an eigenvector radiosity solution for the modified Tatami Room 

using only 20 eigenvectors. Convergence to 0.1% was reached in 8 iterations, and 

required only 0.11 seconds of CPU time. 

 

Figure 5.13 – Modified Tatami Room (20 eigenvectors). 
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Figure 5.14 shows an eigenvector radiosity solution for the modified Tatami Room 

using 70 eigenvectors. Convergence to 0.1% was reached in 7 iterations, and required 

only 0.16 seconds of CPU time. 

 

Figure 5.14 – Modified Tatami Room (70 eigenvectors). 

These approximate solutions are again surprisingly close to the progressive radiosity 

solution shown in Figure 5.11. The only obvious visual artifacts are the dark shadows 

under the tables and the over-illuminated vase. Unlike the previous experiment, there are 

no visible shading anomalies on the walls or ceiling in Figure 5.14. However, the far wall 

behind the vase appears somewhat over-illuminated in Figure 5.13. 

Looking more closely at both images, it is evident that the overall color cast in Figure 

5.11 that is due to multiple reflections from the redwood floor are absent in the 

eigenvector radiosity images. There is no apparent explanation for this anomaly, which 

will require further investigation. 
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5.3.3 Daylight Solution 

In this experiment, the RGB spectral radiant exitance assigned to the window patches of 

the modified Tatami Room environment was changed from white (1000.0, 1000.0, 

1000.0) to sky blue (500.0, 900.0, 1000.0) to simulate diffuse skylight with no direct 

solar illuminance. The purpose of this experiment was to examine the eigenvector 

radiosity solution following changes to the initial (in this case spectral) radiant exitance 

vector. 

Figure 5.15 shows the progressive radiosity solution for the modified Tatami Room. 

The windows still appear white because they are effectively overexposed in the 

renderings. However, the effect of the daylight illuminant is clearly evident in the overall 

greenish color cast. 

 

Figure 5.15 – Modified Tatami Room (progressive radiosity – daylight). 
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Figure 5.16 shows the corresponding eigenvector radiosity solution using 20 

eigenvectors. Convergence to 0.1% was again reached in 8 iterations using 0.11 seconds 

of CPU time, with visual anomalies similar to Figure 5.13. 

 

Figure 5.16 – Modified Tatami Room (20 eigenvectors – daylight). 

5.4 Ashdown Residence 

The Ashdown environment is a multi-room house with a large number of occluded 

surfaces. It is also representative of a visual environment that an architect or lighting 

designer would generate for presentation to the client, particularly as a photorealistic 

three-dimensional model that can be viewed interactively. 

The Ashdown Residence environment consists of 2,451 patches and 9,343 elements 

with 14 physical (non-diffuse) light sources, and with a wide range of patch areas (Figure 

5.17). 
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Figure 5.17 – Ashdown Residence (wireframe). 

 

Figure 5.18 – Ashdown Residence (progressive radiosity). 
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Using progressive radiosity techniques, the environment reaches 1.0% convergence in 

6,317 steps (Figure 5.18). The conductance matrix row cache size was 200, which 

produced a sparse matrix fill-in of 7.8%. 

Figure 5.19 shows the eigenvalue bounds and calculated eigenvalues for this matrix. 

The Ashdown Residence environment has 120 eigenvalues greater than 10% of the 

spectral radius (4.7% of total) and 149 eigenvalues greater than 5% of the spectral radius 

(5.8% of total). 

The eigenvalue bounds are less encouraging in that the magnitude of the smallest 

cached bound is 26% of the largest bound. There is therefore less reason to be confident 

that the eigensystems of the sparse and full conductance matrices are similar. Because 

most of the environment patches have areas of approximately 0.8 square meters (8.6 

square feet), there would be little advantage in increasing the conductance matrix row 

cache size. 
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Figure 5.19 Conductance array eigenvalues for Ashdown Residence. 

It should be recognized however that the Ashdown Residence is a partitioned 

environment with five separate rooms. Because of the limited flow of light between these 
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rooms, it is understandable that more eigenvectors are needed to fully characterize the 

environment. 

An attempt was made to produce an eigenvector radiosity solution for the Ashdown 

Residence environment using 50 eigenvectors. However, this was clearly insufficient, as 

the solution converged in 13 iterations to 3% and then oscillated between 2% and 10%. 

5.5 Conclusions 

The examples presented in this chapter illustrate both the strengths and weaknesses of 

eigenvector radiosity. In terms of strength, the Tatami Room environment indicates that 

complex environments have relatively few dominant eigenvectors, and that they can be 

successfully cached and saved for later use. 

The eigenvector radiosity solutions for the Warehouse and Tatami Room 

environments indicate that the approach is surprisingly robust, even when less than 3% of 

the conductance matrix eigenvectors are used. 

In terms of weakness, the spectral distribution of the eigenvalue bounds is dependent 

the distribution of patch areas. For extremely regular environments such as the 

Warehouse, it may not be possible to determine which patches should be cached. (The 

Warehouse environment was likely an exception because of its symmetry.) Fortunately, 

the distribution of patch areas can be used to identify such problem environments without 

the need to perform progressive radiosity calculations. 

The Ashdown Residence environment indicates that eigenvector radiosity is not well 

suited for complex environments that have little symmetry and numerous occlusions. To 

be useful with such environments, it is likely that the approach will have to be combined 

with environment partitioning techniques. 
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The Block Lanczos eigensolver used in the development of this thesis was a C++ 
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respectively. 

This Block Lanczos eigensolver was used in conjunction with a modified version of 

the Helios progressive radiosity renderer to produce the conductance array eigenspectra 

and render the images presented in this chapter. 

 

http://www.netlib.org/
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Chapter 6 

Conclusions 

6.1 Review 

It has been shown that eigenanalysis may be used to decompose a radiative transfer 

network, and that each of its linearly independent components represents a radiative 

transfer network. 

It has been further shown that the radiosity equation can be iteratively solved using a 

subset of the eigendecomposition of its associated conductance matrix, and that 

progressive radiosity techniques (in particular, Southwell iteration) can be modified to 

provide approximate conductance matrices without the need to calculate the full form 

factor matrix. 

Finally, it has been demonstrated through numerical experiments that eigenvector 

radiosity can be successfully applied as a software engineering tool for architects and 

lighting designers. 

6.2 Related Applications 

It may be possible to apply eigenvector radiosity to other scientific and engineering 

disciplines. Certainly the numerical experiments are applicable to the closely related 

fields of thermal and aerospace engineering. However, the ability of eigenvector radiosity 

to model any physical system that can be represented as a linear resistive network is very 

attractive. 
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A good example is acoustical engineering, where there are so far no good solutions to 

the problem of modeling moving sources and/or receivers in arbitrarily complex 

environments. There are complicating issues such as sound velocity, media absorption, 

phase cancellation, and diffraction. However, eigenanalysis of the equivalent linear 

resistive network for an acoustic environment may identify the dominant acoustic paths 

and so simplify the problem of calculating diffuse interreflections. 

More generally, linear resistive networks can be used to model neural networks, gas 

distribution systems, communication networks, transportation systems, nuclear reactors, 

and structural frameworks. Because the eigenvector radiosity technique developed in 

Chapter 3 relies only on network conductances, it should be applicable to all of these 

disciplines. 

6.3 Future Work 

Time constraints prevented the investigation of several interested issues related to 

eigenvector radiosity. It was noted for example in Chapter 3 that eigenvector radiosity is 

a reformulation of Jacobi iteration. As with Jacobi iteration, it is “embarrassingly 

parallel.” There may therefore be scientific applications for eigenvector radiosity that can 

be executed on parallel processor machines while retaining the advantages of working 

only with the dominant eigenvectors of the conductance matrix. 

On another topic, O’Brien and Bobco [obri64] and O’Brien and Gomez [obri67] 

extended the RT network analogy to include semi-diffuse and specular surfaces, while 

Oppenheim considered participating media [oppe54, oppe56]. Future work will 

investigate whether these extended analogies can be incorporated into eigenvector 

radiosity. 
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Eigenvalue bounds for the sparse conductance matrix are another topic worthy of 

investigation. The numerical experiments discussed in Chapter Five indicate that while 

the Gershgorin Circle theorem produces usable bounds, they are extremely conservative. 

An algorithm that produces tighter bounds would assist in constructing the sparse 

conductance matrix. 

The relationship between eigenvector radiosity and other global illumination 

techniques such as hierarchical and wavelet radiosity [e.g., cohe93, sill94] should also be 

investigated. In particular, it is likely that a hierarchical formulation of eigenvector 

radiosity can be developed. This may assist in handling complex environments where the 

conductance matrix becomes too large for the Block Lanczos algorithm to solve in 

reasonable time. 

Finally, it is evident from the numerical experiments that environment partitioning 

techniques will also assist in handling complex environments. As was discussed in 

Chapter Four, it may be possible to develop partitioning techniques that take advantage of 

the local and global path information contained in the conductance matrices. 

6.4 Final Words 

The original goal of this thesis was to answer the question, “What is the physical meaning 

of the eigensystem of a form factor matrix.” As the research work developed, a secondary 

goal became the development of a useful engineering tool based on eigenvector radiosity. 

It can be said with some satisfaction that both goals have been achieved. 
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Appendix A 

MATLAB Experiments 

A.1 Does It Really Work? 

While the numerical experiments presented in Chapter Five demonstrate the application 

of eigenvector radiosity to practical illumination engineering problems, they do not 

provide an unequivocal answer to the question: does eigenvector radiosity really work? 

The problem is that the Helios progressive radiosity renderer used for the numerical 

experiments calculates form factors using numerical quadrature rather than analytic 

techniques. Moreover, these form factors model shooting patch as having differential 

rather than a finite areas. 

For most progressive radiosity applications these approximate form factors are 

acceptable – the error is typically less than ±1 percent [ashd94]. However, it is advisable 

to implement eigenvector radiosity using analytic form factors, if only to examine its 

behavior with simple environments. 

A.2 Form Factor Calculations 

Despite their apparent simplicity, form factors are notoriously difficult to solve using 

analytic methods. Johann Lambert, a pioneer researcher in photometry and likely the first 

person to consider the problem, wrote [lamb60]: 

Although this task appears very simple, its solution is considerably more knotted than 

one would expect … the highly laborious computation would fill even the most patient 

with disgust and drive them away. 
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Lambert expressed this opinion in reference to the problem of determining the form 

factor between two perpendicular rectangles sharing a common edge. However, his 

comments apply equally well to analytic form factor determination in general. As 

discussed in Chapter 2, the form factor from a finite area patch Ai to another finite area 

patch Aj (Figure A.1) is given by the double area integral equation: 

∫ ∫=
i jA A

ij
ji

i
ij dAdA

rA
F 2

coscos1
π

θθ
 (A.1) 

In general, this equation cannot be solved directly. However, it is often possible (with 

“highly laborious computation”) to determine closed-form solutions for simple 

geometries. 

Mechanical and aeronautical engineers have long used published tables of formulae 

for specific area-to-area geometries in their radiant heat transfer studies, including those 

by Howell [howe82], Siegel and Howell [sieg92], and Sparrow and Cess [spar78]. These 

include simple shapes such as parallel and perpendicular rectangles, circle, and hollow 

tubes. More complex geometries can be analyzed using form factor algebra [e.g., sieg92] 

to geometrically add and subtract these shapes and their associated form factors. 

Figure A.1 – Patch-to-patch form factor geometry. 
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Two analytic form factor equations are required for the purposes of this appendix: 

one for adjoining perpendicular rectangles (Figure A.2), and another for parallel 

rectangles (Figure A.3). Both equations are obtained from Howell [howe82]. 

Figure A.2 – Perpendicular rectangles with common edge. 
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Figure A.3 – Parallel rectangles. 
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With these two equations, the form factors between any two surfaces in an empty 

rectangle room (Figure A.4) can be determined. 

Figure A.4 – Empty rectangular room. 

The following MATLAB listings implement Equation A.2 for perpendicular surfaces 

and Equation A.3 for parallel surfaces:  

% Calculate form factor for two finite rectangles of 
% the same length with one common edge at right angles 
% to each other 
 
function FF = calc_perp(width, length, height) 
 
H = height / length; 
W = width / length; 
 
SH = H * H; 
SW = W * W; 
 
A = 1.0 / (pi * W); 
B = W * atan(1.0 / W) + H * atan(1.0 / H); 
C = sqrt(SH + SW) * atan(1.0 / sqrt(SH + SW)); 
D = (1.0 + SW) * (1.0 + SH) / (1.0 + SW + SH); 
E = SW * (1.0 + SW + SH) / ((1.0 + SW) * (SW + SH)); 
F = SH * (1.0 + SW + SH) / ((1.0 + SH) * (SW + SH)); 
 
FF = A * (B - C + 0.25 * log(D * E^(SW) * F^(SH))); 

A3 

A6 

A1 

A5 
A2 

A4 
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Listing A.1 – MATLAB perpendicular rectangles form factor determination 

% Calculate form factor for identical parallel directly 
% opposed rectangles 
 
function FF = calc_para(width, length, separation) 
 
X = width / separation; 
Y = length / separation; 
 
SX = X * X; 
SY = Y * Y; 
 
A = 2.0 / (X * Y * pi); 
B = log(sqrt((1.0 + SX) * (1.0 + SY) / (1.0 + SX + SY))); 
C = X * sqrt(1.0 + SY) * atan(X / sqrt(1.0 + SY)); 
D = Y * sqrt(1.0 + SX) * atan(Y / sqrt(1.0 + SX)); 
E = X * atan(X) + Y * atan(Y); 
 
FF = A * (B + C + D - E); 

Listing A.2 – MATLAB parallel rectangles form factor determination 

A.3 An Analytic Implementation 

Using the above two functions, the following MATLAB listing calculates the radiant 

transfer system conductance matrix and its eigensystem for an empty room measuring 5.0 

meters long by 3.0 meters wide and 2.5 meters high, then calculates the approximate final 

exitance vectors for a given initial exitance vector.  

% Calculate radiosity conductance matrix and its eigensystem 
 
% Calculate analytic form factors for empty room measuring 
% 5.0 m long by 3.0 m wide by 2.5 m high 
l = 5.0; 
w = 3.0; 
h = 2.5; 
 
ff11 = 0.0000; 
ff22 = ff11; 
ff33 = ff11; 
ff44 = ff11; 
ff55 = ff11; 
ff66 = ff11; 
 
ff12 = calc_perp(l, w, h); 
ff13 = ff12; 
ff62 = ff12; 
ff63 = ff12; 
 
ff14 = calc_perp(w, l, h); 
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ff15 = ff14; 
ff64 = ff14; 
ff65 = ff14; 
 
ff16 = calc_para(w, l, h); 
ff61 = ff16; 
 
ff21 = calc_perp(h, w, l); 
ff26 = ff21; 
ff31 = ff21; 
ff36 = ff21; 
 
ff23 = calc_para(h, w, l); 
ff32 = ff23; 
 
ff24 = calc_perp(w, h, l); 
ff25 = ff24; 
ff34 = ff24; 
ff35 = ff24; 
 
ff41 = calc_perp(h, l, w); 
ff46 = ff41; 
ff51 = ff41; 
ff56 = ff41; 
 
ff42 = calc_perp(l, h, w); 
ff43 = ff42; 
ff52 = ff42; 
ff53 = ff42; 
 
ff45 = calc_para(h, l, w); 
ff54 = ff45; 
 
% Construct form factor matrix 
fprintf(1, 'Form factor matrix\n') 
FF = [ ff11 ff12 ff13 ff14 ff15 ff16; 
       ff21 ff22 ff23 ff24 ff25 ff26; 
       ff31 ff32 ff33 ff34 ff35 ff36; 
       ff41 ff42 ff43 ff44 ff45 ff46; 
       ff51 ff52 ff53 ff54 ff55 ff56; 
       ff61 ff62 ff63 ff64 ff65 ff66 ] 
     
% Assign surface reflectances (ceiling 80%, walls 70%, floor 20%) 
fprintf(1, 'Reflectance matrix\n') 
R = [ 0.8 0.0 0.0 0.0 0.0 0.0; 
      0.0 0.7 0.0 0.0 0.0 0.0; 
      0.0 0.0 0.7 0.0 0.0 0.0; 
      0.0 0.0 0.0 0.7 0.0 0.0; 
      0.0 0.0 0.0 0.0 0.7 0.0; 
      0.0 0.0 0.0 0.0 0.0 0.2 ] 
    
% Assign surface areas    
fprintf(1, 'Surface area matrix\n') 
A = [ (l*w)   0.0   0.0   0.0   0.0   0.0; 
        0.0 (w*h)   0.0   0.0   0.0   0.0; 
        0.0   0.0 (w*h)   0.0   0.0   0.0; 
        0.0   0.0   0.0 (l*h)   0.0   0.0; 
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        0.0   0.0   0.0   0.0 (l*h)   0.0; 
        0.0   0.0   0.0   0.0   0.0 (l*w) ] 
     
% Calculate conductance matrix 
fprintf(1, 'Conductance matrix\n')      
G = A * FF 
 
% Calculate symmetric radiosity matrix eigensystem 
[V,D]= eig(G); 
 
% Get eigenvalues 
eval = [ D(1,1); D(2,2); D(3,3); D(4,4); D(5,5); D(6,6) ]; 
 
% Sort eigenvalues by decreasinbg absolute mangitude 
Q = [ abs(eval(1)); abs(eval(2)); abs(eval(3)); 
      abs(eval(4)); abs(eval(5)); abs(eval(6)) ]; 
[SV,I] = sort(Q); 
    
% Extract eigenvalues 
d1 = eval(I(6)); 
d2 = eval(I(5)); 
d3 = eval(I(4)); 
d4 = eval(I(3)); 
d5 = eval(I(2)); 
d6 = eval(I(1)); 
fprintf(1, 'Eigenvalues\n\n%f %f %f %f %f %f\n\n', ... 
    d1, d2, d3, d4, d5, d6) 
 
% Extract eigenvectors 
v1 = V(:,I(6)); 
v2 = V(:,I(5)); 
v3 = V(:,I(4)); 
v4 = V(:,I(3)); 
v5 = V(:,I(2)); 
v6 = V(:,I(1)); 
fprintf(1, 'Eigenvectors\n') 
V 
 
% Construct conductance matrix components according to 
% spectral theorem 
fprintf(1, 'Conductance matrix spectral components\n') 
G1 = d1 * (v1 * v1') 
G2 = d2 * (v2 * v2') 
G3 = d3 * (v3 * v3') 
G4 = d4 * (v4 * v4') 
G5 = d5 * (v5 * v5') 
G6 = d6 * (v6 * v6') 
 
% Reconstruct conductance matrix (validation) 
% 
% NOTE: Eigenvectors are ordered according to decreasing 
%       eigenvalue absolute magnitude 
% 
H1 = G1; 
H2 = H1 + G2; 
H3 = H2 + G3; 
H4 = H3 + G4; 
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H5 = H4 + G5; 
H6 = H5 + G6; 
 
% Construct initial exitance vector 
fprintf(1, 'Initial exitance vector\n') 
Mo = [1.0; 0.0; 0.0; 0.0; 0.0; 0.0 ] 
 
% Solve directly 
fprintf(1, 'Direct solution vector\n') 
M = inv(eye(6,6) - (R / A ) * G) * Mo 
 
% Determine approximate final exitance vectors 
fprintf(1, 'Approximate solution vectors\n') 
M6 = inv(eye(6,6) - (R / A ) * H6) * Mo 
fprintf(1, 'Error = %f\n', norm(((M - M6) / M), 2)) 
M5 = inv(eye(6,6) - (R / A ) * H5) * Mo 
fprintf(1, 'Error = %f\n', norm(((M - M5) / M), 2)) 
M4 = inv(eye(6,6) - (R / A ) * H4) * Mo 
fprintf(1, 'Error = %f\n', norm(((M - M4) / M), 2)) 
M3 = inv(eye(6,6) - (R / A ) * H3) * Mo 
fprintf(1, 'Error = %f\n', norm(((M - M3) / M), 2)) 
M2 = inv(eye(6,6) - (R / A ) * H2) * Mo 
fprintf(1, 'Error = %f\n', norm(((M - M2) / M), 2)) 
M1 = inv(eye(6,6) - (R / A ) * H1) * Mo 
fprintf(1, 'Error = %f\n', norm(((M - M1) / M), 2)) 
 
% Solve using Jacobi iteration 
fprintf(1, '\nJacobi iteration\nIter\tError\n') 
Mj = Mo; 
I = 0; 
while (norm(Mj - M) > 0.001 & I < 100) 
   Mj = Mo + R * FF * Mj; 
   I = I + 1; 
   fprintf(1, '%d\t %f\n', I, norm(((Mj - M) / M),2)) 
end 
Mj 
 
% Precalculate S-array and w vectors 
S = R / A; 
w1 = S * v1; 
w2 = S * v2; 
w3 = S * v3; 
w4 = S * v4; 
w5 = S * v5; 
w6 = S * v6; 
 
% Solve using eigenvector radiosity with 6 eigenvectors 
fprintf(1, 'Eigenvector radiosity (6)\nIter\tError\n') 
Me = Mo; 
K = Mo; 
I = 0; 
while (norm(Me - M) > 0.001 & I < 15) 
   K = K' * v1 * d1 * w1 + ... 
       K' * v2 * d2 * w2 + ... 
       K' * v3 * d3 * w3 + ... 
       K' * v4 * d4 * w4 + ... 
       K' * v5 * d5 * w5 + ... 
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       K' * v6 * d6 * w6; 
   Me = Me + K; 
   I = I + 1; 
   fprintf(1, '%d\t%f\n', I, norm(((Me - M) / M),2)) 
end 
Me 
 
% Solve using eigenvector radiosity with 5 eigenvectors 
fprintf(1, 'Eigenvector radiosity (5)\nIter\tError\n') 
Me = Mo; 
K = Mo; 
I = 0; 
while (norm(Me - M) > 0.001 & I < 15) 
   K = K' * v1 * d1 * w1 + ... 
       K' * v2 * d2 * w2 + ... 
       K' * v3 * d3 * w3 + ... 
       K' * v4 * d4 * w4 + ... 
       K' * v5 * d5 * w5; 
   Me = Me + K; 
   I = I + 1; 
   fprintf(1, '%d\t%f\n', I, norm(((Me - M) / M),2)) 
end 
Me 
 
% Solve using eigenvector radiosity with 4 eigenvectors 
fprintf(1, 'Eigenvector radiosity (4)\nIter\tError\n') 
Me = Mo; 
K = Mo; 
I = 0; 
while (norm(Me - M) > 0.001 & I < 15) 
   K = K' * v1 * d1 * w1 + ... 
       K' * v2 * d2 * w2 + ... 
       K' * v3 * d3 * w3 + ... 
       K' * v4 * d4 * w4; 
   Me = Me + K; 
   I = I + 1; 
   fprintf(1, '%d\t%f\n', I, norm(((Me - M) / M),2)) 
end 
Me 
 
% Solve using eigenvector radiosity with 3 eigenvectors 
fprintf(1, 'Eigenvector radiosity (3)\nIter\tError\n') 
Me = Mo; 
K = Mo; 
I = 0; 
while (norm(Me - M) > 0.001 & I < 15) 
   K = K' * v1 * d1 * w1 + ... 
       K' * v2 * d2 * w2 + ... 
       K' * v3 * d3 * w3; 
   Me = Me + K; 
   I = I + 1; 
   fprintf(1, '%d\t%f\n', I, norm(((Me - M) / M),2)) 
end 
Me 
 
% Solve using eigenvector radiosity with 2 eigenvectors 
fprintf(1, 'Eigenvector radiosity (2)\nIter\tError\n') 
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Me = Mo; 
K = Mo; 
I = 0; 
while (norm(Me - M) > 0.001 & I < 15) 
   K = K' * v1 * d1 * w1 + ... 
       K' * v2 * d2 * w2; 
   Me = Me + K; 
   I = I + 1; 
   fprintf(1, '%d\t%f\n', I, norm(((Me - M) / M),2)) 
end 
Me 
 
% Solve using eigenvector radiosity with 1 eigenvector 
fprintf(1, 'Eigenvector radiosity (1)\nIter\tError\n') 
Me = Mo; 
K = Mo; 
I = 0; 
while (norm(Me - M) > 0.001 & I < 15) 
   K = K' * v1 * d1 * w1; 
   Me = Me + K; 
   I = I + 1; 
   fprintf(1, '%d\t%f\n', I, norm(((Me - M) / M),2)) 
end 
Me 

Listing A.3 – MATLAB empty rectangular room conductance matrix eigenanalysis 

The annotated output of this program is presented in Listing A.4. 

EDU» run conductance 
Form factor matrix 
 
FF = 
         0    0.1249    0.1249    0.2145    0.2145    0.3213 
    0.2498         0    0.0800    0.2102    0.2102    0.2498 
    0.2498    0.0800         0    0.2102    0.2102    0.2498 
    0.2573    0.1261    0.1261         0    0.2331    0.2573 
    0.2573    0.1261    0.1261    0.2331         0    0.2573 
    0.3213    0.1249    0.1249    0.2145    0.2145         0 
 
Reflectance matrix 
 
R = 
    0.8000         0         0         0         0         0 
         0    0.7000         0         0         0         0 
         0         0    0.7000         0         0         0 
         0         0         0    0.7000         0         0 
         0         0         0         0    0.7000         0 
         0         0         0         0         0    0.2000 
 
Surface area matrix 
 
A = 
   15.0000         0         0         0         0         0 
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         0    7.5000         0         0         0         0 
         0         0    7.5000         0         0         0 
         0         0         0   12.5000         0         0 
         0         0         0         0   12.5000         0 
         0         0         0         0         0   15.0000 
 
Conductance matrix 
 
G = 
         0    1.8733    1.8733    3.2168    3.2168    4.8199 
    1.8733         0    0.6001    1.5766    1.5766    1.8733 
    1.8733    0.6001         0    1.5766    1.5766    1.8733 
    3.2168    1.5766    1.5766         0    2.9132    3.2168 
    3.2168    1.5766    1.5766    2.9132         0    3.2168 
    4.8199    1.8733    1.8733    3.2168    3.2168         0 
 
Eigenvalues 
 
12.401950 -4.819853 -2.913177 -2.639829 -1.429002 -0.600088 
 
Eigenvectors 
 
V = 
   -0.4952    0.7071   -0.4700   -0.1839    0.0000    0.0000 
   -0.2710    0.0000    0.0303    0.6524   -0.7071    0.0000 
   -0.2710    0.0000    0.0303    0.6524    0.7071    0.0000 
   -0.4258    0.0000    0.5274   -0.2013    0.0000   -0.7071 
   -0.4258    0.0000    0.5274   -0.2013    0.0000    0.7071 
   -0.4952   -0.7071   -0.4700   -0.1839    0.0000    0.0000 
 
Conductance matrix spectral components 
 
G1 = 
    3.0415    1.6643    1.6643    2.6153    2.6153    3.0415 
    1.6643    0.9107    0.9107    1.4311    1.4311    1.6643 
    1.6643    0.9107    0.9107    1.4311    1.4311    1.6643 
    2.6153    1.4311    1.4311    2.2488    2.2488    2.6153 
    2.6153    1.4311    1.4311    2.2488    2.2488    2.6153 
    3.0415    1.6643    1.6643    2.6153    2.6153    3.0415 
 
G2 = 
   -2.4099    0.0000    0.0000    0.0000    0.0000    2.4099 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    2.4099    0.0000    0.0000    0.0000    0.0000   -2.4099 
 
G3 = 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000   -1.4566    1.4566    0.0000 
    0.0000    0.0000    0.0000    1.4566   -1.4566    0.0000 
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    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
 
G4 = 
   -0.5832    0.0376    0.0376    0.6544    0.6544   -0.5832 
    0.0376   -0.0024   -0.0024   -0.0421   -0.0421    0.0376 
    0.0376   -0.0024   -0.0024   -0.0421   -0.0421    0.0376 
    0.6544   -0.0421   -0.0421   -0.7342   -0.7342    0.6544 
    0.6544   -0.0421   -0.0421   -0.7342   -0.7342    0.6544 
   -0.5832    0.0376    0.0376    0.6544    0.6544   -0.5832 
 
G5 = 
   -0.0483    0.1714    0.1714   -0.0529   -0.0529   -0.0483 
    0.1714   -0.6083   -0.6083    0.1877    0.1877    0.1714 
    0.1714   -0.6083   -0.6083    0.1877    0.1877    0.1714 
   -0.0529    0.1877    0.1877   -0.0579   -0.0579   -0.0529 
   -0.0529    0.1877    0.1877   -0.0579   -0.0579   -0.0529 
   -0.0483    0.1714    0.1714   -0.0529   -0.0529   -0.0483 
 
G6 = 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000   -0.3000    0.3000    0.0000    0.0000    0.0000 
    0.0000    0.3000   -0.3000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
 
Initial exitance vector 
 
Mo = 
     1 
     0 
     0 
     0 
     0 
     0 
 
Direct solution vector 
 
M = 
    1.2343 
    0.3684 
    0.3684 
    0.3713 
    0.3713 
    0.1296 
 
Approximate solution vectors 
 
M6 = 
    1.2343 
    0.3684 
    0.3684 
    0.3713 
    0.3713 
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    0.1296 
 
Error = 0.000000 
 
M5 = 
    1.2343 
    0.3684 
    0.3684 
    0.3713 
    0.3713 
    0.1296 
 
Error = 0.000000 
 
M4 = 
    1.2349 
    0.3770 
    0.3770 
    0.3715 
    0.3715 
    0.1297 
 
Error = 0.009898 
 
M3 = 
    1.2431 
    0.3695 
    0.3695 
    0.3484 
    0.3484 
    0.1322 
 
Error = 0.027335 
 
M2 = 
    1.2431 
    0.3695 
    0.3695 
    0.3484 
    0.3484 
    0.1322 
 
Error = 0.027335 
 
M1 = 
    1.4321 
    0.4138 
    0.4138 
    0.3902 
    0.3902 
    0.1080 
 
Error = 0.170775 
 



 

 115 

Jacobi iteration 
Iter Error 
1  0.368769 
2  0.219477 
3  0.130254 
4  0.077410 
5  0.045988 
6  0.027324 
7  0.016234 
8  0.009645 
9  0.005731 
10  0.003405 
11  0.002023 
12  0.001202 
13  0.000714 
 
Mj = 
    1.2339 
    0.3680 
    0.3680 
    0.3709 
    0.3709 
    0.1294 
 
Eigenvector radiosity (6) 
Iter Error 
1 0.368769 
2 0.219477 
3 0.130254 
4 0.077410 
5 0.045988 
6 0.027324 
7 0.016234 
8 0.009645 
9 0.005731 
10 0.003405 
11 0.002023 
12 0.001202 
13 0.000714 
 
Me = 
    1.2339 
    0.3680 
    0.3680 
    0.3709 
    0.3709 
    0.1294 
 
Eigenvector radiosity (5) 
Iter Error 
1 0.368769 
2 0.219477 
3 0.130254 
4 0.077410 
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5 0.045988 
6 0.027324 
7 0.016234 
8 0.009645 
9 0.005731 
10 0.003405 
11 0.002023 
12 0.001202 
13 0.000714 
 
Me = 
    1.2339 
    0.3680 
    0.3680 
    0.3709 
    0.3709 
    0.1294 
 
Eigenvector radiosity (4) 
Iter Error 
1 0.377013 
2 0.223991 
3 0.132320 
4 0.077172 
5 0.044131 
6 0.024553 
7 0.013456 
8 0.008236 
9 0.007122 
10 0.007678 
11 0.008405 
12 0.008951 
13 0.009312 
14 0.009540 
15 0.009680 
 
Me = 
    1.2347 
    0.3768 
    0.3768 
    0.3714 
    0.3714 
    0.1297 
 
Eigenvector radiosity (3) 
Iter Error 
1 0.393073 
2 0.244754 
3 0.155064 
4 0.101044 
5 0.068953 
6 0.050360 
7 0.039935 
8 0.034259 
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9 0.031203 
10 0.029543 
11 0.028620 
12 0.028095 
13 0.027789 
14 0.027608 
15 0.027500 
 
Me = 
    1.2429 
    0.3693 
    0.3693 
    0.3482 
    0.3482 
    0.1321 
 
Eigenvector radiosity (2) 
Iter Error 
1 0.393073 
2 0.244754 
3 0.155064 
4 0.101044 
5 0.068953 
6 0.050360 
7 0.039935 
8 0.034259 
9 0.031203 
10 0.029543 
11 0.028620 
12 0.028095 
13 0.027789 
14 0.027608 
15 0.027500 
 
Me = 
    1.2429 
    0.3693 
    0.3693 
    0.3482 
    0.3482 
    0.1321 
 
Eigenvector radiosity (1) 
Iter Error 
1 0.366843 
2 0.210351 
3 0.137046 
4 0.122279 
5 0.131424 
6 0.143387 
7 0.152744 
8 0.159189 
9 0.163421 
10 0.166137 
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11 0.167861 
12 0.168948 
13 0.169631 
14 0.170060 
15 0.170328 
 
Me = 
    1.4318 
    0.4135 
    0.4135 
    0.3898 
    0.3898 
    0.1079 
 
EDU»  

Listing A.4 – MATLAB output 

A.4 Conclusions 

The MATLAB output presented in Listing A.4 highlights several important points that 

were discussed in Chapter 4: 

1. The approximate solution vector M6 based on all of the eigenpairs of the conductance 

matrix is identical to the direct solution vector M. (This follows from the spectral 

decomposition theorem.) 

2. The relative 2-norm error between M5 and M is zero. This indicates that the 

contribution of the smallest eigenvector to the solution is insignificant. 

3. The approximate solution vector M2 has a relative 2-norm error of less than 3 

percent. This indicates that a reasonably acceptable solution can be obtained using 

only two of the six eigenvectors (for this particular problem). 

4. The approximate solution vector M1 has a relative 2-norm error of 17 percent. While 

this may not be acceptable for most engineering applications, it indicates that an order 

of magnitude estimate can be obtained using only the largest magnitude eigenvectors. 

These are the first eigenvectors to be returned by the iterative block Lanczos 

eigensolver. 
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5. The eigenvector radiosity solution utilizing all of the eigenvectors exhibits exactly the 

same step-by-step convergence as Jacobi iteration. (This follows from eigenvector 

radiosity being a reformulation of Jacobi iteration in terms of the conductance matrix 

eigenpairs.) Convergence to less than 0.1 percent error occurs in 13 steps. 

6. The eigenvector radiosity solutions utilizing subsets of the largest magnitude 

eigenvectors exhibit similar convergence behavior in that they also converge to a 

solution in 13 steps. However, each solution has a constant relative 2-norm error with 

respect to the direct solution. (This follows from each subset of eigenpairs 

representing an approximate conductance matrix.) 

While these results cannot be directly extended to more complex environments, they 

do indicate that eigenvector radiosity works in principle. 
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Appendix B 

Eigenspectra 

B.1 Eigensystems 

Given a homogeneous system of linear equations: 

xAx λ=  (B.1) 

where x ≠ 0 and λ is a complex (and possibly real) scalar, then x is an eigenvector, λ is an 

eigenvalue, and the eigenpair {x, λ} is an eigensolution of the matrix A. The set of all 

eigenvalues of A is called the eigenspectrum, or simply the spectrum S(A), of A, and the 

set of all eigenpairs is called its eigensystem. Further, ( ) maxλρ =A  is called the spectral 

radius of A. 

This appendix outlines various theorems concerning eigenspectra and their bounds as 

they relate to eigenvector radiosity. 

B.2 Gershgorin Circle Theorem 

The Gershgorin Circle theorem states that the spectrum S(A) of the matrix [ ]ija=A  is 

bounded by the intersection of the union of two sets of discs iC  and iC′  (that is, 

( ) CCS i ′∩⊂A ) in the complex plane, where: 

niaazC
ij

ijiii ≤≤








≤−= ∑
≠

1,  (B.2) 

and 

niaazC
ij

jiiii ≤≤








≤−=′ ∑
≠

1,  (B.3) 
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A proof is given by Axelsson [axel96]. 

For a symmetric matrix, jiij aa =  and so the Gershgorin Circle theorem reduces to 

Equation B.2. Furthermore, the eigenvalues of a symmetric matrix are real [golu96], 

which means that the eigenvalues of A are bounded by the intervals: 

niaarR
ij

ijiii ≤≤








≤−= ∑
≠

1,  (B.4) 

where r is a real number. 

Given a conductance matrix G of order n where 0=iig  (that is, there are no loop 

conductances in the associated linear resistive network), Equation B.4 gives: 

( ) nig
n

j
ij ≤≤=





≤

∞
=
∑ 1,max

1
GGρ  (B.5) 

where 
∞

G  is the p-norm of G for p = ∞. 

Recalling from Chapter 3 that AFG =  where A is the diagonal matrix of surface 

element areas, we have: 

( ) nifafa
n

j
iji

n

j
iji ≤≤





=





≤ ∑∑

==

1,maxmax
11

Gρ  (B.6) 

where ia  is the area of surface element i. 

However, two properties of form factor matrices (see Chapter 1) are that: 

1
1

≤∑
=

n

j
ijf  (B.7) 

for any row i; and: 

10 ≤≤ ijf  (B.8) 

for any row i and column j. Substituting these into Equation B.6 gives: 
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( ) ( ) niai ≤≤≤ 1,maxGρ  (B.9) 

This result is useful in Chapter 4, where it is necessary to quickly determine the 

eigenvalue bound for a conductance matrix FAG ~~ = , where F~  consists of a single row 

and column (corresponding to a single shooting element). From Equation B.7, it is 

evident that the spectral radius of G~  is bounded by the area of the shooting element ia . 

This assumes however that 1
1

=∑
=

n

j
ijf . If the summation is less than unity (that is, the 

environment is not closed), then Equation B.6, while more expensive to compute, 

provides a tighter bound. 

B.3 Courant-Fischer Lemma 

Suppose we have a real symmetric matrix A of order n with eigenvalues 

nλλλ ≤≤≤ K21  and the corresponding set of orthonormal eigenvectors nvvv ,,2,1 K . 

The Courant-Fischer lemma then states that for any normalized vector x: 

( ) i
i

λ≤Τ

⊥ −

Axx
vvx 11 ,,

min
K

 (B.10) 

and 

( ) i
ni

λ≥Τ

⊥ +

Axx
vvx 11 ,,

max
K

 (B.11) 

A proof is given by Axelsson [axel96]. 

B.4 Eigenvalue Sensitivity 

Wilkinson [wilk65] proved that given two real symmetric matrices A and B of order n 

with respective eigenvalues ( ) ( ) ( )AAA nλλλ ≤≤≤ K21  and ( ) ( ) ( )BBB nλλλ ≤≤≤ K21 , 

the eigenvalues of the matrix ( )BA +  are bounded by: 

( ) ( ) ( ) ( ) ( ) niiii ≤≤+≤+≤+ 1,maxmin BABABA λλλλλ  (B.12) 
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Following Axelsson (axel96), this may be proven as follows: Let nvvv ,,2,1 K  denote 

the eigenvectors of A. The Courant-Fischer lemma shows that for any normalized vector 

x: 

( ) ( )( ) ( ) ( )
( ) ( )BA

BxxAxxxBAxBA
vvvv

min

,,,,
minminmin

1111

λλ

λ

+=

+≥+≥+ ΤΤ

⊥

Τ

⊥ −−

i

xxi
ii KK  (B.13) 

which proves the lower bound. Similarly: 

( ) ( )( ) ( ) ( )
( ) ( )BA

BxxAxxxBAxBA
vvvv

max

,,,,
maxmaxmax

11

λλ

λ

+=

+≤+≤+ ΤΤ

⊥

Τ

⊥ ++

i

xxi
nini KK  (B.12) 

which proves the upper bound. 

This result is useful in Chapter 4, where it is necessary to determine whether a 

conductance matrix G~  (consisting of a single row and column) will significantly perturb 

the eigenspectrum of an existing conductance matrix G. If ( ) ( )GG maxmax
~ λλ << , then the 

eigenspectra of G and ( )GG ~+  will be similar. More important, an eigenvector radiosity 

solution based on G will be similar to that based on ( )GG ~+ . 
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Appendix C 

Radiometric and Photometric Units 

C.1 Introduction 

The radiometric and photometric definitions employed in this thesis and detailed in this 

appendix are those commonly used in illumination engineering. They are in accordance 

with the American National Standards Institute publication ANSI/IES RP-16-96, 

“Nomenclature and Definitions for Illuminating Engineering” [ansi96]. 

C.2 Radiometry 

Radiometry is the science of measuring light in any portion of the electromagnetic 

spectrum. In practice, the term is usually limited to the measurement of infrared, visible, 

and ultraviolet light using optical instruments. 

C.2.1 Radiant Energy 

Light is radiant energy. Electromagnetic radiation transports energy through space. When 

light is absorbed by a physical object, its energy is converted into some other form. A 

microwave oven, for example, heats a glass of water when its microwave radiation is 

absorbed by the water molecules. The radiant energy of the microwaves is converted into 

thermal energy (heat). Similarly, visible light causes an electric current to flow in a 

photographic light meter when its radiant energy is transferred to the electrons as kinetic 

energy. 

Radiant energy (denoted as Q) is measured in joules. 
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C.2.1.1  Spectral Radiant Energy 

A broadband source such as the Sun emits electromagnetic radiation throughout most of 

the electromagnetic spectrum, from radio waves to gamma rays. However, most of its 

radiant energy is concentrated within the visible portion of the spectrum. A single-

wavelength laser, on the other hand, is a monochromatic source; all of its radiant energy 

is emitted at one specific wavelength. 

From this, we can define spectral radiant energy, which is the amount of radiant 

energy per unit wavelength interval at wavelength λ. It is defined as: 

λλ ddQQ =  (C.1) 

Spectral radiant energy is measured in joules per nanometer. 

C.2.2 Radiant Flux (Radiant Power) 

Energy per unit time is power, which we measure in joules per second, or watts. A laser 

beam, for example, has so many milliwatts or watts of radiant power. Light “flows” 

through space, and so radiant power is more commonly referred to as the “time rate of 

flow of radiant energy,” or radiant flux. It is defined as: 

dtdQ=Φ  (C.2) 

where Q is radiant energy and t is time. 

In terms of a photographic light meter measuring visible light, the instantaneous 

magnitude of the electric current is directly proportional to the radiant flux. The total 

amount of current measured over a period of time is directly proportional to the radiant 

energy absorbed by the light meter during that time. This is how a photographic flash 
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meter works – it measures the total amount of radiant energy received from a camera 

flash. 

The flow of light through space is often represented by geometrical rays of light such 

as those used in computer graphics ray tracing. They can be thought of as infinitesimally 

thin lines drawn through space that indicate the direction of flow of radiant energy (light). 

They are also mathematical abstractions -- even the thinnest laser beam has a finite cross 

section. Nevertheless, they provide a useful aid to understanding radiometric theory. 

Radiant flux is measured in watts. 

C.2.2.1  Spectral Radiant Flux (Spectral Radiant Power) 

Spectral radiant flux is radiant flux per unit wavelength interval at wavelength λ. It is 

defined as: 

λλ ddΦ=Φ  (C.3) 

and is measured in watts per nanometer. 

C.2.3 Radiant Flux Density (Irradiance and Radiant Exitance) 

Radiant flux density is the radiant flux per unit area at a point on a surface, where the 

surface can be real or imaginary (i.e., a mathematical plane). There are two possible 

conditions. The flux can be arriving at the surface (Figure C.1a), in which case the radiant 

flux density is referred to as irradiance. The flux can arrive from any direction above the 

surface, as indicated by the rays. Irradiance is defined as: 

dAdE Φ=  (C.4) 

where Φ is the radiant flux arriving at the point and dA is the differential area surrounding 

the point. 
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The flux can also be leaving the surface due to emission and/or reflection (Figure 

C.1b). The radiant flux density is then referred to as radiant exitance. As with irradiance, 

the flux can leave in any direction above the surface. The definition of radiant exitance is: 

dAdM Φ=  (C.5) 

where Φ is the radiant flux leaving the point and dA is the differential area surrounding 

the point. 

 

dA    dA  

Figure C.1a – Irradiance.   Figure C.1b – Radiant exitance. 

The importance of a “real or imaginary” surface cannot be overstated. It means that 

radiant flux density can be measured anywhere in three-dimensional space. This includes 

on the surface of physical objects, in the space between them (e.g., in air or a vacuum), 

and inside transparent media such as water and glass. 

Radiant flux density is measured in watts per square meter. 

C.2.3.1  Spectral Radiant Flux Density 

Spectral radiant flux density is radiant flux per unit wavelength interval at wavelength λ. 

When the radiant flux is arriving at the surface, it is called spectral irradiance, and is 

defined as: 

λλ ddEE =  (C.6) 

When the radiant flux is leaving the surface, it is called spectral radiant exitance, and 

is defined as: 
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λλ ddMM =  (C.7) 

Spectral radiant flux density is measured in watts per square meter per nanometer. 

C.2.4 Radiance 

Radiance is best understood by first visualizing it. Imagine ray of light arriving at or 

leaving a point on a surface in a given direction. Radiance is simply the infinitesimal 

amount of radiant flux contained in this ray. Period. 

A more formal definition of radiance requires that we think of a ray as being an 

infinitesimally narrow (“elemental”) cone with its apex at a point on a real or imaginary 

surface. This cone has a differential solid angle dω that is measured in steradians. 

We must also note that the ray is intersecting the surface at an angle. If the area of 

intersection with the surface has a differential cross-sectional area dA, the cross-sectional 

area of the ray is θcosdA , where θ is the angle between the ray and the surface normal, 

as shown in Figure C.2. (The ray cross-sectional area θcosdA  is called the projected 

area of the ray-surface intersection area dA. The same term is used when referring to 

finite areas ∆A.) 

With these preliminaries in mind, we can imagine an elemental cone dω containing a 

ray of light that is arriving at or leaving a surface (Figures C.3a and C.3b). The definition 

of radiance is then: 

( )[ ]θω cos2 ddAdL Φ=  (C.8) 

where Φ is the radiant flux, dA is the differential area surrounding the point, dω is the 

differential solid angle of the elemental cone, and θ is the angle between the ray and the 

surface normal n at the point. 
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Φ

cosθ

θ

dA

n

Projected area

dA

 

Figure C.2 – A ray of light intersecting a surface. 

Unlike radiant flux density, the definition of radiance does not distinguish between 

flux arriving at or leaving a surface. In fact, the formal definition of radiance [ansi96] 

states that it can be “leaving, passing through or arriving at” the surface. 

dA

dω

Φ n

θ

    dA

d ω

Φ n

θ

 

Figure C.3a – Radiance (arriving).  Figure C.3b – Radiance (leaving). 

Another way of looking a radiance is to note that the radiant flux density at a point on 

a surface due to a single ray of light arriving (or leaving) at an angle θ to the surface 

normal is ( )θcosdAdΦ . The radiance at that point for the same angle is then 

( )[ ]θω cos2 ddAd Φ , or radiant flux density per unit solid angle. 

Radiance is measured in watts per square meter per steradian. 
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C.2.4.1  Spectral Radiance 

Spectral radiance is radiance per unit wavelength interval at wavelength λ. It is defined 

as: 

( )[ ]λθωλ dddAdL cos3Φ=  (C.9) 

and is measured in watts per square meter per steradian per nanometer. 

C.2.5 Radiant Intensity 

We can imagine an infinitesimally small point source of light that emits radiant flux in 

every direction. The amount of radiant flux emitted in a given direction can be 

represented by a ray of light contained in an elemental cone. This gives us the definition 

of radiant intensity: 

ωddI Φ=  (C.10) 

where dω is the differential solid angle of the elemental cone containing the given 

direction. From the definition of a differential solid angle ( 2rdAd =ω ), we get: 

22 rIdrddAdE =Φ=Φ= ω  (C.11) 

where the differential surface area dA is on the surface of a sphere centered on and at a 

distance r from the source and E is the irradiance of that surface. More generally, the 

radiant flux will intercept dA at an angle θ (Figure C.4). This gives us the inverse square 

law for point sources: 

2cos dIE θ=  (C.12) 

where I is the intensity of the source in the given direction and d is the distance from the 

source to the surface element dA. 
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θ
d

n

dA
 

Figure C.4 – Inverse square law for point sources. 

We can further imagine a real or imaginary surface as being a continuum of point 

sources, where each source occupies a differential area dA (Figure C.5). Viewed at an 

angle θ from the surface normal n, the source has a projected area of θcosdA . 

Combining the definitions of radiance (Equation C.8) and radiant intensity (Equation 

C.10) gives us an alternative definition of radiance: 

( )θcosdAdIL =  (C.13) 

where dI is the differential intensity of the point source in the given direction. 

Radiant intensity is measured in watts per steradian. 

θ

n

dA

dI

 

Figure C.5 – Radiance of a point source. 

C.2.5.1  Spectral Radiant Intensity 

Spectral radiant intensity is radiant intensity per unit wavelength interval at wavelength 

λ. It is defined as: 

λλ ddII =  (C.14) 
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and is measured in watts per steradian per nanometer. 

C.3 Photometry 

Photometry is the science of measuring visible light in units that are weighted according 

to the sensitivity of the human eye. It is a quantitative science based on a statistical model 

of the human visual response to light – that is, our perception of light – under carefully 

controlled conditions. 

The human visual system is a marvelously complex and highly nonlinear detector of 

electromagnetic radiation with wavelengths ranging from 380 to 770 nanometers (nm). 

We see light of different wavelengths as a continuum of colors ranging through the 

visible spectrum: 650 nm is red, 540 nm is green, 450 nm is blue, and so on. 

The sensitivity of the human eye to light varies with wavelength. A light source with a 

radiance of one watt/m2-steradian of green light, for example, appears much brighter than 

the same source with a radiance of one watt/m2-steradian of red or blue light. In 

photometry, we do not measure watts of radiant energy. Rather, we attempt to measure 

the subjective impression produced by stimulating the human eye-brain visual system 

with radiant energy. 

This task is complicated immensely by the eye’s nonlinear response to light. It varies 

not only with wavelength but also with the amount of radiant flux, whether the light is 

constant or flickering, the spatial complexity of the scene being perceived, the adaptation 

of the iris and retina, the psychological and physiological state of the observer, and a host 

of other variables. 
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Nevertheless, the subjective impression of seeing can be quantified for “normal” 

viewing conditions. In 1924, the Commission Internationale d’Eclairage (International 

Commission on Illumination, or CIE) asked over one hundred observers to visually match 

the “brightness” of monochromatic light sources with different wavelengths under 

controlled conditions. The statistical result – the so-called CIE photometric curve shown 

in Figure C.6 – shows the photopic luminous efficiency of the human visual system as a 

function of wavelength. It provides a weighting function that can be used to convert 

radiometric into photometric measurements. 

Wavelength (nm)

Photopic
luminous
efficiency

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

390 440 490 540 590 640 690 740

 

Figure C.6 – CIE photometric curve. 

Photometric theory does not address how we perceive colors. The light being 

measured can be monochromatic or a combination or continuum of wavelengths; the 

eye’s response is determined by the CIE weighting function. This underlines a crucial 

point: The only difference between radiometric and photometric theory is in their units of 

measurement. 

C.3.1 Luminous Intensity 

The foundations of photometry were laid in 1729 by Pierre Bouguer. In his L’Essai 

d’Optique [boug29], Bouguer discussed photometric principles in terms of the convenient 
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light source of his time: a wax candle. This became the basis of the point source concept 

in photometric theory. 

Wax candles were used as national light source standards in the 18th and 19th 

centuries. England, for example, used spermaceti (a wax derived from sperm whale oil). 

These were replaced in 1909 by an international standard based on a group of carbon 

filament vacuum lamps and again in 1948 by a crucible containing liquid platinum at its 

freezing point. Today the international standard is a theoretical point source that has a 

luminous intensity of one candela (the Latin word for “candle”). It emits monochromatic 

radiation with a frequency of 540 x 1012 Hertz (or approximately 555 nm, corresponding 

with the wavelength of maximum photopic luminous efficiency) and has a radiant 

intensity (in the direction of measurement) of 1/683 watts per steradian [e.g., iesn00]. 

Together with the CIE photometric curve, the candela provides the weighting factor 

needed to convert between radiometric and photometric measurements. Consider, for 

example, a monochromatic point source with a wavelength of 510 nm and a radiant 

intensity of 1/683 watts per steradian. The photopic luminous efficiency at 510 nm is 

0.503. The source therefore has a luminous intensity of 0.503 candela. 

C.3.2 Luminous Flux (Luminous Power) 

Luminous flux is photometrically weighted radiant flux (power). Its unit of measurement 

is the lumen, defined as 1/683 watts of radiant power at a frequency of 540 x 1012 Hertz. 

As with luminous intensity, the luminous flux of light with other wavelengths can be 

calculated using the CIE photometric curve. 
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A point source having a uniform (isotropic) luminous intensity of one candela in all 

directions (i.e., a uniform intensity distribution) emits one lumen of luminous flux per 

unit solid angle (steradian). 

C.3.3 Luminous Energy 

Luminous energy is photometrically weighted radiant energy. It is measured in lumen 

seconds. 

C.3.4 Luminous Flux Density (Illuminance and Luminous Exitance) 

Luminous flux density is photometrically weighted radiant flux density. Illuminance is the 

photometric equivalent of irradiance, whereas luminous exitance is the photometric 

equivalent of radiant exitance. 

Luminous flux density is measured in lumens per square meter. (A footcandle is one 

lumen per square foot.) 

C.3.5 Luminance 

Luminance is photometrically weighted radiance. In terms of visual perception, we 

perceive luminance. It is an approximate measure of how “bright” a surface appears when 

we view it from a given direction. Luminance used to be called “photometric brightness.” 

This term is no longer used in illumination engineering because the subjective sensation 

of visual brightness is influenced by many other physical, physiological, and 

psychological factors. 

Luminance is measured in lumens per square meter per steradian. 
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C.4 Lambertian Surfaces 

A Lambertian surface is a surface that has a constant radiance or luminance that is 

independent of the viewing direction. In accordance with the definition of radiance 

(luminance), the radiant (luminous) flux may be emitted, transmitted, and/or reflected by 

the surface. 

A Lambertian surface is also referred to as an ideal diffuse emitter or reflector. In 

practice there are no true Lambertian surfaces. Most matte surfaces approximate an ideal 

diffuse reflector but typically exhibit semispecular reflection characteristics at oblique 

viewing angles. Nevertheless, the Lambertian surface concept is useful in computer 

graphics and radiosity theory. 

Lambertian surfaces are unique in that they reflect incident flux in a completely 

diffuse manner (Figure C.7). It does not matter what the angle of incidence θ of an 

incoming geometrical ray is – the distribution of light leaving the surface remains 

unchanged. 

We can imagine a differential area dA of a Lambertian surface. Being infinitesimally 

small, it is equivalent to a point source, and so the flux leaving the surface can be 

modeled as geometrical rays. The intensity Iθ of each ray leaving the surface at an angle θ 

from the surface normal is given by Lambert’s cosine law: 

θθ cosnII =  (C.15) 

where In is the intensity of the ray leaving in a direction perpendicular to the surface. 
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Figure C.7 – Reflection from a Lambertian surface. 

The derivation of Equation C.15 becomes clear when we remember that we are 

viewing dA from an angle θ. For a differential area dA with a constant radiance or 

luminance, its intensity must vary in accordance with its projected area, which is 

θcosdA . This gives us: 

( ) dAdIdAdIL n== θcos  (C.16) 

for any Lambertian surface. 

There is a very simple relation between radiant (luminous) exitance and radiance 

(luminance) for flux leaving a Lambertian surface: 

LM π=  (C.17) 

where the factor of π is a source of endless confusion to students of radiometry and 

photometry. Fortunately, there is an intuitive explanation. Suppose we place a differential 

Lambertian emitter dA on the inside surface of an imaginary sphere S (Figure C.8). The 

inverse square law (Equation C.12) provides the irradiance E at any point P on the inside 

surface of the sphere. However, θcosDd = , where D is the diameter of the sphere. Thus: 

( ) θθθ θθ coscoscos 22 DIDIE ==  (C.18) 



 

 138 

 

d θ 

P 

Sphere 
n 

θ 
D 

dA 

S 

 

Figure C.8 – A Lambertian emitter illuminating the interior of a sphere. 

and from Lambert’s cosine law (Equation C.15), we have: 

22 coscos DIDIE n== θθθ  (C.19) 

which simply says that the irradiance (radiant flux density) of any point P on the inside 

surface of S is a constant. 

From the definition of irradiance (Equation C.4), we know that EA=Φ  for constant 

flux density across a finite surface area A. Since the area A of the surface of a sphere with 

radius r is given by: 

224 DrA ππ ==  (C.20) 

we have: 

nn IDDIEA ππ ===Φ 22  (C.21) 

Given the definition of radiant exitance (Equation C.5) and radiance for a Lambertian 

surface (Equation C.16), we have: 

LdAdIdAdM n ππ ==Φ=  (C.22) 

This explains, clearly and without resorting to integral calculus, where the factor of π 

comes from. 

 


