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Abstract

Objects in nature are irregular in shape and the human eye is good at

identifying regularities and symmetries when it does not expect them. Mod-

eling these natural objects to make them look realistic can often be di�cult

and time-consuming. An example of these objects are rocks from a Chinese

garden. These rocks have many large holes in them. Traditional modeling

techniques do not lend themselves well to creating objects with complex and

irregular shape. The holes in these rocks are also too large to be handled with

bump or displacement maps.

This thesis discusses a technique to model ornamental rocks and objects

with many large holes in them. A 3D material comprised of holes is made

using an appropriate distribution for the holes. A stochastic process is used

in creating the holes. Information gathered from pictures of real ornamental

rocks is used for the distributions of the random variables used to create the

holes This is combined with the base shape of the object using constructive

solid geometry. The result is a new object resembling the base shape but

with many holes in it. The new shape created is converted to a format which
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is usable by most rendering systems, in this case a series of triangles. This

is done using a three-dimensional grid as an intermediate structure and then

outputting triangles.The new object can than be imported into a rendering

program.

We produced models and images from an implementation and they show

that the method results in realistic looking images. These models are used in

a virtual reconstruction of the Yuan Ming Yuan, a former imperial garden in

China.
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Chapter 1

Introduction

1.1 Modeling of Natural Phenomena

With computer modeling, objects produced by natural phenomena are some

of the most di�cult types of objects to model. These are objects which are not

man-made or arti�cially produced. They are things one �nds in nature, such as

trees, water, animals, and rocks. Computer modeling generally uses geometric

shapes, or mathematical equations to represent objects. These shapes are usu-

ally somewhat regular or symmetrical. Objects such as tables and chairs can

easily be represented with simple geometric shapes, such as spheres, cylinders

or planes, but natural phenomena are muchmore di�cult to model. They have

many more irregularities in them, lack of symmetry, and have non-repeating

patterns. The human eye is good at detecting regularities, symmetries and

repeating patterns. When looking an arti�cial or man-made objects such as a

chair it expects to see symmetry and patterns. When looking at natural phe-
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nomena the human eye does not expect to see such patterns. These patterns

and symmetries are quickly picked out and make the object not look natural.

Because of this the human eye is more critical when it comes to looking at

things from nature. This makes the task of modeling natural phenomena more

di�cult.

Natural phenomena encompass a wide variety of things which may be

very di�erent from each other. A tree is di�erent from a rock, which is di�erent

from snow. Di�erent types of things need to be approached with completely

di�erent ways of modeling because they are so di�erent. At the same time

the approach taken cannot be too speci�c. It would be ine�cient to use a

di�erent modeling approach for every di�erent object modeled. The model-

ing approach must be applicable to di�erent natural phenomena which share

certain common characteristics. Clouds and �re, for example, are dissimi-

lar but they share certain characteristics such as they are both gaseous and

semi-transparent, thus allowing the use of similar techniques to model them.

1.2 Rocks

In Chinese gardens, landscape architects have used rocks and stones with large

irregular holes. The rocks are used as natural sculptures or are placed together

to form embankments. Examples of such rocks can be seen in Figure 1.1.

These stones and rocks are natural objects that can be interesting to model.

What makes them particularly interesting is the fact they have so many large

holes in them. These holes are not just surface features they exist throughout
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the volume of the whole stone and often go all the way through. Surface

modeling techniques cannot be applied because of the three dimensional nature

of the holes. These holes produce extremely irregular shapes and do not have

repeating patterns. Since holes may go all the way through the object, they

produce complex topologies. These topologies add to the di�culty of the

modeling task. There are also some simplifying factors that make rocks easier

to model. A rock can be represented as one unit and it does not have separate

pieces or any moving parts. The computer modeling of stones and rocks can

take advantage of this simplicity.

Figure 1.1: Photographs of ornamental rocks from a Chinese garden

[muse93]

There are di�erent ways to make these shapes using traditional com-

puter graphics modeling techniques. One could start out with a simple base
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shape, such as an ellipsoid, and then deform it as if it were clay, until a good

rock shape is arrived at. This technique may well end up taking a great deal

of time and often requires a person with a great deal of artistic ability. Other

techniques often used to produce irregularities in an image are bump or dis-

placementmaps. However the holes in the ornamental rocks found in a Chinese

garden are too large to be handled by bump or displacement maps. These are

surface techniques, which do not deal with the whole volume.

The holes of the rocks in a Chinese garden can be large and often have

a signi�cant impact on the over all shape of the rock. This characteristic

suggests that the modeling of these holes in a rock should be done at the

modeling stage and not at the rendering stage when many other techniques

such as bump maps or 3D textures are often applied. The approach for the

modeling of the rocks discussed in this thesis uses a 3D material comprised of

holes that is applied to a base shape of a rock. When combined together they

will produce a new object: the rock with holes in it.

1.3 The Garden Project

The rocks and stones created with this method are being used in the Garden

Project [wang97]. whose goal is to make a virtual reconstruction of the Yuan

Ming Yuan (Garden of Centered Wisdom). This was the garden of the Em-

peror of China, and is considered to be one of the greatest gardens to ever

exist. Covering 780 acres the garden consisted of hills, trees, lakes, buildings,

and �lled with imperial art and treasures collected from throughout China. In
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1860 Yuan Ming Yuan was destroyed by being burnt to the ground by British

and French troops at the end of the Second Opium War. What we have left

are paintings, maps, and stories that show and tell us what the garden used

to appear. Examples of these paintings can be seen in Figure 1.2 and Figure

1.3.

Figure 1.2: A painting of one of the views of Yuan Ming Yuan

One type of object which is found frequently in these gardens is rocks

and stones. In Chinese gardens stones are often set as miniature mountains
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Figure 1.3: A painting of an ornamental rock
[hung85]
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separating various parts of the garden or along the banks of ponds or lakes.

These rocks are usually hand-picked and placed to enhance the feel of the

garden. Some of the most beautiful rocks which are found are placed on

pedestals and used as natural sculptures. The most prized rocks are found in

lakes and made of a soft material with large holes eroded away. These are the

rocks whose modeling is described in this thesis.

1.4 Objectives

The main goal of this thesis is to present, from a computer graphics point

of view, a modeling technique which can be used to model rocks and stones

from a Chinese garden. This technique should ideally be extendible to the

modeling of other objects with holes in them. The end result is a model which

can be used to produce a realistic-looking picture of a rock. The geological

properties of the rock, such as what minerals it is made of and how it was

formed are not of concern here unless they have direct relevance to the rock's

appearance. The modeling technique must also be designed so that the rocks

can be used with the rest of the Garden Project. The ornamental rocks will

be placed in garden scenes along with many other objects such as trees and

buildings. The representation of the �nal object must fairly universal so it can

be incorporated into a standard rendering package. The desired property is the

ability to control the level of detail. A rock, as with any natural phenomena,

might need an arbitrary level of display detail depending on how close to the

virtual viewer it is in the picture.
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Chapter 2

Related Work

2.1 Modeling of Natural Phenomena

There has been much work done on modeling of natural phenomena [four89].

Natural phenomena encompass a wide variety of modeling techniques. Some

modeling techniques are speci�c to a given area and some are general modeling

techniques which can be applied to di�erent areas.

Plants and trees is one catagory where a great deal of work has been

done where many di�erent techniques have been used. These techniques in-

clude Oppenheimer's use of fractals, [oppe86], Prusinkiewicz's work with L-

systems, [prus86, prus88, prus93] Reeves and Blau's use of particle systems

[reev83], De Re�ye's botanical model [re�88], and Weber and Penn's work

using statistics of trees[webe95].

Modeling of gaseous phenomena such as clouds, �re, steam or fog is

another area in which a lot of work has been done. Some of the earliest work
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on clouds was done by Reeves [reev83] with the use of particle systems. Volume

models can be seen in the work of Kajiya and Van Herzen [kaji84], Ebert and

Parent [eber90], and Rushmeier [rush95]. Various lighting models include work

by Max [max86], Rushmeier [rush87] and Nishita [nish96]. Work in speci�c

areas of gaseous phenomena, such as 
ames, has been done by Chiba [chib94]

and Cerimele [ceri91]. Recently, hybrid of previous methods have been use by

Stam and Fiume which produce some good results [stam93].

Work has been done with the modeling of other natural phenomena.

This includes water and waves, with work from Fournier and Reeves [four86]

and Peachey [peac86]. Optical e�ects of water has be done by Watt [watt90],

and Nishita and Nakamae [nish94]. Visualization of lightning has been been

done by Reed and Wyvill [reed94]. Seashells have been modeled by Pickover

[pick89] and Fowler etc al. [fowl92].

An essential characteristic of plants is that they have obvious structure.

an essential characteristic of 
uids is that they move. Stones neither have

obvious structure nor do they move. What can be learned from these vari-

ous modeling techniques is the use of random elements and some rendering

methods.

2.2 2D stone textures

Most of the previous work in the modeling of rocks and stones used 2D texture

maps. Early work on stone walls includes Yessios' work for Architectural

presentation drawings[yess79]. He used stochastic processes for generating

10



patterns for stone walls and pavements. He used algorithms called stone-

by-stone, joint-by-joint and, stone-and-joint. These algorithms position stone

shapes on a surface producing 2D, black and white drawings of stone walls.

Figure 2.1 (a) shows one of Yessios' rock walls.

Since then many techniques have been added to texturing to improve

the appearance of 3D images. Color and depth have been added to textur-

ing, producing more realistic e�ects such as shadows and the appearance of

roughness of the surface. Yessios' work on stone walls was expanded by Miy-

ata many years later [miya90]. Miyata adds color, height, and roughness to

the stones surface. A basic joint pattern, which is the shape of an individual

stone, is created using a node and link representation. For each stone, a stone

texture is created and then clipped to �t inside the area of the stone. The

stone texture is created using a fractal subdivision of triangles. This process

results in a reasonably realistic image of a stone wall. Figure 2.1 (b) shows

one of Miyaya's rock walls.

These methods for generating stones are not applicable for the stones

from a Chinese garden because they place 2D textures upon the surface of

an object. Even though the use of bump or displacement maps adds a third

dimension, they are still mapped to a surface which might result in stretching

and deformation of the texture. The unique characteristic of the Chinese

garden rocks is the large holes which requires a technique that takes into

account the 3D characteristics of the rocks.
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(a) stone wall by Yessios

[yess79]
(b) A stone wall by Miyata [miya90]

Figure 2.1: Previous rock models
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2.3 Texturing

The previous methods discussed for modeling rocks and stones are designed to

deal with stone walls and a 2D texture or bump-map pasted on a 3D surface.

One problem with this is the deformation of a texture when it is mapped to

a di�erent space. There are methods which get around this problem, such as

the cellular textures described by Fleischer [
ei95]. These cellular textures are

designed to deal with surfaces that are composed of small pieces such as thorns

or scales and thus are not applicable to such rocks. Advanced displacement

map models, such as Pedersen's work on 
ow �elds for displacement mapping

[pede96], can produce holes on the surface of the object but cannot produce

large holes which go all the way through the objects, such as the ones seen in

the ornamental rocks in a Chinese garden.

Three dimensional texture maps is an area in which a reasonable amount

of research has been done. Some of the earliest work with 3D textures was

from Gardner who used them for the modeling of clouds [gard84]. Peachey

used 3D textures as a way of removing some of the parameterization prob-

lems associated with 2D texturing. These 3D textures are mainly based on a

band-limited noise function [peac85]. The same year Perlin used solid textures

as part of his rendering package [perl85]. More advanced three dimensional

texturing methods have been developed which require texturing throughout a

region, not just at the surface. Perlin uses hyper-textures which used density

functions to describe the three dimensional objects [perl89]. Work on solid

noise synthesis was done also by Lewis [lewi89]. Solid textures have been
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used in modeling of natural phenomena such as fur, by Kaijya [kaji89], and

gaseous phenomenon by Ebert and Parent [eber90]. Filtering these textures is

a challenge and Buchanan described some �ltering methods for three dimen-

sional textures [buch91]. Worley uses a cellular texture basis function for 3D

texturing [worl96].

Some of these texturing techniques will be used to enhance the �nal

appearance of the rock but do not su�ce as the main modeling technique.

Some of these methods can produce objects with complex shape and topology

but do not give enough control over the �nal appearance of the object. These

texturing techniques handle the �ner detail but not detail as large as some of

the holes in the ornamental rocks.

2.4 Constructive Solid Geometry

Constructive solid geometry (CSG) is an area of modeling that has been around

for many years and can describe some objects e�ciently [ricc73, fole90]. CSG

represents objects by taking simple primitives and combining them through the

use of boolean expressions such as union and intersection. It then produces

a tree with the primitives as the leaves and the boolean operations as the

nodes. The new object represented by the tree structure is then generally ray

traced. An Example of a CSG tree can be seen in Figure 2.4. Work has been

done with more advanced ways to combine objects other than simple boolean

expressions, such as union and intersection, and work has also been done to

deal with more complicated shapes. Wyvill incorporates free-form deformation

14



Figure 2.2: A CSG tree
[laid86]

into CSG trees [wyvi97].

Methods have been developed for doing CSG operations with surfaces

instead of solids, which is the representation usually used[laid86]. The problem

with surface CSG methods is that the number of polygons needed to represent

the �nal object can become large. The combination of just a small number of

polygonal objects can result in the creation of an object with many polygons.

Therefore it does not lend itself well to large CSG trees such as would result

with the Chinese rocks. CSG operations in general lend themselves well for

the modeling of the Chinese rocks and will be used with the method described

in this thesis. The method will not use the traditional CSG representation but

rather a voxel format. This will be explained in Chapter 3
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Chapter 3

Methodology

3.1 Overview

This section discusses a modeling technique to deal with objects with many

large holes. The modeling technique starts with a base shape of the object

without holes. The method will then create a 3D material, which will consist

of a distribution of holes throughout a region of 3D space. The base shape

will be combined with the material. This combination will occur while the

objects are in a voxel representation. The result of the combination will be a

new object which has the shape of the base shape with the holes in it. This

new object will be converted to be represented by a set of polygons, and can

then be used by any renderer.
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3.2 Base Shape

The base shape is the basic shape of the object before the holes are applied.

This shape can be any closed object. A closed object is one where given a

point in 3D space it is not ambiguous wether the point is inside or outside of

the object. In the implementation of this thesis, objects are represented by

polygons in Inventor �le format [wern94]. Polygons were chosen because they

can represent a wide variety of shapes and are relatively simple to implement.

Inventor �le format was used because it is a fairly standard format on the

SGI platform. The program could be easily extended to handle other object

representations or �le formats. The base shape of the rocks was created in

Alias by deforming a sphere. This object is then polygonalised, and then

saved in Inventor �le format.

3.3 3D Material

A 3D material comprised of many holes is used the creation of the virtual

rocks. This material is represented as a group of objects which have location,

shape and size. Each one of these objects is a hole. A hole can be any closed

object that can be ray traced, just like the base shape. In practice spheres are

most often used. They are quick, simple and are quite similar to the shape

of the holes in the real rocks. The program can also use polygonal objects as

holes which can be imported the same way as the base shape. It could easily

be expanded to handle other shapes or representations, such as parametric
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surfaces. These holes can be placed at random throughout the material. Pa-

rameters such as number of holes, average size, and di�erent distribution func-

tions can be given to create di�erent material. Di�erent distribution curves

can be used to produce varied e�ects on the appearance of the rocks. The

holes can also be individually placed in the material with a speci�c location

and size. Di�erent distribution curves can be used to produce varied e�ects

on the appearance of the rocks. The distribution functions will be discussed

in more detail in Chapter 4.

3.4 Combining Base Shape with Material

Once both the base shape and the material are created they are combined

together to produce a new object. This new object will be in the shape of

what the �nal stone will look like.

3.4.1 Why not traditional CSG

A rock could be represented with Constructive Solid Geometry tree. CSG takes

simple objects and combines them through the use of boolean expressions. It

then produces a tree with the simple objects as the leaves and the boolean

operations as the nodes. There are problems with this for the modeling of

the rocks. The tree which would subtract the union of the holes from the

base shape. This combination would be one layer deep and would be very

wide. However, this would be a large and ine�cient data structure. The main

problem with traditional CSG is that the object is implicit and can not be
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Figure 3.1: Combining base shape with 3D material
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used by all types of renderers. The object needs to be an explicit form which

is universal to di�erent types of renderers.

3.4.2 Voxelization

Voxelization was the method that was chosen to handle the CSG operations.

There are many reasons voxels were chosen. First, a voxel set will have con-

stant size regardless of the complexity of the object. It would not mater then

how many holes there were in a given object. Second, voxelization is simple,

only local information for each voxel is required. It does not have to deal with

all the di�erent possible combinations of surfaces. Another approach which

could have been used to get surfaces would be to do CSG operations on the

surfaces themselves [laid86] but this would require many special cases, would

be order dependent, and could require unnecessarily high resolution in some

cases.

Voxelization also has the feature which allows the resolution to vary.

When viewing an object up close, more detail is required to get a good looking

picture. If the object is in the distance, higher resolution will require more

rendering time. The resolution or size of the �nal object will vary depending

on the size of the voxel set.

3.4.3 Implementation

The voxels are stored in a 3D array, and are evenly sized and spaced. Each

voxel contains a bit called inside which is true if the center of the voxel is inside
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the object and false if it is outside. There is also a three-dimensional vector

whose range is between 0 and 1 in each direction, X Y and Z. This is the scaled

distance that the closest surface is to the center of the voxel. The distance of

1 means the surface is at least one voxel length away. Figure 3.2 shows a two-

dimensional example with four voxels. The arrows show the distance vectors

of the voxels inside the object. The voxels are all initialized to be inside with

���
���
���

���
���
���

Figure 3.2: A voxel

distance 1 in every direction. Each voxel is tested with its position compared

to all the holes and the base shape. This is order-independent for both the

voxels and the objects. For each voxel, the algorithm tests if the voxel is inside

the base shape, and set the inside bit accordingly. The test for inside is done

by shooting a ray from the center of the voxel and counting the number of

intersections with the base shape. If the number of intersections is even, it

is outside. If odd then it is inside. Figure 3.3 shows the inside/outside test.
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Special cases where the ray hits the edge a surface are checked for. If a ray

has two hits in the same location, as seen in Figure 3.4, the test will be redone

with the ray moved slightly.

The distances to the closest surface in the X, Y and Z directions are

computed. If the distance is within one voxel width then the distance vector

is set accordingly. A similar process is done on the voxels with all the holes,

except that the test for being inside or outside for each object is reversed.

Inside the hole is outside the object therefore setting inside is reversed. A hole

can only be subtracted away from the voxels.Therefore a voxel can only be

changed from inside to outside and not the other way around. The distance

vector of a voxel can only be decreased, because the closest surface is sought.

If the distance of a new hole is greater than the current distance, the new

hole already outside the object. After these operations have been performed

the voxels will represent the shape of the �nal object. For references to the

techniques used here see Graphics Gems [glas90, arvo91, heck94].

3.4.4 Optimizations

There are operations which can be done to speed up the voxelization process.

With the method described in the previous subsection, each voxel performs

an inside test and three ray distance tests for every surface on the base shape

and all the holes. Many of these are unnecessary. The distances only need to

be checked if there is a surface within a voxel width. There is only a surface

close to a voxel if its inside bit has the opposite value as the voxel next to
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(a) 3 intersections, inside

(b) 2 intersections, outside

Figure 3.3: Testing for inside or outside
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Figure 3.4: Special cases for ray intersection
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Figure 3.5: A voxelized hole
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it. Once a voxel is outside it can not change to become an inside voxel again.

To take advantage of these conditions the inside testing is done with all the

voxels before the distance testing is done. Once a voxel has switched to become

an outside voxel it is not tested with any of the other objects. The distance

testing on the voxels are only done if the adjacent voxel in the direction of

testing has the opposite inside value [jone96]. These improvements speed up

the code by a factor of two to three.

3.5 Polygonalization

After the object is created in voxel representation it needs to be converted

into a representation which is more universal. Polygons were chosen. They

can be handled by any renderer and most graphics hardware is designed for

polygons. With the modeling of rocks there is no need to have information

regarding animation because rocks don't move. Often when more complicated

representations are used for modeling it is for the movement of the object.

Rocks can be represented simply without any additional information. There

is also an e�cient method for converting from volume data to polygons, which

we describe next.

3.5.1 Marching Cubes

Marching Cubes [bloo87, lore87] is the algorithm used to convert the object

from voxels to polygons. Marching Cubes uses groups of eight voxels which

form a cube to produce polygons describing the surface within that volume.
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This is done for each cube of voxels in the volume. There are 8 voxels in

a cube and each voxel can be inside or outside. Therefore, for each cube of

voxels, there are 256 con�gurations possible. This number can be reduced

dramatically using symmetries. One is the complementary case, where all the

voxel inside values are reversed. The triangles will be the same with only the

front side reversed. The other reduction can be made when cubes can be the

same with a rotation so they have the same con�guration. These symmetries

will reduce the number of con�gurations to 14 basic patterns as seen in Figure

3.6. One or more triangles will be created, in correspondence to the base

pattern and the rotation.

3.5.2 Implementation

The voxels are stored in a 3D array. A cube of voxels can by formed by taking

all combinations of x or x+1, y or y+1, and z or z+1, where the position of the

voxel in the array is (x,y,z). The con�guration is stored as a one byte number

where each bit is the inside value of a voxel in the cube. This con�guration

number is used in comparison with the 14 base patterns and their inverses.

Rotations are done by passing the con�guration number through a rotation

function. This is a pre-computed table for the new location of each bit for the

24 di�erent possible rotations. The con�guration is tested against the base

patterns, and their inverse for all rotations until a match is found. Once a

matching pattern is found triangles are created. The three points of a triangle

will always lie on the edge of the cube, directly between two adjacent voxels.
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Figure 3.6: 14 basic patterns of cubes
[lore87]
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The location of the point is calculated by taking the location of the lower voxel

and an o�set being one direction of the scaled distance vector stored in the

voxel. These points are calculated before any rotation happens, then a rotation

function is applied to them. This function is also a pre-computed table for the

12 edges and the 24 rotations. After this algorithm is run on the whole voxel

set, the result will be a set of triangles. These triangles are independent of

each other and do not have any connection information, or speci�c order.

3.5.3 Modi�cations

There were a few modi�cations made to the original Marching Cubes algo-

rithm. There are a few combinations of con�gurations which resulted in holes

in the surface, as in Figure 3.7. This is because the Marching Cubes algorithm

only deals with local information. It is ambiguous wether the two triangles

formed from pattern 3 come from the same surface or two di�rent surfaces.

Two triangles have been added to the base patterns 3 and 6 from Figure 3.6.

Theses new triangles can be seen in Figure 3.8. This solves the problem of a

hole appearing but causes a problem if they are supposed to be two di�rent

surfaces. The added triangles from a thin bridge between the two surfaces

which is not supposed to be there. The 
aw caused by a hole in the surface is

also visually more apparent than the 
aw caused by a bridge.
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Figure 3.7: Marching Cubes problem
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Figure 3.8: New triangles
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3.6 Output Format

Inventor File format [wern94] was the format chosen for the output the objects.

All the vertices are stored in an indexed list. The triangles are represented as

a set of three index numbers corresponding to a list of vertices. The normal

to the triangles are also stored in an indexed list and the vertices index to the

normal.

3.6.1 Implementation

The vertices of the triangles are indexed using hashing. The coordinates of the

vertices are used as the key for the hashing function. The number stored in

the hash table is the index number, which is the order in which the vertices are

inserted. The vertices is put into an array with the array index corresponding

to the one in the hash table. The normal to the triangle associated with the

vertices is also stored in an array. When a vertice is added more than once,

which happens with adjacent triangles, the normals are summed, then averaged

at the end. Triangles are also tested to determine if their three vertices are

co-linear. If they are co-linear they are discarded.

31



32



Chapter 4

Distribution of holes

4.1 Irregularities in Natural Phenomena

One of the most di�cult aspects of modeling natural phenomena is that they

contain irregularities. If one has a chair (or some other manufactured object)

another chair could look exactly like the �rst one. When making ten chairs,

making nine copies of the original chair will su�ce. With natural phenomena

this does not work. If one wants ten maple trees one cannot just make one tree

and copy it. No two trees are exactly alike. Each tree has a slightly di�erent

location, length, and width for each branch, etc. While each tree must be

di�erent they must also have a degree of similarity. If the di�erences are too

great they won't look like the same type of tree or even a tree at all.

Stochastic modelingmust be used in circumstances such as these [four80].

Stochastic modeling is just the use of randomness in the modeling. With the

ornamental rocks from a Chinese garden the primary distinguishing character-
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istic of the rocks are their holes. The size, frequency and location of the holes

in the rock are the primary aspect of what make each rock unique. Therefore

we purpose to model these characteristics with stochastic processes.

4.2 Stochastic Processes

The three aspects of the holes in the rocks which are going to vary are the

diameter of a hole, location of the center of a hole, and the number of holes

per unit volume. These holes are assumed to be spherical. The number of

holes and a scaling factor for the diameters are set by the user. This control

lets the user determine how large the rock is. This leaves the location and the

diameter of the holes as the random variables in the modeling. When using

random variables, their distribution must be taken into account. A distribution

function for a random variable describes how that variable behaves. Each

random variable X has a cumulative distribution function F where for each

sample x:

F (x) = P (X<x):

This function lies in the interval [0,1] and is non-decreasing. An example of a

simple distribution function is the uniform distribution

F (x) = x

where 0<x<1:

A uniform random variable has an equal probability of being located anywhere

in the range 0 to 1. For the parameters of the holes of the rocks, distribution
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functions will be determined and then used to produce the modeled rocks.

4.3 Acquiring Distributions

Real rocks from a Chinese garden and their holes are three dimensional and

ideally three dimensional data would be gathered. This is not realistic to do

because it would be too expensive requiring a CAT scan, MRI or some other

similar process. Another way to collect data would be to cut a plane into a

real stone and measure the holes. Ornamental stones are not available to be

cut up. What is more easily available are pictures that are two dimensional.

Pictures of rocks from a Chinese garden are used to collect statistical data

on the characteristics of the holes. The location and size of the holes, are

determined by a user from the picture. The user draws lines segments on

the picture with an interactive program as estimates of the holes major axis.

These lines are used to determine the center and the diameter of the holes.

Data was collected from rocks 1, 2, and 3 which can be seen in Figure 4.1,

Figure 4.2, and Figure 4.3.

4.4 Chi-Squared Test

The chi-squared test is used to help determine similarities between distribu-

tions. The test compares the probability density functions of two distributions.

A probability density function of a random variable X shows its frequency of

occurrence. The density function f(x) is the derivative of the distribution
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Figure 4.1: Sampled rock 1
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Figure 4.2: Sampled rock 2

Figure 4.3: Sampled rock 3
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function F (X).

f(x) = dF=dx

F (X) = P (x1<X<x2) =
Z x1

x2

f(t)dt

A discrete density function is calculated for the sampled data by dividing the

data into k bins and keeping track of frequency of occurrence for each bin. The

expected values of X at the location of the bins are then calculated. These

come from the density function of the random variable that the collected data

is being compared to [alle90]. The chi-squared value is calculated by taking

the sum of the scaled square of the di�erence of the observed elements Oi in

bin i and the expected values Ei given by

Ei = N

Z x2

x1

f(t)dt

where x1 and x2 are the bounds for bin i and N is the total number of elements.

�2 =
kX
i=1

(Oi � Ei)
2

Ei

�2 is then compared to the critical value �2
m;�, where � is the probability that a

chi-squared variable with m degrees of freedom will be greater than �2
m;�. The

degrees of freedom, m , is found from the number of independent parameters,

p, used to generate the expected values Ei where

m = k � 1 � p:

If �2 < �2
m;� then we cannot reject the hypothesis that the two sets of data

come from the same distribution.
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4.5 Location of holes

The location of the center of holes can be found by taking the midpoints of

all the lines collected. The distribution of these centers is tested to determine

a distribution to be used for the location of the generated holes. This two-

dimensional data can be extended to apply in three dimensions. The picture

from which the data was collected is just a projection of a 3D rock onto a 2D

surface. The two axes, X and Y, that were chosen are arbitrary depending on

the camera position.

The centers of the holes are tested using the chi squared test to show

whether they are positioned uniformly. The centers are placed in six bins of

equal area as seen in Figure 4.4.

1 2

3 4

5 6

Figure 4.4: Bins for centers of holes

39



The values of the bins are compared to the average value of all the

buckets. The chi squared values are 3.229, 5.0, and 1.323 respectively for the

three sampled rocks. These values are all less than �2
4;:05 = 9:4877 which means

it is reasonable to assume they are uniformly distributed. The distribution of

the buckets are shown in Figure 4.5. The distribution of the third axis Z

in 3D space is assumed to be the same as that of X and Y. When creating

the holes, a uniform distribution is used for generating the random locations.

The uniform distribution is the standard distribution for the pseudo-random

number generator, drand48, given with the C++ complier.

4.6 Diameter

An approximation to the diameter of the holes can be found by taking the

distance between the two end points of the line segment. The real holes and

the generated holes are both three-dimensional but the data collected has

only two dimensions. These two-dimensional holes are the projection of the

intersection of the three-dimensional holes with the surface of the rock. A 2D

illustration can be seen in �gure 4.6.

There is a relationship between the distributions of the center and size

of holes in two and three dimensions [serr82]. Given a distribution of disjoint

balls whose centers appear in R3 according to a stationary random process,

let N3 be the number of balls per unit volume, and F3(D) be the distribution

of their diameters. Then

N3 � (1� F3(D))
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Figure 4.5: Locations of holes
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Figure 4.6: Holes projected onto a plane

is the number of centers of balls with diameters > D per unit volume. Let N2

be the number of circles per unit area on a plane which cuts through R3 and

F2(D) the distribution of the diameters of circles. The density function of the

diameters is f2(d), which is equal to F 02(d).

Then we have the relationships:

N3 =
N2

�

Z 1

0

F 02(h)

h
dh

N3(1� F3(D)) =
N2

�

Z 1

D

F 02(h)p
h2 �D2

dh

These two equations can be combined to produce:

F3(D) = 1�
R1
D

F 0

2
(h)p

h2�D2

dh
R1
0

F 0

2
(h)

h
dh

The distribution function of diameters, F3(D), can thus be derived from F2(D).
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When the circles from an intersecting plane are projected to another

plane, the projected circles will become ellipses if the two planes are not par-

allel. The length of the diameter of a circle will be preserved as the major

axis of the projected ellipse. Multiple planes can be used, all of which are

projected onto a single plane. Ellipses projected from di�erent planes would

have di�erent orientations, but the diameter of the original circle would still

be the major axis. If the surface of the rocks in the photographs can be ap-

proximated as a collection of planes, then the statistics collected in 2D from

the photographs will be valid. This is true if the curvature of the surface is

low compared to the diameter of the holes intersected.

The discrete density function, f2(d), for the sampled diameters is calcu-

lated and used to produce its three dimensional counterpart. f2(d) is obtained

by placing the sampled diameters into bins. The diameters have been scaled so

the greatest diameter is 1. The integrals are approximated with summations.

Z 1

0

F 02(h)

h
dh '

X
all bins

1

N
� num in bin��D

Dcenter of bin

F3(D) is calculated with the formulas given and di�erentiated to produce

f3(D). The numbers calculated from the sample rock 1 can be seen in Table

4.1. The probability density functions given here have been multiplied by

N � �D. This is so that the numbers in the table correspond to the actual

number of holes per bin.

The density function, f3(D) is compared to the uniform, normal, Pois-

son and exponential random distribution using the chi-squared test. The �rst

bin or bins were not used in the chi-squared test because they were smaller than
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Bin 1 2 3 4 5 6 7 8 9 10

D .05 .15 .25 .35 .45 .55 .65 .75 .85 .95

F2(D) 0 0.26 0.56 0.69 0.78 0.87 0.96 0.98 0.98 1

F 02(D) �N � �D 0 12 14 6 4 4 4 1 0 1

F3(D) 0 0.35 0.70 0.81 0.86 0.92 0.98 0.99 0.99 1

F 03(D) �N � � 0 16.33 16.09 4.92 2.45 2.39 2.76 0.62 0 0.61

Table 4.1: Distribution and density data for rock 1

any of the sampled data. The chi-squared values for the three rocks can be

seen in Table 4.2. The only chi-squared value which are below �2
6;:05 = 12:592

for rock 1 and rock 3 and �2
5;:05 = 11:071 for rock 2 is the exponential distri-

bution. In Rock 2 the �rst two bins are empty. It is likely the distribution

function used to generate the distribution of holes is exponential.

Distribution Rock 1 Rock 2 Rock 3

Uniform 72.911 52.816 57.588

Normal 115.276 62.039 125.924

Poisson 55.989 34.346 258.785

exponential 5.714 7.462 10.872

Table 4.2: Chi squared values for the diameters

The distribution function of the collected data, F3(D) can be used to

generate the diameter of the holes. The output from the standard uniform

pseudo-random number generator is passed to the inverse of the new distribu-

tion resulting in random numbers of that distribution. The inverse function is

calculated by intersecting horizontal lines with the distribution function, which

is represented as a series of lines. The distribution functions F3(D) from the

sampled data can be seen in Figure 4.8.

44



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

(a) Rock 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

(b) Rock 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

(c) Rock 3

Data Bar

Uniform +

Normal o

Poisson *

exponential x

(d) Key

Figure 4.7: Diameters, f3(D)

45



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Rock 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Rock 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Rock 3

Figure 4.8: Distribution functions, F3(D)
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Chapter 5

Results

5.1 Overview

Now we will describe the results of these methods. The algorithm described

in Chapter 3 is able to place holes in arbitrary shaped objects, which generate

a surface representation, for the �nal object.The use of stochastic processes,

as described in chapter 4 allowed us to generate distribution of holes from

photographs of real rocks.

5.2 Basic CSG operations

The operation of placing holes in an object is done through CSG operations

while the object is stored in a voxel representation. The volumetric object

is then converted into a surface representation. The implementation of this

method can handle any closed polygonal object for the base shape and the
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holes. A simple example of the CSG operation can be seen in Figure 5.1 where

a sphere is subtracted from a cube. Figure 5.2 shows a more complex shape

for the base shape and �gure 5.3 shows a more complex shape for a hole. The

jagged edges seen in Figure 5.2 are are due to the Marching Cubes algorithm

only taking into account local information. In some case it is ambiguous where

the triangles should be placed. Cases 11 and 14, seen in Figure 3.6, are where

these problems occur. The holes can also be randomly distributed throughout

the space as seen in �gure 5.4 where many holes are placed in a cube.

Figure 5.1: A sphere subtracted from a cube

5.3 More than just a bump map

One of the reasons a new technique for modeling holes was created is the fact

that current texturing techniques by themselves are not adequate for handling

the large holes of ornamental Chinese rocks. Bump maps and displacement
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Figure 5.2: A sphere subtracted from a face

Figure 5.3: A dodecahedron subtracted from a cube
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Figure 5.4: Many spheres subtract from a cube

maps can only a�ect the appearance near the surface. Figure 5.5(a) shows

the base shape of a rock. Figure 5.5(b) shows a rock into which holes have

been placed. There is a substantial di�erence in the appearance of these two

rocks, but these pictures only show the geometric properties of the two objects.

Texturing techniques have not been used yet.

Figure 5.6(a) shows the base shape with a complex texture on it. A

similar texture is applied to the rock with holes, which is seen in Figure 5.6(b).

The textured pictures were rendered in Alias. The texture applied to the base

has a solid fractal color map, a solid bump map and a solid displacement map.

The bump map is Alias solid marble texture with fractal intensity parameters.

The displacement map is Alias solid rock texture. The texture applied to

the rock with holes is the same without the displacement map. These textures
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(a) Base shape

(b) Rock with holes

Figure 5.5: No texturing
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were created by David Botta. The texturing does make a substantial di�erence.

however the texturing alone cannot produce the desired results.

5.4 Distribution of holes

The use of random variables for placement of the holes was an important part of

producing the realistic looking pictures of ornamental rocks. The use of data

collected from pictures of real rocks was valuable for obtaining distribution

functions to produce natural looking rocks. Figure 5.7(a) shows a rock with

many holes where the placement of the holes was not random. The uniformity

of the holes stand out and help make the image look unnatural. In �gure

5.7(b) a uniform random variable is added for the location of the holes, but

the size of the holes is still kept constant. This helps the appearance of the

rock but uniformity in the size of the holes is still noticeable. In Figure 5.7(c)

a uniform random variable, between 0 and the max hole size, is also used to

choose diameter of the holes. This again enhances the appearance of the rock.

The rock in Figure 5.7(d) uses the distribution function obtained from the

sampled data from rock 1 for the diameter of the holes.

5.5 Level of detail

Being able to control the level of detail of an object is often a desired feature in

modeling natural phenomena as well as other types of models. The modeling

method described in this thesis has the capability of creating objects with
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(a) Base shape

(b) Rock with holes

Figure 5.6: Texturing
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(a) No randomness in the holes
(b) uniform distribution for
location, constant diameter

(c) uniformdistribution for lo-
cation and diameter

(d) diameter distribution
from collected data

Figure 5.7: Distribution of holes
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di�erent levels of resolution. The number and size of the triangles in the �nal

object is dependent on the number of voxels. An example of this can be seen

in Table 5.1, Figure 5.8, Figure 5.9, and Figure 5.10. Figure 5.8 shows how

the quality of a generated rock can vary depending on the resolution of the

voxel set. The rock is not recognizable with only a voxel set of size 10 cubed.

Aliasing e�ects from the course sampling are so pronounced that even the

basic shape is lost. The basic shape of the rock can be seen starting with a

voxel set of 15 cubed. As the size of the voxel set increases so does the quality

of the image. For this size of picture the increase in quality starts to level

o� between 30 and 40 for the voxel set size. The pictures from �gure 5.8(d)

and �gure 5.8(e) look almost the same even though the rock in �gure 5.8(e)

has almost twice as many triangles. Figure 5.9 shows di�erent resolutions of

the same rock in proportion to the screen size. This shows how various levels

of detail could be used with the same object. The use of texturing makes a

di�erence in determining the optimal resolution. In Figure 5.10, despite the

fact that the picture size is larger than in Figure 5.8, there is little noticeable

di�erence between the 20 voxel cubed and the 30 voxel cubed pictures. The

texturing covers up the lack of high frequencies in the lower resolution rocks.

Figure 5.8 a b c d e

Number of Voxels cubed 10 15 20 30 40

Number of Triangles 261 777 1385 3315 5956

Table 5.1: Size and resolution of a modeled rock
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(a) 10 voxels cubed (b) 15 voxels cubed (c) 20 voxels cubed

(d) 30 voxels cubed (e) 40 voxels cubed

Figure 5.8: Di�erent resolutions of same rock
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(a) 40 voxels cubed
66 pixels high

(b) 20 voxels cubed
34 pixels high

(c) 15 voxels cubed
19 pixels high

(d) All three

Figure 5.9: Di�erent resolutions of same rock
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(a) 15 voxels cubed (b) 20 voxels cubed

(c) 30 voxels cubed (d) 40 voxels cubed

Figure 5.10: Di�erent resolutions of same rock with texturing
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5.6 Speed and Size

The amount of time it takes to produce a realistic image is an important factor

in determining how useful a modeling technique is. The time for making an

image of an ornamental rock can be broken into two parts, modeling and

rendering. The rendering for the rocks is handled by a commercial rendering

package, Alias. As far as the method described in this thesis is concerned, the

time for rendering is dependent only on the number of triangles from which the

rock is made. The amount of time the modeling stage takes is dependent on

the size of the voxel set, the number of surfaces in the base shape, the number

of holes, and the number of surfaces in each hole. The time complexity is

O(Vox� (Num Base Surfaces + Num Hole Surfaces�NumHoles)):

When spheres are used as the holes, the number of surfaces in each hole is just

one. Speed tests were done with di�erent parameters for the variables listed

above. They were run on a SGI Indigo2, with a 200Mhz, MIPS R4400. All the

holes used were spheres. The results can be seen in Table 5.2 Table 5.3 and

Table 5.4. The number of holes and the size of the base shape independently

contribute to the processing time. A rock similar to the one in Figure 5.13

will take 3-5 minutes to produce.

5.7 Realistic looking rocks

The realistic appearance of computer generated images can be determined

by comparing them with pictures of the real object. Figure 5.11 shows a
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Number of Number of Number of Time
Voxels Base Surfaces Hole Surfaces in seconds

203 1 0 1

203 1 100 10

203 1 250 22

203 1 500 47

203 1 1000 93

203 1 2000 182

Table 5.2: Time depending on the number of holes

Number of Number of Number of Time
Voxels Base Surfaces Hole Surfaces in seconds

203 1 0 1

203 36 0 7

203 224 0 46

203 2588 0 597

203 1 250 22

203 36 250 27

203 224 250 59

203 2588 250 616

Table 5.3: Time depending on the number of surfaces in the base shape

Number of Number of Number of Time
Voxels Base Surfaces Hole Surfaces in seconds

203 1 0 1

303 1 0 3

403 1 0 21

203 1 250 22

303 1 250 85

403 1 250 216

203 224 0 46

303 224 0 162

403 224 0 362

203 224 250 59

303 224 250 205

403 224 250 490

Table 5.4: Time depending on the size of the voxel set
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photograph of an ornamental garden stone with a computer generated one.

Figures 5.13 and 5.12 show some stones using di�erent base shapes. Since the

base shape is arbitrary one can use \non-rock" shape. Figure 5.12 shows an

example with a face as the base shape. The method described in this thesis

is concerned with the larger scale holes and the general structure in the rocks.

The �ner detail is handled by standard texturing. This texturing has an e�ect

on the appearance of the image but is not part of the method describes in this

thesis. Generating realistic looking textures is a issue. There can and should

be obtained directly from the real rock, ether from photograph and texture

mapping or from a statistical analysis of the texture. This should be taken

into consideration when comparing the images from Figure 5.11

(a) Real Rock (b) Virtual Rock

Figure 5.11: Comparison of real rock and virtual rock
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Figure 5.12: A face rock

5.8 Incorporating the Rocks into the Garden

Rocks created with the method described in this thesis are used in the Garden

Project. Figures 5.14 shows a rock placed in a garden scene.
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Figure 5.13: Another rock

Figure 5.14: A rock in the Yuan Ming Yuan
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Chapter 6

Conclusion

This thesis described a technique used to model ornamental rocks from a

Chinese garden. This technique is successful in being able to place holes in

objects. Rocks have been created in this manner and imported into Alias

for rendering. In Alias a texture is applied to improve the appearance of the

color and �ner details. This produces realistic looking ornamental rocks. The

generation of one of these rocks can be done in a reasonable amount of time

and the technique allows for control of the level of detail at which they are

generated. These rocks are being used in scenes for the Yuan Ming Yuan

garden project [wang97].

6.1 Future work

There are ways this work could be improved and expanded. One problem is

that the resolution of the triangles is constant throughout the object. Some
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areas of an object might need many small polygons to show the detail and

other areas might only need a few large polygons. With the current method,

in order to get a same level of detail in one area of an object, the high level

of detail must be used throughout the object. Therefore in some case many

more triangles are used than are necessary. It would be useful to address

the problem of having di�erent levels of detail on di�erent areas of an object

depending on the local curvature of the object or other parameters.

With the current method only one type of CSG operation at one level

of depth can be performed. There is one base shape and from this shape

objects can only be subtracted. The CSG operation could be extended. More

complex rocks could then be modeled. There could be a large rock with holes

with smaller rocks embedded into it. This sort of rock could be modeled by

extending the current method with more CSG operations.

Developing realistic looking-rock textures will enhance the �nal image

Work could be done on extracting texturing data from pictures of real rocks.

Information for the �ner detail texturing can and obtained directly from the

real rock, ether from photographs using texture mapping or from a statistical

analysis of the texture.

The methods described in this thesis could be applied to other objects.

Other types of rocks could be modeled using similar techniques as well as non-

rock objects. Modeling of other objects with many holes in them such as a

sponge or bread would be reasonable to attempt using this technique.
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