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Abstract

This thesis evaluates the suitability ofVoronoi ball models(VBMs) as a multipurpose shape representation for

applications in computer graphics, scientific visualization, and computer vision. The effectiveness of VBMs is judged

with respect to six key properties, namely stability, flexibility, accuracy, complexity, efficiency, and intuitiveness.

These properties have a significant impact on the range of applicability of a computational shape model. The ability of

VBMs to support a number of core shape-driven operations, in particular shape extraction, simplification, matching,

interpolation, manipulation, and surface reconstruction, is examined by determining the strength of the key properties

in the representation. The general approach is to use VBMs in a number of representative applications, each requiring

several of the shape operations being considered. These applications include image matching and interpolation, shape

model extraction from image data, two and three-dimensional shape simplification, and polygonal surface reconstruc-

tion. The performance of VBMs in these applications is indicative of the extent to which each key property is present.

The results of the experiments are very positive. They indicate that a VBM-based shape similarity measure can be

effectively applied to quantify 2D shape differences and solve the 2D/3D shape correspondence problem. The findings

also show that the VBM and the medial axis can be used together to take advantage of their complementary properties;

the VBM gives the medial axis greater stability, while the axis adds connectivity and topological information to the

VBM representation. The preservation of the topology of 3D shapes during processing is a particularly strong con-

tribution of the thesis. In addition, the medial axis is shown to enhance the capabilities of the VBM for performing

shape simplification and partitioning an object into parts. The experimental results also reveal that VBMs can be

effectively used to extract shape information from images and reconstruct polygonal surfaces from point sample data.

The primary conclusion made in this thesis is that VBMs are demonstrably capable of supporting a wide variety of

shape operations. Additional research is warranted to further exploit the potential of the representation.
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Chapter 1

Introduction

1.1 Motivation

Shape analysis is a vital aspect of many areas of computer graphics, scientific visualization and computer vision.

The shapes of objects in an image, volume or 3D scene provide high-level information that can be used for many

tasks. Examples of applications that often utilize shape information include segmentation, level-of-detail modelling,

registration and object recognition. The traditional approach to object modelling for shape-related applications focuses

narrowly on the goals of the particular task at hand and often results in models that do not capture many shape

properties that are useful for other applications. For example, in segmentation the model is usually designed to

represent the boundary of the object, because the goal is to separate the object of interest from the rest of the image

(snakes[75] are a classic example). In contrast, when designing a model for use in registration (e.g., [163]), a

representation that includes the interior of the object is usually advantageous.

Shape Model

Extraction

Shape Models
Input Data


(Image, Model, etc.)
Other Applications

(Rendering, Object

Recognition, etc.)

Segmentation

Registration

Figure 1.1: The main idea behind this thesis: shape-driven modelling
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This thesis takes an alternative approach to object modelling that focuses primarily on shape representation.

The ultimate goal of this project is to develop a shape model that is useful for a broad range of shape-driven tasks.

Figure1.1 illustrates this approach. Such a shape model has the potential to increase the efficiency of any graphics,

visualization or vision pipeline that consists of more than one shape-related application. For example, a user may

want to segment out an object from an image, register the object with another, then simplify the model before finally

rendering it. A shape model that incorporates the common elements required by multiple applications can effectively

reduce the amount of development time and speed up the functioning of the resulting shape processing pipeline.

1.2 Shape and Shape Models

Although shape is a very intuitive and commonly used property in everyday life, it is difficult to define precisely and

even more difficult to quantify. We adopt a working definition from Lord and Wilson [92], who describe shape as

“the characteristic way in which an object occupies space”. Although seemingly vague, this definition can be used to

elucidate several points. The shape of an object in this sense is a characteristic of both the boundary and the interior of

the object, as the boundary on its own cannot fill space. In addition, this notion of shape is independent of translations,

rotations and uniform scaling. These transformations only have meaning relative to the object’s environment, so the

location and size of the object are not characteristics of the object alone, and therefore are not shape properties.

Because the definition of shape itself tends to be imprecise, it is difficult to explicate what constitutes a good

shape model. However, by understanding the intended purpose of the model, we can identify key properties that can

contribute to its effectiveness. Our research focuses on the computational aspects of a shape model and the efficiency

with which it can support operations for a variety of shape-based applications.

1.2.1 Common Shape-Driven Operations

There are a number of common shape-driven operations at the core of our research. These operations have been chosen

because of their extensive usage in many applications:

• Extraction. This is the first operation in most shape processing pipelines, and consists of extracting shape

models of objects from raw data such as voxel values (e.g., CT/MRI scan) or surface samples (e.g., laser scanner).

• Simplification. Simplification reduces the amount of detail in a given shape, and is frequently applied as a

preprocessing step to increase the efficiency of subsequent operations.

• Matching. This operation is frequently used in applications such as object recognition and registration. The

key component of an effective shape matching algorithm is theshape similarity measureused to quantify the

differences between shapes.
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• Interpolation. Shape interpolation provides a way to generate an “average” shape given two or more existing

shapes, and is frequently used inmorphingapplications and statistical shape analysis.

• Manipulation. In many interactive modelling and animation applications, an efficient method for manually

shaping an object is required.

• Surface reconstruction. This operation consists of generating an accurate surface of an object from its shape

model. This process is particularly important for many graphics applications, because most graphics tools

(e.g., OpenGLR© [168]) use surface polygons as the primary primitive.

There are many other operations that often require shape processing, such as rendering and object design, that are used

by a smaller number of applications. Although it would be useful to consider these additional operations, we restrict

our focus to the ones listed above in order to maintain a reasonable scope to the thesis.

1.2.2 Key Properties of a Computational Shape Model

We have identified a number of fundamental properties that affect the effectiveness of a multipurpose shape model. As

discussed below, the presence of these properties determines the extent to which a shape model can provide efficient

support for a wide range of data and commonly required operations.

The properties that we focus on are stability, flexibility, accuracy, complexity, efficiency, and intuitiveness.

Among these, stability and flexibility are the most crucial in determining the range of applicability of the shape model,

and therefore receive the most attention. It should be noted that these properties arenot independent. For example, a

representation that has a great deal of domain-specific knowledge built into it is typically both complex and inflexible.

Stability

The stability of a shape model refers to how much the model changes when the input data is altered. Ideally, the

degree of change in the model should correspond to that occurring in the data; that is, a small change in the data

should not cause the model to differ greatly. Stability is important because few sources of data are perfect in their

precision or accuracy. For example, medical image data is often blurry or noisy. Small perturbations in the input data

can cause large changes in an unstable model, and any operations performed on the model are consequently unstable.

In addition, even if the representation itself is stable, instability can still arise from the operation being applied. For

example, when computing the shape distance between two objects, a small change in one of the objects may cause an

unstable similarity measure to output a radically different result.

Figure1.2 illustrates the tradeoffs in terms of stability between two object representations. A comparison is

done between the Delaunay triangulation [51], a common method for tessellating 2D objects, and the set of disks

circumscribing the triangles. In this example, two almost circular objects are reconstructed using eight boundary

3



(a) (b)

Voronoi Disks


Delaunay Triangulation


Figure 1.2: Stability comparison (the Voronoi disks are more stable than the Delaunay triangles)

points each. The vertices in Figure1.2b are the result of perturbing the vertices in Figure1.2a by small amounts. A

Delaunay triangulation is formed from each set of vertices and a union of disks is then formed from each triangulation

by computing the circumscribing disk of each triangle. These disks are calledVoronoi disksbecause their centres are

Voronoi vertices (more precise definitions are provided in Chapter3). The two resulting triangulations are clearly quite

different, whereas the two resulting unions of disks appear quite similar. However, the unions of disks clearly have a

significant amount of redundancy. This example is meant to demonstrate several points:

• There are cases in which the Voronoi disk representation is clearly more stable than the triangle representation,

and small changes in the input data result in much greater changes in the triangulation than in the Voronoi disks.

Note that in all cases where the triangulation is stable, the Voronoi disks are stable as well.

• Even when a shape model appears to be stable, operations performed on it may be unstable. The redundancy

in the two unions of disks can potentially cause instabilities in any similarity measure applied to the models.

Examples of this type of stability are discussed in Chapter5.

• Simplification can be an important process for increasing the stability of a shape model by reducing the amount

of redundancy and removing the components associated with minor features in the input data. This provides the

motivation for the simplification algorithms discussed in Section4.4.1, and Chapters6 and7.

Figure 1.3: Problematic test case for boundary-based similarity measures
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Figure 1.3 shows an example that would reveal the instability of many commonly used similarity measures.

Even though the two objects are close in overall shape and differ only in minor perturbations of the boundary, this

would cause problems for most similarity measures that only use boundary curvature or angles to determine shape

differences (e.g., measures that employ theturning function, such as [12, 166]). Curvature or angle-based measures

are often unstable in that even small changes in the boundary can cause the measure to report large differences.

Flexibility

A multipurpose shape model is expected to be able to represent real and virtual objects from a wide variety of data

sources. Because there is no predetermined source of data, the objects represented can be arbitrarily complex. There-

fore, flexibility with respect to shape complexity is an essential property. Flexibility increases the variety of objects

that can be represented as well as the types of operations that can be performed on them. A key to flexibility is to make

as few assumptions as possible about the input data. For example, some shape models impose smoothness constraints

on the object boundaries, which limit the types of objects that can be represented.

(c)(b)(a)

Figure 1.4: Three cases that would test the flexibility of a shape similarity measure

Figure1.4illustrates the flexibility requirement for similarity measures. The three test cases shown require a sim-

ilarity measure that is more flexible than most of the commonly used methods. In Figure1.4a, the two objects differ

significantly in the amount of curvature in their boundaries and the number of potential landmark points. This makes

comparing the two shapes difficult for measures that are polygon (e.g., [12]) or landmark-based (e.g., [30]). Also,

most primitive-based methods would represent each of these objects with a different number of primitives, which is

problematic for similarity measures that can only operate on models with the same number of primitives (e.g., fig-

ural shape[122]). Figure1.4b would be a difficult case for similarity measures associated with shape models that

require a certain degree of smoothness, typically defined by differentiability, in the object’s contour. Some deformable

models [147] fall into this category. In this case the second object has a number of cusps that would contradict the

differentiability requirement. In Figure1.4c, the two objects are of different topology. Most shape similarity measures

only deal with objects of genus zero, and would have trouble with the hole in the second object.
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Accuracy

Most shape representations cannot capture the shapes of all objects exactly, and usually they must form an approxima-

tion of the space occupied by the objects instead. For example, deformable models [147] tend to smooth out the sharp

features of an object. Another example are primitive-based models, where the shape of the primitive (e.g., polygons

vs. quadric patches) has a strong effect on the amount of approximation error. This error is usually expressed as a

distance between points on the boundary of the object and the corresponding points on the border of the model. The

amount of acceptable error depends on the application, but computable and reasonably tight bounds on the error are

desirable in most cases. Another important consideration is how the amount of error changes as the sampling density

increases. Ideally, as the number of samples gets larger, the resulting model should become an increasingly more

faithful representation of the original object. Sometimes, accuracy can be sacrificed to facilitate certain operations.

For example, a surface may need to be smoothed to make it differentiable.

In addition to approximation error, another important aspect of accuracy is related to the resolution to which

the similarity measure is able to discriminate between shapes. When used for matching tasks, an accurate similarity

measure gives reasonable correspondences with relatively few false matches. Unfortunately, the accuracy of shape

matches is notoriously difficult to validate formally, and the acceptability of the final results is often determined by the

objective judgment of the users.

Complexity

The geometric and/or mathematical complexity of a shape model affects its applicability in a number of important

ways. Very simple models, such as contours used to represent 2D boundaries, have the advantages of adaptability and

low storage requirements, but suffer from a lack of support for shape computations. For example, contours can be used

as a starting point for practically any shape operation, but require augmentation of the model for many (even simple)

applications, particularly those in which the interior of the object is important. Models that are very complicated tend

to be so because they are specially designed for a narrow range of applications and lack adaptability as a result. In

addition, computing complicated models can be a time-consuming task. For example, many component partitioning

schemes have been proposed to compute parts-based models for object recognition (examples are given in [126, 150]).

Another aspect of a model’s complexity is mathematical complexity. In general, the models that are designed to work

with numerical methods are more mathematically complex (e.g., levels sets[98, 139]), whereas the ones designed for

predominantly combinatorial solutions tend to be less complex.

From experience, we are able to derive a few basic guidelines that, when adhered to, should result in a represen-

tation that has a moderate degree of complexity:

• Assuming the source data is clean, generating a model should be automatic. This process should take advantage
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of any stability and flexibility properties present in the model.

• There should be basic support for operations such as shape matching, interpolation, and simplification.

• The model and basic operations should be adaptable for a wide variety of applications. For example, the model

should facilitate component partitioning for object recognition if desired. Ideally, the model should allow for

the addition of application-specific features without changing the main features.

• The core model should not have any computationally intensive features that are needed by only a few applica-

tions. For example, hierarchical decomposition schemes that break up an object’s parts and protrusions into a

tree-like structure (e.g., [89]) are not necessary for most purposes.

• The storage requirements for a shape model are also an important consideration for many applications. For

example, databases that use shape information, such as some designed for facial recognition (e.g., [25]), may

store millions of entries, and the compactness or compressibility of the representation is a significant factor.

Efficiency

We use the termefficiencyto refer to the effect of the model’s design on the computing costs and development time

of new applications. An efficient representation results in faster algorithms and is more likely to be adopted for

implementation. The efficiency of a shape model is affected by most of the other key properties discussed. Although

the correctness of our methods takes priority over efficiency, there are a number of primary issues that are of interest

to us:

• The effect of the shape model’s properties on the running times of algorithms is the most common focus of

researchers concerned with efficiency. The stability, flexibility and complexity of the representation can strongly

affect the amount of processing power required to generate and perform operations on the models.

• Another aspect of efficiency concerns the ease with which new applications employing the shape model can be

implemented. A representation that requires a large amount of overhead, such as those with high mathematical

complexity or low intuitiveness (defined in the next section), may hinder the development process and be more

difficult to validate.

Intuitiveness

We use the termintuitivenessto refer to the degree that a potential algorithmic designer or end-user will find the shape

model easy to learn and work with. A representation that is parameterized in a way that is descriptive in terms of shape

tends to be more user-friendly. For example, contours are usually parameterized by border length, which is not very

descriptive. In contrast, skeleton models are generally relatively intuitive and easy to use.
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A useful resource for enhancing the intuitiveness of a shape model are studies on how humans perceive shape. Al-

though human shape perception is not within the scope of this dissertation, we take into account some well-established

theories of shape perception to guide our research and algorithmic development. The power of the human shape pro-

cessing system makes it an attractive model to use in the design of a computer-based system. However, for a number

of reasons, it is inappropriate to base a computational shape model entirely on human perception. First, even though

visual form has been the subject of research for many years (e.g., [24, 67, 79, 87, 144, 146]), there is still no univer-

sally accepted theory of human shape perception. Therefore, there are aspects of shape perception that are simply not

understood well enough to implement on a computer. In addition, many useful mathematical theories of shape have

been shown to contradict human perception [108, 160]. For these reasons, we only exploit a few high-level theorems

on human shape perception in our work.

1.3 Voronoi Ball Models

Ball models have been used in numerous applications in graphics and visualization, such as collision detection [56,

70], surface simplification [61], and molecular modelling [88]. This dissertation presents the results of a number of

experiments performed with a type of ball model we term theVoronoi disk/ball model(VDM/VBM). A VDM/VBM

is defined as a subset (not necessarily proper) of the Voronoi disks/balls that are inside of the boundary of the object

being represented. VDMs are typically used for 2D applications, whereas VBMs are used in 3D. There are a number

of methods for classifying a disk/ball as being inside or outside. Also, as shown by the results in this thesis, various

applications require ways to further filter the set of interior disks/balls. Chapter3 gives the formal definitions of the

primary geometric constructions used for forming VDM/VBMs and discusses the approximation properties of the

resulting models.

Some of the algorithms in this thesis incorporate and extend the work of Ranjan and Fournier [129, 130, 131],

who were the first to investigate the use of VDM/VBMs for shape matching and quantification of shape differences.

We design our experiments to focus on issues undocumented or lightly treated in their work. For example, some of our

test data is selected to test the flexibility of the similarity measure, which is a property that was previously unexamined.

Ranjan and Fournier called their modelsUnions of Circles/Spheres; we use the terms “disks” and “balls” instead

of “circles” and “spheres” to be consistent with the terminology commonly used in computational geometry, theories

of which are prevalent in parts of our work, and to emphasize the fact that our representation is intended to include the

interior of the shape. In addition, where confusion is unlikely, we use “VBM” as a general term to include both VDMs

and VBMs, because disks can be viewed as 2D balls.
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As a consequence of their work, Ranjan and Fournier made the following observations:

• A basic VBM is easy to generate from any data that can be point-sampled.

• VBMs arecompletein the sense that they represent the interior of an object as well as the boundary.

• The VBM representation is stable with respect to changes in the input data when Ranjan and Fournier’s similarity

measure (defined in Section4.4.3) is used to mark the changes in the models.

• Theclusteringsimplification algorithm (defined in Section4.4.1) is an effective method for reducing the com-

plexity of models while retaining their shape. The simplified models tend to have greater stability.

• The VBM representation has well-defined error bounds (discussed in Section3.2.1).

However, our research has revealed a number of shortcomings of Ranjan and Fournier’s methods. The findings that

have been used to motivate our own experiments include:

• There is no connectivity between primitives, which makes tasks such as parts decomposition, topological oper-

ations, and interpolation control difficult.

• Contrary to the common belief at the time, their method for constructing the VBM results in balls that do

not converge to the medial axis transform as the sampling density increases to infinity. As discussed in Sec-

tion 3.1.2, convergence can be usefully exploited for stabilizing VBMs. This is the primary reason for switching

to Amenta’s method of VBM computation, also explained in Section3.1.2, for our work with the medial axis.

• The similarity measure is dependent on scale, position and orientation. This contradicts the definition of shape

as stated in Section1.2. To compensate for this limitation, Ranjan and Fournier used a prealignment procedure

that sometimes needs to be manually performed for complex shapes.

• The similarity measure does not make effective use of unmatched primitives.

• Simply rendering the balls is an inefficient method of displaying an object represented by a VBM when the goal

is to convey the overall shape to the viewer. Even for modern graphics hardware, any VBM with more than

several thousand balls can cause the frame rate to become non-interactive.

• The claim that algorithms developed in 2D for VDMs can be easily extended to 3D is only true under lim-

ited circumstances. For example, as discussed in Chapters6 and7, when parts-decomposition or topological

processing is required, the 3D methods tend to be much more complex.
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1.4 Primary Goals and Contributions

This thesis explores the relationships between the core operations and key shape model properties introduced above,

as pertained to VBMs. Although the focus is on the shape representation rather any particular application, a compu-

tational shape model can only be considered useful and properly validated when applied in practical implementations.

Therefore, the approach of the thesis is to develop a number of representative applications to investigate the key prop-

erties that we are interested in. Each application requires a subset of the key operations and is designed to expose the

strengths and weaknesses of VBMs in the context of the specified shape model properties. Figure1.5summarizes the

relationships explored in this thesis. The remainder of this section describes the applications that we have developed,

along with some examples of the results produced by our algorithms.

Stability Flexibility EfficiencyAccuracy

Model &
Threshold
Extraction

Medial Axis
Simplification

Image
Interpolation
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Shape−Driven Applications
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Difference (SM)
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(R & SM)

Convergence
(R)

Error
Bounds

(R)
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(R)
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(R)
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(R)

Correspondence
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Correspondence
(SM)

Shape
Difference

(SM)

Parts
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Topology
(R)

Parts
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Figure 1.5: Relationship between shape model properties and the applications developed for this thesis (“R” = representation,

“SM” = similarity measure)

1.4.1 Image Matching and Interpolation

In this application, we use VBMs to represent 2D images and use Ranjan and Fournier’s similarity measure to establish

shape-based correspondences between image features. The matches are then used to interpolate or rigidly register the
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images. This application is used to establish a performance baseline for the matching method. This work goes beyond

that by Ranjan and Fournier because they focused largely on matching with 2D models; our application uses 3D VBMs

and more challenging data. The primary goal of the experiment is to determine whether VBMs can be used to form

stable and accurate correspondences between 3D object features. The details of this work are found in Chapter4

and [153]. Figure1.6shows an example of an image interpolation produced by our algorithm.
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Figure 1.6: An example of the results produced by our image interpolation algorithm; the first image and the last image are original,

the rest are interpolated

1.4.2 Shape Model and Threshold Extraction

This application uses VDMs to extract shape information from 2D images. The algorithm detects and extracts signifi-

cant objects from images with noa priori knowledge of the objects being represented, and is designed to test the ability

of the similarity measure to accurately quantify the differences in 2D shapes in the presence of significant variations

in shape complexity and topology; this is markedly different from Ranjan and Fournier’s experiments, in which the

shapes used were largely similar (e.g., animal silhouettes of the same topology). While the evaluation of the results of

our image matching experiments is largely based on subjective judgment, a more objective and quantitative analysis

is done for this work. Our experimental results for this application are discussed in Chapter5 and [154]. Figure1.7

shows an MRI image and two shape models extracted by our algorithm.

1.4.3 Shape Simplification Based on the Medial Axis

Our experiments with image interpolation and evidence from Ranjan’s dissertation [129] show that grouping primitives

to provide connectivity and topological information can be an important aspect of shape modelling. To this end, we

implement two applications, one working in 2D and the other in 3D, to explore how themedial axis, a shape model

widely used to concisely represent topological information, can be used in conjunction with the VBM. The applications
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Figure 1.7: An MRI image and two shape models extracted by our algorithm

are designed to exploit the properties of the two representations in a complementary manner. In both cases, shape

simplification is performed while preserving the topology of the object. The medial axis is computed from the VBM,

then used to enforce topological constraints while the model is simplified.

In addition, both applications demonstrate how a partitioning scheme can be applied to a VBM to facilitate

operations on groups of primitives. In the 2D case, we use local shape information defined on the VDM of a 2D object

to remove noise-type artifacts from the boundary of the object without sacrificing the fine but significant features. This

algorithm is discussed in Chapter6 and [155]. While no explicit partitioning is applied, the medial axis is used to

determine how much of the shape information computed in one area of the object can be used in another area of the

object. Figure1.8shows an example of applying our 2D simplification algorithm to a leaf model.

(a) (b) (c) (d)

Figure 1.8: An example of the results produced by our 2D shape simplification algorithm (a) A leaf and its medial axis (b) Denoised

medial axis (c) Denoised medial axis after feature reconstruction to recover fine details (d) Denoised shape with original boundary

superimposed

In the 3D case, the medial axis is decomposed into distinct components before simplification, which helps to

define the features of the object, and makes maintaining the topology of the axis more efficient. The preservation

12



of the topology of 3D shapes during processing is a difficult task in general, and the fact that our representation

incorporates this ability is a particularly strong contribution of the thesis. This algorithm is discussed in Chapter7

and [156]. Figure1.9shows an example of how our simplification algorithm is able to effectively reduce the amount

of detail in a bunny model.

Surface Reconstructed

from Boundary Points


Original Medial Axis
 Simplified Medial Axis

Surface Reconstructed from


Strongly Simplified Axis

Strongly Simplified 


Medial Axis


Figure 1.9: The results of applying our 3D shape simplification algorithm to a bunny model

1.4.4 Surface Reconstruction

While VBMs can be shown to have good approximation properties (Chapter3), a polygonal surface of the model

is often desired to enhance its visual quality and display efficiency. In addition, the goal of applications such as

segmentation is to generate an accurate boundary of the object. In Chapter8, we discuss the two algorithms that we

use for surface reconstruction from VBMs:

1. We use Amentaet al.’s power crustalgorithm [7] in combination with our medial axis-based shape simplification

method to produce polygonal models of the simplified objects. In addition to the VBM of the object, the power

crust algorithm requires a union of balls covering the outside of the object, typically computed from a set of

sample boundary points, in order to compute a surface.

2. We present a novel, compact algorithm for generating a surface from a VBM without the sample points or other

additional information. Figure1.10 shows an example of the results produced by our surface reconstruction

algorithm.

1.4.5 Thesis Statement

The primary goal of this thesis is to show that Voronoi Ball Models, by virtue of the existence of a number of key

properties, have the capabilities to be broadly applicable in shape-driven applications in computer graphics, scientific
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(a) (b)

Figure 1.10: (a) VBM of a heart (b) Surface reconstructed from the VBM of a heart

visualization and computer vision. The main approach employed is the development of a number of applications

requiring commonly-used shape operations and designed to be challenging for any shape model.

1.5 Document Overview

This dissertation consists of nine chapters. This chapter is the first. The second chapter provides a broad survey of

the related work in computational shape modelling. Chapter3 outlines our methods for computing VBMs and the

approximation properties of the resulting models. The fourth chapter presents our work with using VBMs for image

matching and interpolation. The fifth chapter analyzes our use of VDMs for extracting shape information from images.

The sixth and seventh chapters discuss our experiments with using the medial axis and VBM together in 2D and 3D.

Chapter8 explains how we compute polygonal surfaces from VBMs. The final chapter presents a summary and our

conclusions.

14



Chapter 2

Related Work

This chapter is an overview of the work done by other researchers on topics that are related to this thesis. There has

been a vast amount of research done in the areas of shape representations, shape similarity measures and shape-related

applications. Therefore, it is impractical to mention every publication specifically and we only summarize a number

of key papers and refer the reader to survey papers for a broader perspective where appropriate. However, for the

five applications that we have developed for this thesis, we provide a more detailed summary of the related work in

the appropriate chapters. For the reader interested in a general overview of shape analysis techniques, a good starting

point is the survey by Loncaric [91].

2.1 Shape Representations

The numerous approaches to modelling shape can be roughly divided into two categories. One category deals with the

design and use of shape models to perform certain computational tasks, and the other consists of work that attempts

to replicate how humans perceive shape. These categories overlap significantly and there is much current research

that incorporates both of these elements of shape modelling. It should be noted that some of the models discussed

in this chapter are not, strictly speaking, “shape” models as defined in Chapter1; they are, however, used to perform

shape-related operations and are therefore included for completeness.

2.1.1 Application-Oriented Models

Point-Based Representations

A point-based model consists of samples on the surface or interior of an object. These models are very simple and

are often converted to other types of models (e.g., via some method of tessellation) for further processing. Landmark-
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based models are a particular type of point-based representation in which the points are located according to some

application-specific rule. For example, points in an object’s contour where the curvature is high are often used as

landmarks. Some areas of shape analysis, such asmorphometrics(e.g., [30, 132]), use landmark-based methods

exclusively.

Boundary Representations

Boundary representations, orB-reps, only represent the contours (2D) or surfaces (3D) of objects. B-reps are composed

of interconnected vertices, edges and faces. Each face usually has a compact mathematical representation in that it

lies on a single planar, quadratic, or parametric surface. The most common face type is the planar triangle. Triangular

meshes are heavily used in graphics rendering. See Mäntyl̈a [99] for a more thorough description of B-reps and

associated data structures.

Spatial Subdivision Representations

Spatial subdivision representations are computed by dividing the area or volume occupied by the object into cells.

Hoffmann and Rossignac [68] classify subdivision representations into two types:boundary conformingandbound-

ary approximating. Examples of boundary conforming subdivision models include meshes (e.g., tetrahedral) and

binary space partitioning trees(BSP’s) [110]. Examples of boundary approximating representations are grids and

octrees[133]. There is a wide range of applications for spatial subdivision models, including finite element anal-

ysis (tetrahedral meshes), hidden surface removal (BSP’s), collision detection (octrees), and various other graphics

applications (e.g., [53]).

Deformable and Implicit Models

Deformable models can be curves, surfaces or solid models, although the amount of research done on deformable

curves and surfaces far exceeds the work done on solid ones. The book by Singhet al. [147] includes a representative

collection of papers on deformable models. McInerney and Terzopoulos provide a comprehensive, though somewhat

outdated, survey of deformable models in medical image analysis [102].

The central idea of these methods is the minimization of energy to satisfy the following Euler-Lagrange equation

(for simplicity, the 2D version of the equation is shown here; the 3D version is similar):

stretching︷ ︸︸ ︷
− ∂
∂s
(w1(s)

∂v
∂s
)+

bending︷ ︸︸ ︷
∂2

∂s2
(w2(s)

∂2v
∂s2

)︸ ︷︷ ︸
internal forces

+∇P(v(s))︸ ︷︷ ︸
external forces

= 0
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wherev(s) = (x(s),y(s))> is a parameterization of the object’s contour,w1(s) andw2(s) are variable weights

controlling the contour’s “tension” and “rigidity”, respectively,P is a scalar potential function defined on the image

plane, and∇ is the gradient operator. The first two terms of the equation represent the internal stretching and bending

forces, respectively, and the third term represents the external forces that couple the model to the image data.

Snakes (2D) [75] andsuperquadrics(3D) [158] are classic examples of deformable models. Although success-

fully used for many applications (especially in medical image analysis, where segmentation, registration and motion

tracking are the primary uses of these models), most deformable models suffer from the drawback of not being able to

handle topological changes during model generation or evolution. McInerney and Terzopoulos extend standard snakes

and deformable surfaces to make them topologically adaptive [103, 104].

Implicit models [27] are a class of deformable models that are parameterized implicitly. An example is the

level setsapproach [98, 139] that is most commonly used for segmentation and surface blending. Implicit models can

overcome some of the limitations of traditional parametric deformable models, because they naturally handle topology

changes well, and can represent surfaces with sharp corners and cusps. The main problem with implicit models is that

the typical formulation makes the imposition of topological and geometric constraints more difficult. In addition, the

parameterization does not correspond to an intuitive notion of shape

Medial Axis Representations

Another group of popular shape models are based on amedial axis(often calledmedial surfacein 3D) or skeleton

representation pioneered by Blum and Nagel [28, 29]. In 2D, the medial axis of an object is defined as the closure of

the loci of the centres of disks that are maximally inscribed within the object’s region. The medial surface is similarly

defined with balls. The medial axis and the maximal disks/balls are collectively referred to as themedial axis transform

(MAT). Figure2.1a shows the medial axis and two maximal disks of a rectangle.

There are many papers on the computation and application of 2D skeletons. Examples include the work by

Lee [82] and Ogniewicz [112]. The 3D skeleton is not nearly as well-studied. Notable papers include those by

Brandt [31], Attali and Montanvert [13, 15], and Amenta and Kolluri [9, 10]. Other algorithms for calculating the 3D

medial axis include those by Sheehyet al. [141] and Sherbrookeet al. [142].

One of the major problems with the medial axis representation is its instability with respect to local perturbations

in the object’s boundary. These perturbations can result in large branches in the medial axis, even if the changes in

the boundary are small. Figure2.1b shows the result of changing the boundary in Figure2.1a by a small amount.

Consequently, a large branch in the medial axis appears. We summarize the related research on the stabilization and

simplification of the medial axis, as well as present our own algorithms, in Chapters6 and7.

The most comprehensive medial-based approach for shape analysis to date is by Pizeret al., who propose a
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(a) (b)

Figure 2.1: (a) Medial axis of a rectangle (b) Instability of the medial axis

shape model that can be used for various applications in medical image processing (segmentation, registration and

measurement of shape variation [122]) and computer graphics (multiscale modelling and rendering [125]). Pizer’s

approach represents shapes using interconnectedfigures, where a figure is a whole object, the main part of an object,

or a protrusion or indentation in another figure (Figure2.2). Notable features of this representation include a measure

for the quantification of shape variation, four levels of coarseness for multiscale processing, and positional tolerance

for enhanced stability. One of the drawbacks of the Pizer model is its mathematical complexity [123] and consequent

computational costs. Another limitation is that the similarity measure only works with objects having the same number

of figures.

Figure 2.2: Example of Pizer’s figural shape, with four figures
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Comparison of Shape Models

Table2.1 summarizes the strengths and weaknesses of a number of well-known models. We include the VBM for a

direct comparison. The ratings for the VBM are derived from the results of our experiments, presented in subsequent

chapters, while the ratings for the other representations are estimated from a survey of the related literature. In this

table,stability , flexibility , accuracy, complexity, and intuitiveness are key properties discussed in Section1.2.2.

Generation refers to the ease with which the model can be generated. This takes into account the theoretical com-

plexity of each model, the computational overhead of the algorithms used to create the model, and the amount of user

intervention normally required.Shape Operationsrefers to the amount of support the representation has for the shape

operations discussed in Section1.2.1. The similarity measure(s) most commonly associated with the model, as well as

the completeness of the model (i.e., whether the model represents the interior as well as the boundary), are among the

important considerations. It should be noted that of all the models in the table, only the last three (deformable models,

figural shape, and VBMs) are designed with shape operations in mind.
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Surface Points G+ P G G G+ P P

Surface Mesh G P G G G M- P

Octree G P M M- M M P

Tetrahedra G M- G G G M P

Deformable Superquadric M M+ M G M M+ M

Figural Shape M- M+ M- G M- G G

Voronoi Ball Model G- G G G G M+ G

‘G’ = Good, ‘M’ = Medium, ‘P’ = Poor

Table 2.1: Comparison of common 3D representations used for shape operations, including the VBM
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2.1.2 Visual Form Representations

There has been much research done into how humans perceive shape visually. In this section, we provide a sparse but

representative sampling of the work done in this field by describing a number of shape models related to perception.

The most common application of the computational modelling of visual form is object recognition, with the most

popular approach being based on the decomposition of an object into its parts. Therefore, the work cited in this section

reflects an emphasis in this area. Siddiqi and Kimia provide an overview of shape partitioning techniques [144] . For

a broader perspective of visual perception and recognition, the reader is referred to [11, 23, 91, 94, 100, 173] and the

references therein.

• Biederman’s theory of human perception and recognition [24] states that objects are represented as an arrange-

ment of simple convex shape primitives calledgeons. Examples of geons include bricks, cylinders, wedges, and

cones.

• Koenderink and van Doorn observe that a 3D shape is perceived as a composition of elliptical regions and

suggest a decomposition of the shape along parabolic lines [79].

• Hoffman and Richards propose an approach [67] in which the decomposition into parts is not based on the shape

of primitives, but rather on the curvature properties of the object boundaries (Figure2.3).

Figure 2.3: Example of Hoffman and Richard’s partitioning scheme

• Leyton models parts of objects as historicalprocesses[87]; that is, the parts of an objects are the consequences

of the object growing and evolving.

• Burbecket al. provide evidence that humans recognize the shape of a figure by linking opposing boundaries

in the figure [35, 36]. This is part of the motivation for the medial-based representation known ascores. This

representation leads naturally to a partitioning of the shape along branch points of the axis.

• Siddiqi et al. propose a model for shape perception [144, 146] that is based on a continuum between the

parts (e.g., Biederman) andprotrusions(e.g., Leyton) extremes. This continuum is part of theshape triangle

(Figure2.4a), whose third node is thebendsnode. Their model is based onshocks[78], or entropy-satisfying

singularities, formed during the evolution of curves. They present a partitioning scheme that focuses on the parts

node of the shape triangle and involves two types of parts,neck-basedandlimb-based(Figures2.4b and2.4c).
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In addition, they propose the use ofshock graphs[145], which in addition to parts also represent bends and

protrusions, for shape matching.

Parts Bends

Protrusions

The
Shape

Triangle

(a) (b) (c)

Figure 2.4: (a) Siddiqi and Kimia’s Shape Triangle (b) Neck-based parts (c) Limb-based parts

2.2 Shape Similarity Measures

The area of shape similarity measures is very broad and in the case of 2D measures, very well-studied. A significant

amount of work has been done in the use of global shape parameters for determining similarity and for matching.

Methods using this approach typically describe an object by decomposing the data into a number of feature vectors.

The similarity measure or matching algorithm then operates in this feature space. Examples of the types of fea-

tures used includemoments(e.g., [39]), principal components/eigenvectors(e.g., [134]), andcurvature scale space

(e.g., [106]). The main problem with these feature vectors is that they provide the user with little geometric intuition.

The similarity measures that we are most interested in are the ones that operate in geometric space. These measures

can be roughly divided into two types,statisticalsimilarity measures andgeometricsimilarity measures. Statistical

similarity measures often have little to no basis in human perception, and rely on the large number of samples used

to compensate for their sensitivity to outliers. In contrast, geometric similarity measures, which are the focus of our

research, usually possess more properties such as stability and flexibility that make them more effective for a smaller

number of samples and a wider variety of data. However, the difference between statistical and geometric measures

is not always distinct, as there are a number of similarity measures that are used for both types of analysis. For more

information on statistical shape analysis, the papers by Bookstein [30], Lorenz and Krahnstöver [93] and Cootes and

Taylor [42] are good starting points.
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2.2.1 2D Similarity Measures

The vast majority of the research on shape similarity measures has been on 2D point sets, curves and polygons. In this

section, we summarize the major issues addressed by other researchers and their approaches for developing similarity

measures.

Basri et al. provide a survey [19, 20] of methods for determining the similarity between deformable shapes.

They describe a number of possibly desirable constraints for similarity measures. The authors observe that several

of their constraints are incompatible with each other and cannot all be satisfied at the same time, which points out

the difficulty of formulating a similarity measure that works well in all situations. Some of the proposed constraints

are designed to help capture the parts-based nature of objects without requiring the explicit decomposition of shapes

into parts. Among the other constraints proposed are continuity (i.e., if the shapes change smoothly, so should the

measure), invariance (with respect to certain classes of transformations), and metric properties. The focus of their

research is onelastic matching(e.g., [37, 73]), an approach that computes the similarity of two shapes as the sum of

local deformations required to change one shape into the other. They propose several cost functions, using physical

models of the object boundaries that incorporatestretchingandbendingcomponents, that meet most of the constraints.

An important question that is brought up by the authors is whether shapes are best compared by their interiors

or their boundaries. Figure2.5, copied from [20], shows an example of where a similarity measure using the elastic

Figure 2.5: Example for which an interior-based similarity measure may be better than a boundary-based one

matching approach may fail. Two different shapes are produced from a single shape by applying the same deformations

to different parts of the object’s contour. In each case, the boundary is vertically stretched in two places. Because the

local distortions required to produce the two shapes are the same, a similarity measure based on local deformations

may report them as being equally different from the original shape, even though perceptually the shape on the right

is likely more distorted for most viewers. In this case, a measure that compares the interiors of the shapes is likely to

have a more accurate result. However, in some cases using the boundary may be a better approach. Figure2.6, similar

to one shown in [20], illustrates this point. The left-most object and the middle one differ very little in terms of local

deformations to the interior. There is greater distortion in the interior when comparing the left-most and right-most

objects. A similarity measure that compares shapes based on their interiors may report the middle object to be closer in

shape to the left-most object, even though most observers would say that the right-most object is closer. A boundary-
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Figure 2.6: Example for which a boundary-based similarity measure may be better than an interior-based one

based measure may be preferable in this case. These two examples can be used to illustrate another important point,

which is the fact that local deformations alone are often inadequate for making judgments in shape similarity. Whether

we are using a boundary-based or interior-based measure, taking into account global distortions and properties such

as symmetry and collinearity could affect the results, and may give answers that are more perceptually intuitive.

Mumford gives a summary and comparison of six very different approaches to defining similarity mea-

sures [108]. These approaches are (given thatA,B ⊂ R2 are the shapes to be compared):

1. Hausdorff metric:

dHausdorff(A, B) = sup
x1∈A

[
inf
x2∈B

‖x1− x2‖
]
+ sup
x2∈B

[
inf
x1∈A

‖x1− x2‖
]

This commonly-used distance is very sensitive to outlier points.

2. Template metric(area of symmetric difference) (e.g., [3]):

dtemplate(A, B) = area(A− B)+ area(B −A)

In contrast to the Hausdorff metric, the template metric is very resistant to outliers.

3. Transport metric[54]:

dtransport(A, B) = inf
ρ

∫
A

∫
B
‖x1− x2‖ · dρ(x1, x2)

whereρ is a probability measure onA× B such that∫
A

∫
UB
dρ(x1, x2) =

area(UB)
area(B)

, UB ⊆ B andUB 6⊂ A

∫
UA

∫
B
dρ(x1, x2) =

area(UA)
area(A)

, UA ⊆ A andUA 6⊂ B

A physical analogy for this metric is to think of shapeA as being filled uniformly with a mass and the metric

calculates the amount of work needed to move the mass so that it fillsB uniformly. The transport metric is

regarded as a good compromise between the Hausdorff and template metrics.

4. Optimal diffeomorphism:

dod(A, B) = inf
φ

[∫
A
‖Jφ‖2+

∫
B
‖J(φ−1)‖2

]
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whereφ : A→ B is a 1− 1, onto differentiable map with differentiable inverseφ−1 andJ is the matrix of first

derivatives. The mapφ can be chosen so that the similarity measure models the energy of elastic deformations.

By definition, the shapes to be compared must be topologically equivalent, or the measure reports them to be

infinitely far apart.

5. Maps with tears:

dmwt(A, B) = inf
S⊂A×B

area(S)

whereS is a surface that represents an invertible map betweenA andB. S has “tears” where there are mis-

matches betweenA andB. These “tears” allow this similarity measure to compare objects of differing topology.

When comparing objects of equivalent topology, this measure gives similar results to that of the transport metric.

6. Graph matching(e.g., [89]):

dgm(A, B) = bpm(ΓA, ΓB)
whereΓX is a graph attached to the shapeX where the nodes represent the parts ofX and the edges represent

adjacency or inclusion of the parts, and bpm is a measure of the best partial match between the two given graphs.

The main problem with this approach is that the parts decomposition process can be very unstable in that small

changes can result in a major reorganization of the parts-graph.

Mumford asserts that any successful theory of shape description must include considerations of the features of

the boundary as well as the interior of the object. In addition, he emphasizes the importance of multiscale analysis.

He states that satisfying these two conditions tends to give the associated measures the ability to handle much more

effectively the variations in data caused by noise, changes in perspective, partial occlusion,etc.

Veltkamp and Hagedoorn summarize a number of similarity measures for 2D polygons, curves and regions [161,

162]. The emphasis of this work is on techniques from computational geometry. Among the measures discussed

are relatively popular ones such as theLp-distance(e.g., p = 2 gives the Euclidean distance),bottleneck distance,

andFréchet distance(e.g., [5]), as well as lesser-known ones such as thereflection metric[62]. They rate many of

the commonly-used measures on their stability with respect to small deformations, blurring, cracking, and noise. The

authors also provide a list of desirable qualities for similarity measures, and give a set of constructions for manipulating

measures, such as remapping and normalization methods.
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2.2.2 3D Similarity Measures

The amount of research done on 3D similarity measures has been far less than that done for 2D. Some of the 2D

measures described above, such as the bottleneck and Hausdorff distances, extend naturally to 3D, while others, such as

ones based on the turning function, cannot be extended directly because of the lack of an appropriate parameterization.

In this section, we describe a number of notable methods designed to work in 3D.

• Some researchers use a voxel-based approach to defining a similarity measure in order to avoiding the parame-

terization problem. For example, Bribiesca propose a measure [32] that can be seen as a 3D discretized version

of the transport metric.

• Methods for matching deformable models typically consist of the extraction of characteristic contours or curves,

followed by the application of an algorithm (e.g., elastic matching) to find corresponding pairs of the extracted

parts. This is the most popular approach for the shape matching of volumetric data in medical image analysis.

For example, Bajcsy and Kovačič use a multiscale technique [18] for brain scan registration.

• Some measures are based on skeletal models. For example, Pizeret al. use their figural shape representation

to determine shape similarity [122] by first matching the figures between objects, then summing the differences

in local shape parameter values in the matched figures. They propose this method for use in template-based

segmentation and non-rigid registration.

• Ohbuchiet al. propose a number of different techniques [115, 116, 117] for determining the shape similarity

of 3D “polygonal soup” models. One such approach utilizes distances of the object’s surface from the principal

axes to form a feature vector, while another uses alpha shapes [47] to derive a multiresolution shape descriptor.

• A number of researchers usetopology matchingto quantify shape differences. The main idea of this approach

is to partition each object in a way such that a graph of the parts can be built to represent the topology of the

object. The nodes of the graphs of the objects to be compared are then matched to estimate the similarity in

shape. Examples of algorithms that use topology matching include that by Hilagaet al. [66] and Bespalovet

al. [22].

• Some methods are designed to facilitate fast similarity estimation, for tasks such as 3D database queries. An

abstractedshape descriptorin the form of a function defined on a canonical domain is often used to facilitate

the comparison of various aspects of shape. For example, a number of approaches use spherical functions

(e.g., directional histogram[90], curvature distribution [143, 171]). Kazhdanet al.[76] usespherical harmonics

to transform rotationally dependent spherical shape descriptors into rotationally invariant ones.
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• Osadaet al. [119] represent the signature of a polygonal object as ashape distributionsampled from ashape

functionmeasuring global geometric properties of an object. The shape difference between two objects is then

computed via a comparison of their shape distributions. Examples of shape functions include the distance

between two random points on the surface, the angle between three random points on the surface, and the area

of the triangle formed by three random points on the surface.

2.2.3 Matching Methods

The distance functions described above measure the shape difference between two objects, but some of them do not

solve thecorrespondenceproblem (i.e., provide a matching between parts). There is a wide range of methods for

matching, including some well-known approaches such as graph building,geometric hashing[167], and thealignment

method[72]. For surveys on matching techniques, the reader is referred to the papers by Alt and Guibas [4] and

Veltkamp and Hagedoorn [161].

2.3 Application-Specific Research

This section gives an overview of the work done in shape modelling for several popular applications in graphics,

visualization and vision. For certain applications, such as segmentation, object recognition, and registration, only

survey papers are cited because a thorough summary is out of the scope of this dissertation. As mentioned previously,

for the five applications that we have developed for this thesis, we provide a more detailed overview of the related

work in the appropriate chapters.

2.3.1 Computer Graphics and Visualization

Object Metamorphosis

• Examples of work on 2D shape blending of polygons include that by Sederberget al. [135, 136].

• Papers on blending of 3D surfaces include that by Kentet al. [77] (polyhedral objects) and DeCarlo and

Metaxas [43] (deformable models).

• Alt and Guibas summarize a number of techniques [4] for shape matching and interpolation from computer

graphics and computational geometry.

• Lazarus and Verroust survey the major techniques [81] for 3D shape metamorphosis used in computer graphics.

The approaches discussed are categorized based on the object representation (volume-based, boundary-based,

and elevation maps).
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• Treeceet al. propose a method [159] to perform voxel-based object metamorphosis using spheres to compute

the correspondences between regions.

Image Matching and Interpolation

• Shape interpolation is sometimes utilized by image morphing techniques. Wolberg provides a survey [164,

165] of image morphing methods. Practically all of the techniques discussed require explicit manual feature

matching. A more detailed summary of image interpolation techniques is given in Section4.3.

• Feature matching and image morphing are often used for panoramastitchingin image-based rendering applica-

tions (e.g., [34, 105, 152]).

Other Work

• Pizeret al. [125] use figural shape to represent objects for object design, rendering and physically based opera-

tions.

• Storti et al. discuss the use of skeleton-based modelling operations on solids [149], such as level-of-detail

control, shape interpolation and shape synthesis.

• Free-form deformations are a popular group of methods for the manipulation of object geometry. Early examples

include work by Sederberg and Parry [137] and Hsuet al. [69].

• There are a number of papers, such as those by Friskenet al. [53] and Adams and Dutré [2], that present models

that enable efficient operations such as inside/outside and proximity tests, boolean operations, blending,etc.

The range of operations supported is typically narrow, and most of these models are not designed to support

shape matching.

• Hart surveys the methods [63] for controlling connectedness for shape modelling when using recurrent (fractal)

models and implicit surfaces.

2.3.2 Computer Vision

Segmentation

For a broad survey of image segmentation techniques, the reader is referred to the papers by Acharya and Menon[1]

and Phamet al. [121]. Although the focus of these papers is on biomedical images, most of the methods discussed are

generally applicable. Segmentation techniques range from very simple and general techniques, such as thresholding, to

very complex and domain-specific methods, such as expert-systems. Deformable models are the most popular type of
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shape model used for segmentation. Xuet al. have written a tutorial/review [170] on the use of deformable models for

medical image segmentation. The use of shape models for segmentation purposes is discussed further in Section5.2.

Object Recognition

Shape models for recognition are often based on theories of human perception. The general consensus seems to be

that parts-based representations are the most appropriate for matching during recognition, especially in the face of

occlusion, deletion of portions of objects,etc.

• The survey paper on computational strategies for object recognition by Suetenset al. [150] is well-written but

somewhat outdated now. The methods discussed are divided into four classes: simple strategies that use feature

vector classification, methods that work on reliable data and complex models, methods that work on noisy data

and simple models, and combinations of these strategies.

• Ponceet al. have a paper [126] discussing the role of shape models in object recognition. This paper focuses on

the use ofgeneralized cylindersandevolving surfaces, which is an approach that analyzes the singularities of a

surface as it evolves under some family of deformations.

• Dickinson’s survey [85] discusses several key components of an object recognition system (object representa-

tion, feature extraction, database organization, model indexing). He provides a comparison of several major

object representations (e.g., points, contours, surfaces, deformable models, superquadrics, geons and general-

ized cylinders), focusing on how their properties such as primitive complexity affect the recognition process.

• Forsythet al. examine the role of primitives and perceptual organization in object recognition [50]. They

discuss issues in object recognition such as alignment theories, viewpoint dependence, volumetric primitives for

structural representation, and 2D versus 3D representations.

• Campbell and Flynn survey the major representations and techniques [38] used for the recognition of free-form

objects. They review the construction methods and the strengths and weaknesses of parametric and implicit

surfaces, superquadrics, generalized cylinders, and polygonal meshes. They also discuss variousappearance-

basedrecognition systems, as well as techniques that match objects in range data using geometric features.

Registration

The most exhaustive surveys on image registration are by Brown [33] and Maintz and Viergever [97]. Maintz and

Viergever focus on medical image data, and mainly discuss papers published after 1993. Brown’s paper summarizes

publications before 1992, and is more general. Brown views registration methods as different combinations of choices
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of four components: a feature space, a search space, a search strategy, and a similarity measure, and she groups

registration methods into four categories: correlation and sequential methods, Fourier methods, point mapping, and

elastic model-based matching. The methods discussed by Maintz and Viergever can be classified as follows:

1. Landmark-based

i. Anatomical

ii. Geometrical

2. Segmentation-based

i. Rigid models

ii. Deformable models

3. Voxel property-based

i. Reduction to scalars/vectors (moments, principal axes)

ii. Using full image content

Because we are focusing on the use of shape models, the approaches that are the most closely related to our work are

segmentation-based methods using non-rigid models.
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Chapter 3

Computation and Approximation Properties of

Voronoi Ball Models

In this chapter, we explain how Voronoi ball models are computed. We discuss the primary methods of construction

used in this thesis and their approximation properties. Many of our algorithms used are grounded in theory from

computational geometry. As evident in later chapters, the result of choosing a geometric approach is that many of

our methods are combinatorial in nature and provably correct, and avoid the problems in precision that plague many

numerically-based methods.

3.1 Computation

VBM computation consists of three basic steps, and starts with a set of sample points on the boundary of an object.

The first step is to compute the Delaunay tessellation (defined in Section3.1.1) of the point set. The second step

is to compute the circumscribing ball of each tetrahedron (triangle in 2D). The last step is to discard all balls that

are “outside” of the object, which requires an inside/outside test. The remaining balls form the VBM. All of our

algorithms employ this basic procedure for computing VBMs; the only significant differences are in the inside/outside

test. Figure3.1illustrates the process in 2D; a VDM model is computed from the boundary points outlining the shape

of the province of British Columbia. In this case, a disk is considered inside the object if the corresponding Delaunay

triangle is inside.

We assume that the boundary points of a given object are readily available or easily computed. For example,

laser scanners can produce dense points that can be used directly. Other common sources of data include surface

data (e.g., polygonal meshes), volumetric data (e.g., CT or MRI scans), and 2D image data. For polygonal meshes,
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Figure 3.1: Computation of a Voronoi Disk Model

the vertices of the mesh can be used, with additional points computed by subdivision if necessary. For other types

of surface data, such as those composed of curved patches, points can be generated by ray-casting the model from

different directions. For volumetric data, boundary points are typically computed by interpolation between the inside

and outside voxels. The two types of data primarily used in this thesis are volumetric and laser scan data.

3.1.1 Voronoi Diagram

Let P = {p1, . . . , pk} be a finite set of distinct points inRn, with the assumption that no four points are cospherical.1

Let x1, . . . , xk be the location vectors of the points inP . The region defined by

V(pi) = {x|d(x, xi) ≤ d(x, xj),∀j ≠ i}

whered is the Euclidean distance function, is called theVoronoi regionof the pointpi. Simply put, the Voronoi region

of pi is the set of all points inRn that are closer topi than another other point inP . Some researchers choose to

define Voronoi regions as open sets; we choose to define them as closed. The union of the Voronoi regions

V (P) =
k⋃
i=1

V(pi)

is called the Voronoi diagram of the point setP . Figure3.2a shows the 2D Voronoi diagram of a set of 12 points. A

good overview of Voronoi diagrams and their application in many areas can be found in the work by Okabeet al.[118].

TheDelaunay tessellationD(P) is defined to be the straight line dual of the Voronoi diagram. ADelaunay edge

exists between two pointspi andpj if and only ifV(pi) andV(pj) share an edge in the Voronoi diagram. Figure3.2b

1Where necessary, this constraint can be overcome by numerical or symbolic perturbation of the point locations [44].
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(a)

(b)

Figure 3.2: (a) Voronoi diagram (b) Delaunay triangulation

shows the dual of the Voronoi diagram in Figure3.2a. A very useful property of the Delaunay triangulation is theempty

circle property, which states that the circumscribing circle of a Delaunay triangle does not contain any points ofP other

than the three vertices of the triangle. This property is also true for the higher dimensions.

Power Diagram

Thepower diagram[17] is a generalized Voronoi diagram that is computed on a set of weighted points. The dual of

the power diagram is theweightedor regular Delaunay triangulation. The weighted Delaunay triangulation is used

in the algorithms presented in Chapters7 and8, where it is applied to VBMs by using the radii of the balls as weights.

In a power diagram, thepower distanceis used in place of the Euclidean distance. Given a set ofn balls

{b1, . . . , bn} with centres{x1, . . . , xn} and radii{r1, . . . , rn}, the power distanceπ(bi, bj) between any two balls

bi andbj is defined as

π(bi, bj) = ‖xi − xj‖2− ri2− rj2.

Two ballsbi andbj are calledorthogonalif π(bi, bj) = 0. Figure3.3shows a power diagram computed from eight

disks.

The (weighted) Delaunay triangulation has sometimes been avoided because of its theoretically high computa-

tional cost. The tessellation of a set ofn points in 3D can have size and running time ofΘ(n2) in the worst case.

However, in practice, when using surface point data, the size and running time are typically observed to be close

to linear, suggesting a very reasonableO(n) behaviour in most cases. We use the Computational Geometry Algo-

rithms Library (CGAL), which implements a version [44] of the randomized incremental algorithm [41] for Delaunay

triangulations. This implementation has been documented to have linear behaviour [40].
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Figure 3.3: Power diagram of eight disks

3.1.2 Ball Classification

This process involves filtering out all of the Voronoi balls that should be considered outside of the object’s boundary.

In this section, we describe the two major approaches that we use for classifying balls. One is by Ranjan [129], the

other by Amentaet al. [6, 9].

Unions of Spheres

Ranjan’s approach [129] used a different inside/outside test for each type of data. We describe his ball labelling

methods for volumetric data, range data and polygonal meshes:

• For volumetric data, if the computed boundary points are sufficiently dense, then each ball can only contain

either inside or outside voxels, because by the empty sphere property of the Delaunay triangulation no ball can

contain any boundary points in its interior. Therefore, a simple inside/outside test can be performed whereby the

ball receives the same label as any one of its voxels (typically the voxel nearest the centre of the ball is used). We

employ this method for producing the VBMs used in the image interpolation algorithm discussed in Chapter4.

• For range/laser-scanned data, the use of visibility information is required to classify the balls. We do not use

this procedure in our work (we use the polar ball method, described in the next section), but we include it here

for completeness. For each ball, the four points used to define it are processed in the following manner:

1. The scan direction for each point is found.

2. The vector from the centre of the ball to each point is computed. This is an estimated surface normal.

3. For each point, take the dot product of the scan direction with the surface normal. If any of the four dot

products are positive, the ball is classified as outside.
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This process eliminates most of the outside balls, but occasionally a ray-casting procedure is used in a followup

phase to check that any point on the visible surface of the model should be within a certain distance of a sampled

boundary point.

• For polygonal meshes, the test is similar to that for range data. The same three steps listed above are followed,

except that instead of the scan direction, the surface normals of the polygons at the four sample points used to

define the ball are used to provide the visibility information. The surface normals are assumed to be oriented

consistently.

Polar Balls

Amentaet al. [6, 9] have developed a robust method for computing a VBM, using thepolesof the sample points. The

poles of a boundary samples are defined as the farthest Voronoi vertex froms in the interior of the object and the

farthest Voronoi vertex froms in the exterior of the object. Thus, each sample normally has aninner poleand anouter

pole. In 2D, all Voronoi vertices are poles, but not in 3D. The balls centred at the poles are calledpolar balls. To

find the poles, the Voronoi vertex ofs furthest froms is selected as the first polep1; the second pole is selected from

the remaining verticesv such that∠vsp1 > π
2 . If the orientation of the object’s surface is known, it can be used to

determine which pole is inside or outside. If the orientation is unknown (e.g., only the sample points are given), then

they use the following procedure:

1. To avoid dealing with infinity, they add four points to the sample set. The added points form a large bounding

box around the object, and result in polar balls that are known to be outside the object.

2. According to the theory by Amenta and Bern [6], given sufficiently dense sampling the interior and exterior polar

balls should intersect only very shallowly, if at all. This condition is defined more precisely in Section3.2.2.

Therefore, the balls can be labelled by starting with the known exterior balls and their interior counterparts, then

propagating the labels appropriately to their neighbours.

This method of ball labelling is typically more robust and efficient than most of the inside/outside tests mentioned

above. In addition, it has been shown that the interior polar balls actually give a provably better approximation of the

object’s boundary than the full set of interior Voronoi balls computed by most other methods [9]. Figure3.4illustrates

this difference. The VBM in Figure3.4a uses the entire set of interior balls, and shows the typical artifacts of such a

construction; the “warts” on the foot are the result of discretization, and would appear atanyfinite sampling density.

Figure3.4b, computed from the same data set but composed only of polar balls, has a much smoother appearance,

many fewer balls, and is likely to be more usable for many shape-driven applications.

In addition to giving a better representation of the object’s boundary, the polar balls of an object also allow for

the more accurate approximation of the medial axis of the object. Given sufficient sampling, theα-shape [47] and
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(a) (b)

Figure 3.4: (a) Voronoi balls (10,903) (b) Voronoi polar balls (2,931) (images from [9])

the medial axis of the interior polar balls have both been proven to be homotopy equivalent to the original object [9].

In fact, the centres of the balls converge to the true medial axis of the object as the sampling density increases [8].

A number of previous attempts at using the Voronoi diagram to approximate the medial axis rely on the incorrect

claim [59] that convergence occurs even if the full set of interior balls is used. Because of its robustness, efficiency

and convergence properties, we use the polar ball approach in our algorithm discussed in Chapter7.

3.2 Approximation Properties

It has been shown by a number of researchers that the approximation errors of VBMs are bounded, given certain

conditions on the sampling density of the boundary points with respect to the complexity of the shape. The types of

data used for our work allow us to ensure quite easily that the models are adequately sampled. We provide the error

bounds here in order to show that using VDMs/VBMs in our algorithms does not introduce an undue amount of error,

and to establish a foundation for future work in the detection and handling of undersampling.

For the following discussion, we use this notation:W is the object being approximated,W is the boundary of

W , S = {si, i = 1, . . . , n} is the set ofn sample points onW used to construct the VBM, andε is the approximation

error, defined to be the maximum distance between any point on the boundary of the VBM and its closest point onW .

3.2.1 Union of Circles/Spheres

The concept of ther -regular object, introduced in mathematical morphology [138], is utilized in Ranjan’s work as a

way to characterize the complexity of the object’s shape. An object is said to ber -regular if it is morphologically open

and closed with respect to a disk of radiusr > 0. Simply put, this means that the curvature of the object’s boundary
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cannot be greater than1r anywhere, and the object cannot have a narrowing smaller than 2r . Figure3.5 shows an

example of anr -regular object.

r

Figure 3.5: An r -regular object

For the 2D case, the following result has been proven for VDMs. Usingδ to denote the sampling density ofS

(defined to be the maximum distance between sample points):

Theorem 3.1 (Ranjan [129]) If the underlying object being approximated isr -regular, and the sampling density

conditionδ < r holds, then the errorε in the VDM is less than or equal toδ.

Clearly, as the shape complexity increases (r gets smaller),δ must get smaller in order to maintain the same

amount of error. For 3D, the following gives the error bound for a VBM computed from volumetric data:

Theorem 3.2 (Ranjan [129]) Given anr -regular objectW , let there be a volumetric sampling ofW on a regular

grid of cell size (c× c× c), where each voxel is classified as “inside” or “outside”. Let the boundary of the object be

sampled by computing points between all neighbouring (in the six-connected sense) inside and outside pairs of voxels.

If c <= 2
√

3
3 r , then the VBM approximation errorε is less than or equal to

√
3c.

Our algorithms presented in Chapters4 and5 use the method described in Section4.4.1to simplify VBMs. The

error introduced by this simplification process is also bounded:

Theorem 3.3 (Ranjan [129]) Given an objectW , letV be a VBM representingW with the approximation errorε.

LetV ′ be the simplified VBM computed by clusteringV with a sphericity ofσ . The error bound (maximum distance

between the boundaries of the original and simplified models) forV ′ is ε + 2rl 1−σ
σ , whererl is the radius of the

largest ball inV .
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3.2.2 Polar Balls

This section summarizes the work by Amenta and Bern [6] and Amenta and Kolluri [9], who compute the error bounds

for VBMs composed of polar balls. Their approach is based on proving that as sampling density increases, the interior

polar balls become increasingly more accurate approximations of the maximal balls of the medial axis transform. With

infinite sampling, the boundary of the medial balls form the exact boundary the object. Before the error bound is given,

some definitions are needed:

Definition: TheLocal Feature Sizeat a pointw ∈ W (LFS(w)) is the distance fromw to the nearest pointpw of the

medial axis ofW . TheLFS(w) can also be thought of as the radius of the medial ball centred atpw and touchingw.

TheLFS is a local measure of the “level of detail”. TheLFSdecreases when the curvature of the boundary is high or

when two patches of the surface are close together. Amenta and Bern then define their measure of sampling densityr

as a function of theLFS:

Definition: The set of pointsS ⊆ W is called anr -sampleif the distance from any pointx ∈ W to its closest sample

in S is at most a constant fractionr timesLFS(x).

Alternatively stated, asr gets smaller, the distance between any point on the boundary of the object and its

closest sample point also gets smaller, relative to theLFS. For this to be true for all of the points onW , the sampling

density must increase. The dependence on theLFS is Amenta and Bern’s way of specifying the sampling constraint

as a function of the local shape complexity. As theLFSdecreases, the sampling should be increased. This use of the

local shape is in contrast to Ranjan’s approach, which imposes a lower limit on the sampling density for the entire

surface.

For the following two theorems, it is assumed that the inner and outer polar balls are computed from anr -sample

S, with r ≤ 1
10.

Theorem 3.4 (Amenta and Kolluri [9]) LetUi andUo be the boundaries of the unions of the inner and outer polar

balls, respectively. The distanceε from a pointu ∈ Ui or u ∈ Uo to its closest pointx on the surfaceW is

O(r)LFS(x).

As mentioned in Section3.1.2, given sufficient sampling (i.e., S is anr -sample), the inner and outer polar balls

only intersect shallowly, if at all. This condition is defined more precisely by the following:

Theorem 3.5 (Amentaet al. [8]) Let BI be an inside polar ball andBO be an outside polar ball. IfBI and BO

intersect, andα is the angle of intersection, thenα = O(r).
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Chapter 4

Image Matching, Interpolation and

Rigid Registration

4.1 Motivation

Shape matching deserves special consideration in the design of a multipurpose shape model, because it is the core

process of many shape-driven applications. The shape model used directly affects the type of similarity measure

that can be applied. For example, landmark-based representations frequently have similarity measures, such as the

Hausdorff distance (e.g., [71]), that are very sensitive to outliers. Because the similarity measure computes the shape

distance between objects or parts of objects, it determines the matches and is therefore critical to the performance of

the matching algorithm.

This chapter describes an algorithm that we have developed to test the capabilities of VBMs for solving the 3D

shape correspondence problem. This algorithm, originally presented with preliminary results in [153], uses Ranjan

and Fournier’s similarity measure to determine the feature matches in order to perform image interpolation (i.e., “mor-

phing”) and rigid registration. A 3D representation of each image is created by constructing a height field from the

pixel values. We use image interpolation because it is a popular application that has proved challenging for many

methods. In addition, mismatches are usually easily noticed in the images, unlike in VBM model space, where cor-

respondence errors can sometimes be hidden, especially where there is a large number of primitives. Through this

experiment we qualitatively assess the similarity measure’s ability to determine accurate and stable correspondences

between two given shapes.

Our work extends that by Ranjan and Fournier in a number of significant ways. Their work focused largely on

using 2D models for shape matching; although a number of simple 3D experiments were done, the test cases used made
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mismatches difficult to identify. We use 3D models to perform matching, without Ranjan and Fournier’s prealignment

step discussed in Section4.4.2. In addition, our data is considerably more challenging, especially considering that

image matching is not a purely shape-driven application. We also examine the degree of control the user has over the

matching process via the selection of parameter values.

4.1.1 VBM Properties

A number of properties make the use of VBMs in shape matching and interpolation advantageous as compared to

other representations, and we exploit these properties in our image interpolation algorithm. Ranjan showed that VBM

models are measurably stable with respect to small changes in the input data when using their similarity measure [129].

Figure4.1shows an example of how a VBM changes as its boundary points are perturbed. In this case, the model is

computed from 15,277 boundary points. The points are then randomly perturbed by amounts ranging from 0.1% to

1.0% of the shortest side of the bounding box. For each point set, the VBM is computed (resulting in about 40,000

balls each), then simplified to about 100 balls. The similarity measure is then applied to determine the amount of shape

change resulting from the induced noise.
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Figure 4.1: Example of VBM stability (data taken from [129])

In addition to random perturbation of the boundary points, the VBM representation is also measurably stable

with respect to small changes caused by shape-preserving transformations, and distortions such as shearing. Even

though no representation is immune to very large changes (features can actually appear or disappear as a result of

such changes), in most of the cases that we have studied the VBM representation allows for the reliable and intuitive

prediction of how the model will change in response. Having determined that VBMs are generally stable with the given

measure, we focus on testing the accuracy of the correspondences and their stability with respect to the parameters

used in the similarity measure.
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In addition to stability, Ranjan noted several other advantages to using VBMs for shape interpolation [129]:

• VBMs can be simplified, so the interpolation can be made at various levels of detail.

• Using a union of closed primitives eliminates the problems of tearing and self-intersection associated with

surface-based methods.

• The number of primitives in the intermediate shapes are on the same order as the original models.

• The intermediate shapes are not wildly distorted compared to the original objects.

• The similarity measure allows some control over the interpolation.

4.2 Background

The general objective of 2D image interpolation is to derive a number of intermediate images between a beginning

image and an end image. There are numerous applications for image interpolation, ranging from aesthetic purposes

(e.g., morphing) to scientific visualization (e.g., 3D volumetric reconstruction from 2D slices). Although the require-

ments for an interpolation algorithm vary somewhat with the application, there are a number of elements considered

desirable in most cases. The interpolation of images requires a matching of features that can be humanly identified as

having a certain degree of similarity. Most people would consider the shapes of objects to be an important criterion for

feature matching. Therefore, in order for an algorithm to generate “good” interpolations, it should take into account

similarities in shape. Partly because of their importance to image interpolation, the representation and matching of

shapes have been the focal points of intense study. Many successful algorithms have been developed to interpolate

between objects, but many of these methods rely on the user to specify the features and often the correspondences

between them. Manual specification of features can be a labour-intensive task, especially for complex images. On the

other hand, there are algorithms that attempt to automatically extract all of the matchable features from images. Some

commonly used features include points, edges, corners, and skeletons. A common problem with feature extraction

methods is instability with respect to changes in the input data. For example, rescaling the intensities in a greyscale

image can cause an edge detection algorithm to output a different set of edges. Ideally, an algorithm should require

little or no user assistance in forming a representation of the image features, but should have enough stability to be

able to handle reasonably large variations in input data. We present an approach to image interpolation that focuses on

stability and accurate matching. The main idea is to use VBMs to represent and match image features.
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4.3 Related Work

There is a large amount of literature that is related to image matching and interpolation, so only a summary of the

major techniques is given here. Although some of approaches mentioned are not, strictly speaking, shape-based, they

are included for completeness. A good starting point for information on image morphing techniques are the surveys

by Wolberg [164, 165]; most of the techniques he discusses require manual feature matching.

The most popular methods of image interpolation use specialized matching primitives drawn by the user, such

as points [148], line segments [21, 84], or curves [83]. In some cases (e.g., [83]), energy-minimizing splines are

used to assist the user in marking image features. After the user specifies the matches, awarp functionis generated to

interpolate the positions of the marked features. Such functions typically operate on a control lattice such as a thin plate

spline (e.g., [64]). In general, these algorithms are effective when dealing with object features that are well-defined

and relatively straightforward to specify interactively. The facial images in Fig.4.6a are examples of images with such

features. The CT images in Fig.4.6b are examples of images for which the interactive specification of features can be

problematic and labour-intensive, because some of the objects are very small and have fuzzy boundaries.

A number of the more recent methods in image interpolation, including ours, aim to minimize the amount of user

input. Many such methods borrow ideas from related fields in computer vision, such as image registration [33, 97]. An

example of such an approach is by Gao and Sederberg [58]. Since the original publication of our algorithm [153], a

number of powerful techniques for image matching have been proposed. Most recently, Lowe [95] presents a method

for extracting highly distinctive features from images for use in matching and recognition. These features are invariant

to image scale and rotation, and have been shown to provide robust matching.

4.4 Ranjan and Fournier’s Matching Algorithm

In this section, we summarize Ranjan and Fournier’s method for shape matching using VBMs. The central idea is

to represent each object by a VBM, and apply the similarity measure to form correspondences between balls in the

two VBMs being matched. The similarity measure has a number of parameters to give the user some control of the

matching process. A simplification process that reduces redundancy is usually applied before the matching in order to

increase stability. More details on the basic approach can be found in [129, 130].

4.4.1 Simplification Algorithm

The simplification algorithm is aimed at reducing the number of primitives while preserving the shape features as

much as possible. The algorithm, calledclustering, works by replacing groups of balls within the VBM with larger,
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encompassing balls. The degree of simplification is controlled by a user-set parameter calledsphericity, which is a

measure of how well a set of balls can be modelled by a single ball. Mathematically, the sphericity of a cluster of balls

is defined as the ratio of the radius of the largest ball in the cluster to the radius of the smallest ball containing all balls

in the cluster. Fig.4.2 illustrates how sphericity is defined for disks; the extension to balls is trivial.

r

R
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r


(a)
 (b)


Figure 4.2: Definition of sphericity (rR ) (a) Large sphericity (b) Low sphericity

The clustering algorithm processes the balls in order of decreasing size. In each iteration, the algorithm takes

the largest unprocessed balla, and calculates the smallest ball encompassinga and as many other unprocessed balls as

possible, under the constraint that the cluster must have a sphericity greater than or equal to the user-chosen threshold.

The cluster is then replaced by the newly formed encompassing ball. As discussed in Section3.2.1, the distance

between the surface of a simplified VBM and the original point set is bounded; therefore, clustering is guaranteed not

to distort the original shape features beyond what is expected at a given sphericity.

Figure4.3 shows a 2D example of clustering. The original VDM has 425 disks. There is a significant amount

of redundancy caused by the density of the boundary points used for calculating the VDM. In contrast, the simplified

VDM, the result of clustering with a sphericity of 0.95, only has 112 disks, and is a much more efficient representation.

It is worth noting that small disks are still present where necessary to preserve shape, such as in the corners. In areas

of relatively low detail, such as in the centre of the object, the number of disks is greatly reduced.

(a)  VDM
 (b) Simplified VDM


Figure 4.3: Example of clustering (sphericity = 0.95)
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4.4.2 Model Alignment

In order to satisfy the constraint that the results of shape matching be independent of translations, rotations and uniform

scaling, Ranjan and Fournier’s method requires an alignment process before applying their similarity measure, which

itself is not independent of the given transformations. The models to be compared are translated so that their centres

of masses coincide and scaled such that their volumes or linear dimensions match. The models are then rotated so that

their local axes established from second ordermoments[127] are aligned. This process is useful for simple objects,

and can be done automatically. For more complex objects, manual alignment is usually necessary.

4.4.3 Similarity Measure

In this section, we give the definition of the similarity measure. The shape difference between two VBMs is computed

by matching balls between the two models using a specially defined distance measure. The shape distance between

the two VBMs is taken to be the average of the distances between all matched pairs of balls. This method not only

gives a quantitative shape difference between two VBMs; it also determines a correspondence between the primitives

in the two models.

The first step in the matching process is the calculation of the distancesd(a,b) between everya andb, where

a is a ball in the first VBM, andb is a ball in the second. Given thata has centre (xa, ya) and radiusra andb has

centre (xb, yb) and radiusrb, the distance function is given by:

d(a,b) = wpdp(a, b)+wsds(a, b)+wfdf (a, b) (4.1)

wheredp(a, b) = (xa−xb)2+(ya−yb)2,ds(a, b) = (ra−rb)2 anddf (a, b) is thefeaturedistance betweena

andb, as described below. The weightswp (position),ws (size), andwf (feature) are chosen by the user, who selects

the values based on the application and data at hand. The definition of a feature in this case is a mathematical relation-

ship between a ball and its four largest neighbours (in 2D, the three largest neighbours are used). Four neighbours are

used because in an unsimplified VBM, each ball has a maximum of four neighbours (corresponding to the number of

neighbouring Delaunay tetrahedra); we use the same number in a clustered model for the sake of consistency. Between

the ball and each neighbour, we take the gradientdR
dD , wheredR is the signed difference between the radius of the

ball and the radius of the neighbour, anddD is the Euclidean distance between the centres of the balls. Figure4.4a

illustrates the definition of a gradient vector in 2D. If a ball has less than four neighbours, the value for each missing

neighbour is set to−∞, because in this direction the neighbouring ball shrinks to 0 for any distance moved. ThedR
dD

value is then mapped to the range [0,2], where−∞ is mapped to 0, 0 to 1, and+∞ is mapped to 2. The gradients in

the directions of the four largest neighbours form the feature of the ball. The feature distance between two balls can

be best explained using a physical analogy. If the two features have a common centre and are free to rotate around it,
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and between the ends of each pair of gradient vectors (in the directions of the neighbours) there is a spring that has a

pulling force proportional to its length, then the system will be at rest when the potential energy is at a minimum. The

sum of the residual distances between the vector ends in this minimum energy state is taken to be the feature distance

between the two balls. Figure4.4b shows a 2D example. Thus, the cost function defines the distance between two

balls as a function of the differences in their positions, sizes, and neighbourhood information.

D

R1
R2

dR/dD = (R2-R1)/D

(a)

Gradient Vector for Disk 1

Gradient Vector for Disk 2


c


a


Spring


Spring
Spring

b


(b)

Figure 4.4: (a) Gradient vector from a disk to its neighbour (b) Feature distance (a + b + c) between two disks

4.4.4 Matching Method

After the distances between all balls in the two VBMs have been calculated, a weighted bipartite graph is built where

the nodes correspond to the balls, and the weights on the edges are the distances between them. A maximal match is

computed such that the sum of the distances between all matched pairs is a minimum. The final shape distance is the

average distance calculated over all of the matched pairs in the maximal match.

4.5 Image Interpolation Algorithm

4.5.1 Algorithm Overview

As illustrated in Figure4.5, the main steps of our algorithm for image interpolation using VBMs are:

1. (Optional) Preprocess each image for input into the interpolation algorithm (e.g., scale pixel intensities, noise

removal,etc.).

2. Generate a height field for each image from the pixel intensity data and use the resulting point set as the boundary

points of a volume.

3. Generate VBMs from the two boundary point sets.
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4. Simplify the VBMs by clustering.

5. Match balls between the two simplified VBMs by using the shape similarity measure.

6. Generate intermediate VBMs (one for each intermediate frame in the interpolation).

7. Generate image data from each intermediate VBM.
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Figure 4.5: Main algorithm steps for image interpolation using VBMs

4.5.2 Test Data

Figure4.6shows the images used as test cases for our experiments. For simplicity, we are only dealing with greyscale

images. We choose these particular test cases to provide a range of challenging input data for our matching experi-

ments. The data set consists of images from three different imaging modalities.
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(c)

Figure 4.6: Test images (a) Faces (b) CT slices (c) Visible Man legs

Fig. 4.6a shows two images of faces; the left image (we call this Face 1) will undergo a morph to become

the right image (Face 2). We use faces because morphing faces is generally considered a difficult task; even minor
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artifacts in the interpolated images are easily noticeable by a human observer. Fig.4.6b shows two consecutive slices

from a computed tomography (CT) data set. Each slice shows a cross-section of a blood vessel surrounded by the wire

supports of a stented graft implant. These supports are visible as small, bright white patches around the circumference

of the blood vessel. Comparing the second slice to the first, we can see that some of the wires move closer together,

while others move farther apart. The shapes of some of the wires also change. Fig.4.6c shows a cross-sectional view

of a man’s upper thighs. This image, from the Visible Man1 data set, is a photograph of a physical cross-section of

a cadaver. To test the capabilities of the matching method, we take the mirror image of the left leg and allow the

algorithm to automatically register it with the right leg.

4.5.3 Preprocessing

The amount of preprocessing required is dependent on the application and the original image characteristics. For

example, in the facial images shown in Figure4.6a, we notice that most of the important features (e.g., eyes, eyebrows,

outline of the nose, mouth,etc.) are lower in pixel intensity than the rest of the face. To ensure that these features are

well-represented in the VBMs, we invert the pixel values. Figure4.7a shows Face 1 from Figure4.6a with the pixel

intensities inverted. The height field generated from this image would have peaks where the important features are. In

contrast, the CT slices in Figure4.6b do not need to be preprocessed at all for input into our algorithm. In that case,

the most important features to be matched are the graft wire supports that appear as bright white spots, which naturally

become peaks in the height field.

(a)

(b)

Figure 4.7: (a) Face 1 with pixel values inverted (b) Boundary points computed from the inverted pixel values

1http://www.nlm.nih.gov/research/visible/visible_human.html
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4.5.4 Height Field Generation

The generation of the height field is relatively straightforward. All that is required is a mapping from the intensity

value at each pixel to az-value in the height field. A simple linear mapping works well in many cases. The points

in the height field are then used as the boundary points of a volume. This volume is bounded by the image plane.

Figure4.7b shows the boundary points generated from the Face 1 image. The important facial features mentioned

above are visible as peaks in the height field.

4.5.5 VBM Generation and Simplification

After the boundary points are generated, the VBM model can be formed using the method described in Section3.1.

In this case, the voxel closest to the centre of each ball is tested to label the ball as being inside or outside. We then

use the clustering process defined in Section4.4.1to reduce the number of balls while preserving the features as much

as possible. Eliminating excess balls has a strong stabilizing affect on the model and also increases the speed of the

matching and visualization processes. Figure4.8 shows the clustered VBMs of Face 1 and Face 2. The clustering

process is able to preserve the smaller details where necessary, such as the areas around the eyes and mouth.

(a) (b)

Figure 4.8: VBMs computed from the face images in Figure4.6a

4.5.6 VBM Matching and Parameter Selection

The next step is to establish correspondences between the two VBMs to be interpolated. Equation4.1 is employed as

the distance measure in the matching process. Determining appropriate values for the parameterswp,ws , andwf is

more important in this application than in Ranjan and Fournier’s experiments, because in their work the models are
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Figure 4.9: VBMs computed from the CT images in Figure4.6b

prealigned and scaled before the similarity measure is applied. In our case, we are aiming to test the capabilities of the

similarity measure without the preprocessing, as well as to estimate the degree of control that the user can have in the

matching process.

The user selects the weights by experimentation and visualizing the VBMs. For example, Figure4.9shows the

VBMs computed from the CT data shown in Figure4.6b. In this figure, the two VBMs are superimposed, with the

transparency of one set to 50% to give the user some idea of how the balls should be matched. In this case, we would

like to form correspondences between the peaks, because they represent the centres of the wire supports. For this

example,wp andws should be relatively large (0.8 to 1.0), withwf somewhat lower (0.3 to 0.5), because we can see

the balls that should be matched are quite close in position and size. In contrast, getting the desired matches between

the two VBMs shown in Figures4.8a and4.8b would require a higher feature weight, because the neighbourhood

context of the balls is more important for matching in that case. After matching with some initial values for the

weights, a number of interpolated VBMs can be formed and visualized, allowing the user to make adjustments if

necessary. We find that animating the interpolation is especially useful in helping the user find appropriate values.

Normally, suitable values are attained within several iterations.

After all the distances between balls have been calculated, a weighted bipartite graph as described in Section4.4.4

is built. We use the Cost Scaling Algorithm (CSA) [60] to construct the graph. If the numbers of balls in the two

VBMs are not the same, as is usually the case, there will be a number of unmatched balls on one side. These balls

can be dealt with in a number of ways. For example, they can simply be matched to their nearest neighbours. In other

cases, the number and/or locations of the balls may be such that they do not affect the appearance of the derived image;

in such cases the balls can be discarded.
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4.5.7 VBM Interpolation

The interpolation step comes next in our algorithm. For each pair of matched ballsa andb, a number of intermediate

balls are produced. The position and size of each intermediate ball is obtained by linear interpolation from the matched

balls. In addition, because the features ofa andb have specific orientations, the intermediate ball should be rotated to

reflect the change in orientation. The degree of rotation is also linearly interpolated. We constrain the axis of rotation

of each ball to be coincident with thez-axis to prevent gaps in the image that may otherwise appear in the image

generation phase.

4.5.8 Image Generation

The final step in our image interpolation algorithm is the generation of the images from the interpolated VBMs. The

basic idea is to associate a pixel with a particular location on a ball, and track the movement of that pixel as the ball

moves, scales, and rotates across frames in the interpolation. This is done by projecting the image onto the upper

surface of the VBM. For each pixel in the interpolated image, the algorithm finds the corresponding pixels in the

original two images by comparing the locations, sizes, and orientations of the associated balls. The final value for that

pixel is linearly interpolated from the two values in the original images. Figure4.10shows a simple example of how

this process works. Consider the blot in the centre of the interpolated image. The 2D projection of the ball at that

location is shown as a dotted circle. The 2D projections of the matched balls are shown in Images 1 and 2. The ball

from Image 1 moves to the right and down, gets smaller, and rotates about thez-axis as we move through the frames

of the interpolation. The pixel values of the blot in the centre image are interpolated from the blots in Images 1 and 2.

Image 1
 Image 2
Interpolated Image


Figure 4.10: Computing an image from an interpolated VBM
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4.6 Results

This section summarizes the results of our image interpolation and registration experiments. Table4.1 gives the

parameter values (weights for the similarity measure and the sphericities used for clustering) for the three data sets.

To determine appropriate values for the similarity measure, the parameters are adjusted up or down by a set value

(0.5) in an ordered sequence while observing the effect. We find that for the cases tested changing any number of

the matching weights by≤ 0.05 does not result in any difference in the visible results, and changing anyoneof the

matching weights by≤ 0.1 from the specified values does not alter the results appreciably. This gives evidence that

the matches are stable with respect to changes in the parameter values.

Data wp ws wf Sphericity

Faces 0.40± 0.05 0.50± 0.05 0.80± 0.05 0.65

Aorta 0.80± 0.05 0.90± 0.05 0.50± 0.05 0.70

Legs 0.80± 0.05 0.80± 0.05 0.90± 0.05 0.70

Table 4.1: Parameter values used for our image matching experiments

Figure4.11shows the facial images produced with our interpolation algorithm without any user specification of

features. Frame 1 in the sequence is Face 1, and Frame 11 is Face 2. A viewer normally focuses on areas such as the

eyes, eyebrows, nose, mouth, and curvature of the face, all of which are reasonably well-interpolated, as shown in the

intermediate frames (2-10). For example, the nose gets larger gradually, the eyes get smaller, the eyebrows change

shape and move toward the eyes in a smooth manner, and the face gets thinner without getting jagged. This is a good

result, especially considering that no user-specification of features is used.
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Figure 4.11: Interpolated images from the faces in Figure4.6a
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However, a number of artifacts are visible. The most noticeable problem is that the upper lip of Face 1 gets

matched to the area between the lips of Face 2, causing a strange “flipping over” of the upper lip in the interpolated

faces. The main reason is that Face 1 has a prominent upper lip but a very small lower lip, and Face 2 has very visible

upper and lower lips that define the area between the lips very well. Most automatic methods would have problems

with this type of situation, because most algorithms do not know the difference between an upper and lower lip. In

our case, the problem can be corrected by a small amount of manual feature specification. The mouth can be forced to

match properly simply by increasing the pixel intensities in the area between the lips to highlight this region in both

faces. In our case, we use an image editing program to “paint” a white line between the lips in the two original faces.

Figure4.12shows the interpolation done with this minor modification. The lips are now interpolated nicely.
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Figure 4.12: Interpolated images from the faces in Figure4.6a, with manual feature specification for the lips

Another significant artifact in the interpolated frames (especially noticeable in Frame 6) is that some of the finer

features, especially the pupils, do not have well-defined boundaries. The main reason for this fuzziness is that each

pupil (or other feature) is represented by a group of small balls, and some of the balls representing the pupils in Face 1

are getting matched to balls outside of the pupils in Face 2. This “migration” problem is also documented in Ranjan’s

work [129]. A potential solution to this problem is a method for partitioning a VBM into parts. In this case, such a

capability would be useful for grouping primitives so that distinct features such as the pupils can be treated as separate

objects, thereby preventing balls from migrating from one object to another. Ranjan briefly explored VBM partitioning

in [129]; we present our experiments with this concept in Chapter7.

For the CT data, the most important matches are in the graft wire supports that appear as small, bright white

patches around the circumference of the aorta in the original images. As can be seen in Figure4.6b, some of the wires

move toward one another, while others move apart. In addition, the aorta and some of the wires change shape between

the two images. Figure4.13shows the results of applying our algorithm. Frame 1 is the first original slice, Frames 2

to 10 are interpolated images, and Frame 11 is the second original slice. Even with no manual feature specification,
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our algorithm effectively interpolates between the two original slices. However, the fuzziness of the features observed

in some of the interpolated faces is also present here. In this case, these artifacts are most noticeable in the boundaries

of several of the wire supports.
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Figure 4.13: Interpolated images from the CT slices in Figure4.6b

The data for our third test case is the image of the two legs shown in Figure4.6c. The mirror image of the left leg

and the image of the right leg are the input to our algorithm. Our software forms VBM representations of the images,

performs the ball matching, then calculates the transformations that should be applied to the left side to register the

two images. Figure4.14a shows the mirror image of the left leg manually superimposed onto the image of the right

leg. It is evident that one of the transformations should be a clockwise rotation of the left leg about thez-axis. The

transformations computed by our algorithm are a translation and a rotation (6.6◦) about thez-axis, which result in the

image shown in Figure4.14b. Qualitatively speaking, the two legs are well-registered, with similar features very close

together. As with the CT data, no manual feature specification is required for the matching process.

(a) (b)

Figure 4.14: Visible Man legs (a) Unregistered (b) Registered
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4.6.1 Processing Time

This section gives an example of the amount of processing time required by our algorithm to create a simplified VBM

from an image, perform feature matching between two VBMs, and render a number of interpolated frames. The facial

images shown in Figure4.6a are used for the timing tests. Each image is of size 72× 66× 16 (width× height×
depth) bits. The number of balls in each unsimplified model is about 7,000, and the number of balls in each simplified

model is about 700. The final output of the algorithm consists of eleven images, nine of which are interpolated. The

computer used is a Silicon Graphics Indigo II Impact workstation with an R10000 CPU. Table4.2 summarizes the

timing results. Although the hardware used is now considered obsolete, these statistics should still give the user some

idea of the speed of the algorithm. The main bottleneck are the matching and interpolation processes, because they are

typically repeated a number of times while the user determines suitable parameter values. Although the running times

seem slow, they are competitive for a method that does not require manual feature specification and does not use any

graphics hardware.

Process Time (seconds)

Height field generation 7 (per image)

VBM generation 104 (per image)

Clustering 39 (per model)

Distance calculation 4

Matching and interpolation 20

Rendering from interpolated VBMs 65 (per frame)

Table 4.2: Timing results for VBM image interpolation algorithm

4.7 Summary

In this chapter we have presented a method for image interpolation and rigid registration using VBMs. In this algo-

rithm, VBMs are used to represent the images and matching is performed with the Ranjan-Fournier similarity measure.

We used three test cases, one of facial images and two of medical data, to demonstrate the capabilities and limitations

of the method. We have shown that this method can interpolate between images effectively with minimal preprocess-

ing.
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4.8 Observations

• The VBM approach to shape matching produces visually accurate results when used for interpolating and rigidly

registering greyscale images of average complexity, even with little or no manual intervention.

• Determining the parameter values (size, position, and feature weights) of the similarity measure requires an

iterative, trial-and-error approach. However, the stability of the matching method with respect to the parameters

makes determining appropriate values straightforward.

• Before clustering, the VBM models generated from our images contain many extra balls, which can cause

mismatches and other problems during the matching process. These problems are significantly reduced by

clustering. This is an example of how simplification can be a useful method for stabilization.

• The lack of topological constraints during matching and interpolation can be problematic in that a feature rep-

resented by a set of balls can split into two or more pieces when a subset of the balls gets matched and migrates

to another feature. A method for grouping primitives and enforcing intra and intergroup topological constraints

would be a useful feature for VBMs. This is partly the motivation for the work presented in Chapters6 and7.

• Although linear interpolation of the matched balls gives reasonable results in our experiments, there is actually

little control over the intermediate shapes. Further investigation into transition control is likely needed for more

complex objects and applications.

• The CSA graph matching routine is computationally intensive (O(n2) in space,O(n3) in time, wheren is

the number of balls in one model). As shown by Martindale [101], using an alternate algorithm, such as that

found in the Library of Efficient Data types and Algorithms (LEDA), can have a significant positive impact on

efficiency.
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Chapter 5

Shape Model and Threshold Extraction

5.1 Motivation

The efficient extraction of shape features from raw data such as pixel or voxel values requires a representation that is

both stable and flexible. In this chapter, we present the results of an experiment in which we use VDMs to explore

and extract shape information from 2D greyscale images. From an image, our algorithm outputs the intensity range

spanned by each significant object as well as a VDM of the object. There are two main purposes for this experiment.

The first is to see if the VDM is a flexible enough representation to be used for shape extraction with noa priori

knowledge of the objects in the images. We use data that spans a wide range of shape complexity and topology. This is

in contrast to Ranjan’s experiments [129], which used largely similar shapes (e.g., fish, calf, cow, giraffe). Our second

primary goal is to perform an analysis of the stability and accuracy of the similarity measure for quantifying shape

differences.

The algorithm discussed in this chapter, originally presented in [154] with earlier results, is a largely automatic

method that is designed to reveal the strengths and limitations of the VDM representation and similarity measure. The

main idea of the method is to measure the differences in the shapes of objects in an image as we vary the intensity

threshold applied to the image. Anobjectin this case can be comprised of two or more spatially distinct components

of the same intensity range. For example, two kidneys in an image would be considered collectively as one object. The

novelty of this method is primarily in the use of theshape gradient, the amount of shape difference caused by a given

change in threshold value, to determine the occurrence of significant shape changeeventsin the given intensity range.

These events determine the thresholds that we should use for computing VDMs that represent objects of potential

interest to the user.
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Figure5.1 provides a motivating example that illustrates how the shape gradient method compares to the most

commonly used method for determining thresholds, histogram analysis (e.g., [111]). The ‘E’ on the left has an intensity

of 25, with the background having an intensity of 0.1 Because the boundary of the ‘E’ is sharp, the intensity histogram

for this image is very simple and finding thresholds for this object is trivial. In contrast, Figures5.1b and5.1c show

a blurred and noisy version of the ‘E’, respectively. The blurring is done with a Gaussian filter of radius 2.5, and the

noise has a double Gaussian distribution, with means at 0 and 25.

(a) (b) (c)

Figure 5.1: (a) Sharp ‘E’ (b) Blurred ‘E’ (c) Noisy ‘E’

Figure5.2 shows the histograms of the blurred and noisy images. Even though the images show essentially

the same shape, their histograms are very different, and it is not at all obvious what thresholds would best define the

object’s intensity range, especially if the blurring and noise characteristics are not known.
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Figure 5.2: (a) Intensity histogram for blurred ‘E’ (b) Intensity histogram for noisy ‘E’

1The pixel intensities of the three images in Figure5.1have been scaled and inverted to increase visibility for the reader.
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Figure5.3shows the graphs of how the shape gradient varies with intensity for the blurred and noisy ‘E’ images.

As explained in Section5.3.4, a minimum in a shape gradient plot marks the lower threshold of a significant object.

The plots in this case have obvious minima at 14 for the blurred ‘E’ and at 16 for the noisy ‘E’. These minima indicate

good lower thresholds to use for extracting shape models of the object.
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Figure 5.3: (a) Shape gradient plot for blurred ‘E’ (b) Shape gradient plot for noisy ‘E’

5.2 Related Work

The work presented here is related to many interesting papers dealing with shape modelling for feature extraction.

We list a few representative examples here. At the low end of the complexity spectrum are feature clustering tech-

niques that do not use a higher-level shape model. The idea is to first extract from the image some simple primitives,

most commonly edges, then connect them together to form representations of the objects in the image. Acharya and

Menon [1] and Xuet al. [170] discuss many examples in their reviews of segmentation methods. The advantage of

using only simple primitives is that they incorporate very few assumptions about the objects represented and are thus

very flexible. The most common problem with these techniques is instability. For example, edge-based approaches

depend strongly on the characteristics of the edge detector used.

The most popular and generally effective group of shape models used for feature extraction are deformable

models [102, 147]. Examples include energy minimizing snakes [75, 103] and 3D deformable surfaces [104, 158]. A

limitation of most of these techniques is that they have to impose smoothness constraints on the models, which limit

the types of objects that can be represented with any given set of parameters. On the other hand, these constraints can

57



sometimes help to stabilize the extraction process by bridging gaps or ignoring spurious edges. The main problem is

that if there is little or noa priori information about the image, such as in an exploratory application, it may be difficult

to estimate suitable parameter values.

Another group of shape models used for feature extraction are based on the medial axis representation ([28, 29]).

The most significant approach for using the medial axis for segmentation is by Pizeret al., who propose a shape model

that can be used for various applications in medical image processing [122]. As explained in Section2.1.1, Pizer’s

approach represents shapes using interconnected figures. One of the significant shortcomings of the Pizer model is

that the similarity measure only works with objects having the same number of figures and medial primitives, which

limits its flexibility.

5.3 Algorithm

This section describes the details of our algorithm for extracting shape models from images. The simple image shown

in Figure5.4a is used as an example to explain the processes involved. This image (150×150, 8 bits per pixel) contains

two objects, one having uniform intensity (100), the other having a linear intensity gradient (175− 225).
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Figure 5.4: (a) Simple test image (b) Overview of shape model extraction algorithm

As illustrated in Figure5.4b, the main steps of our algorithm are:

1. Generate boundary points.

i. Generate a height field from the image’s intensity data by mapping the value at each pixel to az-value.
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ii. Intersect the height field withn planesz = Ii, i = 1, . . . , n, whereIi is an intensity value. This results in

a set of boundary points for each ofn grey levels.

2. Calculate a VDM for each set of boundary points.

3. Simplify each VDM by clustering.

4. Calculate the shape gradient between successive levels using the 2D Ranjan-Fournier similarity measure.

5. Determine the thresholds of interest from the maxima and minima in the shape gradient data.

6. Use the VDMs from Step3 and the thresholds from Step5 to compute VDMs of the objects in the image.

5.3.1 Boundary Point Generation

Creating a height field from a greyscale image is relatively straightforward. All that is required is a mapping from

the intensity value at each pixel to az-value in the height field. The simplest case would be a linear mapping. The

points in the height field are then used as the boundary points of a volume that is bounded below by the image plane.

Figure5.5a shows the volume created from the example in Figure5.4a using a linear mapping. The resulting volume

(a) (b)

Figure 5.5: (a) Volume created from the test image in Figure5.4a (b) Boundary points created from intersecting the volume with a

z-plane

is then intersected withn different z-planes. The values used forz are{Ii, i = 1, . . . , n : Imin ≤ Ii ≤ Imax,

Ii+1 = Ii + Iincr}, whereImin andImax are the minimum and maximum intensity values of the image, andIincr is

the intensity increment from one level to the next. The intersection of each plane with the volume results in a set of

boundary points at that level. Figure5.5b shows the boundary points created by intersecting the test volume with the

planez = 50.
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5.3.2 VDM Generation and Simplification

The boundary points are then used to compute a VDM for each level, using the method described in Section3.1.

Figure5.6a shows the VDM generated from the boundary points in Figure5.5b. This model has 358 disks. After

(a) (b)

Figure 5.6: (a) VDM (358 disks) generated by intersecting the volume in Figure5.5a with the planez = 50 (b) Simplified version

of the model, with only 46 disks

each VDM is generated, it is simplified using the clustering method described in Section4.4.1. Figure5.6b shows a

simplified version of the VDM shown in Figure5.6a. The resulting VDM only has 46 disks.

5.3.3 Shape Gradient Computation

The next step in our algorithm is the computation of shape gradients between VDMs on successive levels. The shape

difference between two VDMs is computed by matching disks between the two models using the similarity measure

discussed in Section4.4.3. Figure5.7 shows three VDMs computed from the image in Figure5.4a at three different

levels.

(a) (b) (c)

Figure 5.7: VDMs computed from Figure5.4a at three intensity levels (a) 50 (b) 125 (c) 200
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An analysis of how the shape gradient changes as the threshold varies allows the user to determine the ranges of

intensity where one or more objects in the image are actively changing shape, as well as the ranges where the shapes

are relatively stable. A graph of gradient versus intensity, in which for each threshold valueIi the shape difference

between the VDMs atIi andIi+1 is plotted, allows the thresholds of interest to be determined easily. We refer to this

graph as thematched gradientplot.

In most cases, the number of disks does not remain constant across levels. Therefore, the matching process

can leave a number of disks unmatched at each level. A disk that exists at one level but “disappears” at the next

is considered to have shrunk in place to a radius of zero. A plot ofr̄ 2 versus intensity, wherēr 2 is the average of

the radii squared of unmatched disks at each level, may contain additional shape change information not captured by

the matched gradient plot. Thisunmatched gradientplot is especially useful in cases where one or more significant

objects in the image have (close to) uniform intensity, as these objects can disappear between successive levels with-

out affecting the matches in the other objects. An unmatched gradient plot would have very distinct spikes at such

intensities. Thus, even though for many real-world images, the matched gradient plot alone is sufficient for threshold

determination, the unmatched gradient plot is sometimes useful for providing complementary information.

Modification of the Similarity Measure

As mentioned in Section4.4.2, the Ranjan-Fournier similarity measure is not independent of scale, position, or orien-

tation. This can be problematic in certain situations, particularly where the prealignment procedure cannot be easily

done. Although we expect the similarity measure to perform well for the current application, because the image is not

moved or scaled between thresholds, we conjecture that modifying the similarity measure to be less dependent on the

given transformations may result in more accurate matches and subsequently greater stability.

The original shape distance between two disksa andb, as explained in Section4.4.3, is:

d(a,b) = wpdp(a, b)+wsds(a, b)+wfdf (a, b)

wheredp(a, b) = (xa−xb)2+(ya−yb)2 is the square of the Euclidean distance between the centres,ds(a, b) =
(ra − rb)2 is the square of the difference in radii,df (a, b) is the feature distance, and thew ’s are the weights

determined by the user. The feature distance is already independent of the given transformations, so we only need to

modifydp andds . In place ofdp andds , we suggest defining two new functions:

dp′(a, b) = (|x′a| − |x′b|)2+ (|y′a| − |y′b|)2

where(x′a,y′a) and(x′b,y′b) are the positions of the disk centres relative to the centres of mass of the respective

VDMs, and

ds′(a, b) = (r ′a − r ′b)2
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wherer ′a andr ′b are the radii of the disks divided by the square root of the areas of the respective VDMs. These

changes make the measure independent of translation and rotation, and reduces the dependence on scale (dp′ still

varies with scale). We discuss the results of applying this new measure to a challenging test case in the Results

section.

5.3.4 Shape Gradient Analysis

The following observations are useful when analyzing a matched gradient plot:

• Minima indicate relative stability in the shapes of objects as the threshold is varied.

• Maxima indicate shape change events. A sudden rise in the matched gradient occurs when the threshold reaches

a point where a small increase in intensity causes a significant object to breakdown and/or distort.

• From the above, we can conclude:

1. A minimum or the point at the beginning of a peak marks the lower threshold of a significant object.

2. The point immediately at the end of a local peak marks the upper threshold of a significant object.

• A wide peak indicates the object spans a relatively large intensity range; a sharp spike means the object spans a

narrow intensity range.

Figure5.8shows the shape gradient plot computed from the image in Figure5.4a. The matched gradient clearly

shows a significant object, in this case the rectangle, in the range 175≤ I ≤ 225. The unmatched gradient in this

range confirms the result. The matched gradient increases here because as the rectangle gets thinner, the decrease in

width becomes more significant relative to its size. The unmatched gradient decreases because the unmatched disks
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Figure 5.8: Shape gradient plot computed from the test image in Figure5.4a
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are getting smaller. The unmatched gradient also shows a peak atI = 100. This means there is an object of uniform

intensity, in this case the disk, at that level. The height of the peak indicates that the object is of significant size.

In this example, the maxima and minima are very obvious and distinct from each other. However, this is often

not the case with real images. This brings into question how we should decide which maxima and minima are to be

considered significant. These decisions currently require user input and are based on the level of detail at which the

user wishes to analyze the image. Applying a Gaussian filter to smooth out small maxima and minima in the plot to is

a helpful step.

5.3.5 Shape Model Generation

Having determined the upper and lower thresholds of a significant object, we can compute a shape model for that

object by using the VDMs generated during the gradient computation process. As demonstrated in the Results section,

for some applications it is best to simply use the VDM at the lower threshold as the object’s shape model. In other

cases, we take the lower threshold VDM, and remove from it any disks or parts of disks that would lie within the upper

threshold VDM if the two VDMs were superimposed. If the resulting VDM has partial disks in its boundary, it is

retriangulated to form a new VDM. The result is a VDM of the object in the appropriate intensity range.

5.4 Results

This section presents the results of applying our technique to two of the test cases used in our experiments. We

use a linear mapping for the height field and an increment of 1.0 between threshold levels for both examples. For

simplification, we have found that a sphericity of 0.96 works well for most of the images we have tested to date, which

include a wide variety of CT and MRI images. The three weightswp,ws , andwf in the cost function of the distance

measure are set to 1.0 for the shape gradient calculation.

The first test case, shown in Figure5.9a, is an MRI image of a human brain. This image has 128 grey levels. Fig-

ure5.9b shows the shape gradient plot computed from this image. Using the analysis method outlined in Section5.3.4,

we can clearly identify three significant intensity ranges. The first (20≤ I ≤ 40) is the range for the fluid surrounding

the brain and is of limited interest for shape analysis. The other two ranges, labelled R1 and R2 in Figure5.9b, are for

the whole brain and the grey matter inside the brain.

Figure5.10shows the two VDMs representing the shapes identified by our algorithm as being stable atI = 43

andI = 100. The unmatched gradient confirms shape stability at these intensities, which are the lower thresholds for

the whole brain and the grey matter inside. In this case, the VDMs for the upper thresholds are not used. The reason

we do not use the upper threshold for the whole brain is that the VDM atI = 43 is a good representation of the shape
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Figure 5.9: (a) Brain MRI image (b) Shape gradient plot computed from the brain MRI image

of the brain as a solid mass, and this is likely to be of more use in the analysis of the overall shape of the brain than the

same model with parts of its interior taken out. We do not need to use an upper threshold for the grey matter, because

R2 is at the top of the image’s intensity range. Therefore, we use the VDMs at the lower thresholds as the final shape

models for the two objects.

(a) (b)

Figure 5.10: VDMs computed from the brain MRI (Figure5.9a) at two levels (a) 43 (whole brain) (b) 100 (grey matter)

The second test case, shown in Figure5.11a, is a CT image of a person’s lower abdomen. This image has

128 grey levels. The most noticeable structures present are the liver, kidney, small intestine, and spine. This image

is a more challenging case than the brain MRI because it has multiple objects with overlapping intensity ranges. The
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Figure 5.11: (a) Lower abdomen CT image (b) Shape gradient plot computed from the lower abdomen CT image

matched gradient plot from this test case (Figure5.11b) shows instabilities not present in the brain MRI case. The

many smaller peaks and valleys are a symptom of the complex shape changes that occur in the image as the threshold

is varied, as well as a possible sign that the similarity measure has some instability resulting from mismatches.

In order to extract the most salient features from the shape gradient data, we apply a Gaussian filter to smooth

out the plot. The result, shown in Figure5.12, is a graph that reveals only the major shape change events. Dividing the

graph using the minima results in four intensity ranges. The first (5≤ I ≤ 30) corresponds to the fluid and soft tissue

surrounding the organs. The second (31≤ I ≤ 51) corresponds to the liver. The third (52≤ I ≤ 76) is associated
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Figure 5.12: Gaussian smoothed version of the shape gradient plot in Figure5.11b
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with the small intestine, and the last (77≤ I ≤ 109) is the intensity range for the kidney. Figure5.12shows the CT

image with each of the four sets of upper and lower thresholds applied. Again, the algorithm has resulted in effective

thresholds for the significant objects in the image. However, there is not a distinguishable maximum for the spine,

which points out a weakness of the method. The intensity range of the spine overlaps with those of the liver and small

intestine, and because the spine is significantly smaller than the other two structures, it is essentially lost. This kind of

problem is common to all algorithms using global thresholds.

Figure 5.13 shows the extracted shape models of the liver, kidney, and small intestine computed using their

respective upper and lower thresholds, with some manual removal of disks not connected with the objects. Visually

speaking, these VDMs are accurate shape representations of the objects in the image.

(a)
(b) (c)

Figure 5.13: VDMs extracted from the abdomen CT image (a) liver (b) kidney (c) small intestine

For this test case, we also compute the gradients using our modified similarity measure defined in Section5.3.3.

Figure5.14shows the unfiltered shape gradient plot. Compared to the gradient plot in Figure5.11b, this graph suggests

that the new similarity measure is more stable while being able to identify the same thresholds within a tolerance of±1.

While the difference between the two results is not dramatic, it is significant enough to warrant further investigation.
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Figure 5.14: Shape gradient plot computed from the abdomen CT image using our modified similarity measure
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5.5 Summary

We have presented a novel method for exploring shape information in a greyscale image. Our algorithm uses the shape

gradient to effectively extract thresholds and shape models of significant objects. The VDM representation is used to

compute the gradient and represent the extracted shapes. We presented the test results of applying our algorithm to

artificial and real-world images.

5.6 Observations

• The extracted thresholds and VDMs are qualitatively accurate representations of the shape data present in the

test images, which indicates that the similarity measure is forming appropriate correspondences.

• The evidence suggests that our modifications to make the similarity measure less dependent on translation,

rotation, and scaling can further improve the reliability of the shape distance function.

• The flexibility of the VDM and similarity measure are strong advantages in an exploratory application such as

this one. The shapes in our test images undergo many changes in complexity and topology as the threshold is

varied, but the VDMs of the objects are still easily computed at each level without manual intervention, and the

similarity measure is still able to output reasonable results.

• Mismatches in the number of primitives between VDMs being compared can be a significant source of infor-

mation that can be used as an independent measure to augment the data in the matches. Perhaps the information

from the matched and unmatched disks can be incorporated into a single measure.

• While the extracted VDMs appear to be reasonably accurate representations of the objects, further processing

is likely needed for certain applications. For example, for segmentation purposes a method for computing a

polygonal or spline-based boundary from a VDM would be useful. This is partly the motivation for the work

presented in Chapter8.
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Chapter 6

Two-Dimensional Shape Simplification

6.1 Motivation

In the work presented in this chapter and the next, we investigate how the medial axis and the VBM can be used

together effectively. The goal is to enhance medial axis and VBM applications by taking advantage of the desirable

and complementary properties of both representations. As mentioned in Section2.1.1, the medial axis transform

(MAT) is a shape model that represents an object by the set of maximal balls that are completely contained within

the object. For a continuous object this set is infinite. The medial axis consists of the centres of the balls, and can be

intuitively thought of as the skeleton of the object. Skeletal representations have numerous applications in visualization

(e.g., [109, 120, 122, 151]), computer graphics (e.g., [26, 57, 169]), and computer vision (e.g., [112, 145]). One of

the main reasons the medial axis is considered an attractive model is that it is a visually intuitive representation, as

evidenced by some studies on human shape perception (e.g., [35, 36, 87]). Another strength of the medial axis is

that it forms a concise representation of the object’s topology, a shape property that is considered important for many

applications such as path planning and molecular modelling.

One of the primary drawbacks of the medial axis is that it is very sensitive to minor perturbations of the object’s

boundary, such as that caused by discretization, segmentation errors, image noise, and so forth. The goal of most

medial axispruningtechniques is the removal of branches associated with these artifacts, typically resulting in a much

cleaner and more usable medial axis. This chapter discusses a technique, originally presented in [155], for 2D medial

axis pruning. This application is an example of how the VDM and medial axis can be used to mutually enhance the

other’s stability. We use the shape information in the VDM to prune the medial axis, and in turn use the structure of the

medial axis to determine which disks should be preserved in order to maintain the topology of the object. The method

introduced uses a VDM of an object to compute the medial axis, and defines a shape-basedsignificance measure
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based on the VDM to remove the branches generated by noise or other artifacts on the object’s boundary without

losing the fine features that are often altered or destroyed by other current pruning methods. The algorithm consists

of an intuitive threshold-based pruning process, followed by an automatic feature reconstruction phase that effectively

recovers lost details without reintroducing noise. The result is a technique that is robust and easy to use. Our tests

show that the method works well on a variety of objects with significant differences in shape complexity, topology,

and noise characteristics.

6.2 Background

Most current medial axis pruning algorithms suffer from the problem that when excess branches are removed, other

branches that correspond to fine but perceptually significant features of the object are excessively shortened. This is

primarily due to the fact that most pruning methods use a global significance measure (e.g., feature size or frequency)

to discern between data and noise. Unfortunately, for most measures there is a significant overlap between what is

considered noise and data, and when the noise is removed some data is taken with it. Figure6.1 provides a simple,

motivating example. The unprocessed medial axis (Figure6.1b) has many spurious branches, largely because of

discretization artifacts. Figure6.1c shows the typical result of pruning with a global threshold. In this case the

significance measure is noise size. The result is that all of the branches associated with noise are gone, but the

remaining branches are also shortened, causing the tip of the pencil to become rounded (Figure6.1d).

(a) (b) (c) (d)

Figure 6.1: Pencil (a) Original object (b) Original axis (c) Typical pruned axis (d) Object reconstructed from typical pruned axis

So far, proposed solutions to address this issue have proven inadequate. Attempts to overcome the noise/data

overlap problem by developing more complicated global measures frequently result in a fuzzy relationship between

parameter values and how they correspond to changes in object features, thereby making the estimation of an appropri-

ate threshold more difficult. Another general approach is to recover lost details byunpruningthe remaining branches

after the noisy branches are removed. Current algorithms using this approach typically do not work well because they

depend on a global threshold for the unpruning process as well, thereby subjecting it to the same overlap problem.

In this chapter, we summarize a novel approach for medial axis denoising that removes unwanted artifacts while

preserving fine features, such as sharp corners and thin limbs. Our method first prunes the axis by using an intuitive
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global threshold based on noise size, thenautomatically reconstructsthe fine features by extending the remaining

branches. The use of a simple pruning method based on a physically meaningful parameter followed by an effective

feature reconstruction process makes the technique robust and easy to use. The user can determine an appropriate

threshold simply by estimating the size of the noise to be removed and in most cases, rough estimates are adequate

because the reconstruction process can automatically correct many errors caused by overly aggressive pruning.

Our feature reconstruction algorithm extends each branch by using local shape information defined on the VDM

and does not depend on a global threshold. This process localizes the discernment between data and noise to the

feature level which significantly reduces the overlap problem. As demonstrated in our results, this localization allows

each branch to be extended to an appropriate length and in the correct direction so that each feature is reconstructed

accurately without reintroducing noise. For example, Figure6.2a shows the medial axis of the pencil after processing

with our algorithm; the noise is gone and the tip of the pencil is still sharp.

(a) (b)

Figure 6.2: Pencil (a) Medial axis processed by our denoising algorithm (b) Our reconstructed object

Although simple in its design, we can show that our technique works well for removing artifacts of various sizes

and characteristics from objects of arbitrary shape complexity and topology. We have tested our algorithm on a wide

variety of data, a number of examples of which are included in this chapter to demonstrate the effectiveness of our

method.

6.3 Related Work

Our method for the construction of the medial axis is one of a number of algorithms that use the Voronoi diagram of

a set of sample points regularly spaced along the object’s boundary to form a discrete approximation of the skeleton.

The main idea of such algorithms, examples of which include [13, 31, 114], is to first compute the Voronoi diagram

of the points, then extract a subgraph to form the skeleton. For example, the subgraph can be extracted by taking only

the Voronoi vertices that are inside the boundary of the object.

Given a model or an image of an object, there are two main approaches for producing a clean medial axis. The

first approach performs some form of preprocessing on the image or model before computation of the medial axis.

Such preprocessing usually consists of blurring (e.g., [124]) or boundary smoothing (e.g., [107]) of the original object
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to reduce spurious branches. Blurring and smoothing techniques can result in undesirable structural changes to the

medial axis [113, 140]. In addition, these operations typically use a global scale measure (e.g., size of smoothing

kernel) to filter out noise, and smaller object features are often altered or destroyed during preprocessing.

The other main approach is to start with the complete axis and prune the branches using some heuristic (e.g., [16,

31]). The general idea is to have a significance measure that assigns an importance value to each branch. During

pruning, this value is compared to a user-given threshold to determine how much of each branch gets cut. With an

ideal significance measure and threshold, only the parts of the axis associated with noise would be removed, and the

rest of the axis would remain unaltered. However, for currently available measures there is usually an overlap between

data and noise; a threshold value that completely removes the branches associated with noise will usually shorten

the remaining branches as well, often to an undesirable degree. Thus, finding a good threshold value often requires

striking a delicate balance between noise removal and feature preservation. In addition, the complexity of some

measures makes them seem ad hoc and adds to the difficulty of finding an appropriate threshold. In some cases, even

multiple parameters are required (e.g., [14]). To overcome the difficulties in estimating parameter values, a completely

automatic method for threshold selection is proposed in [112, 113]. The method is able to determine an appropriate

value for many shapes, but there are instances in which the algorithm strongly oversegments the shape, resulting

in large missing features. Figures6.3a and6.3b, generated with the algorithm from [113], show two examples. In

Figure6.3a, the stem of the leaf is missing from the axis; in Figure6.3b, two of the goat’s legs are among the larger

features not represented.

(a) (b)

Figure 6.3: Examples of medial axis pruning using Ogniewicz’s algorithm, showing large missing features (a) Leaf (b) Goat

A number of researchers have proposed methods that utilize a postprocess to recover small details destroyed by

pruning. Such methods add an unpruning process that extends the branches that remain (e.g., [112, 140]). The typical
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approach is to use the same significance measure as used for pruning and simply apply a different threshold to extend

the branches. This approach forces the user to select two thresholds, and still the problem of overlap between data

and noise is not solved. This frequently results in some branches being overextended (i.e., noise is reintroduced) while

others are still too short.

Our algorithm is designed to address the problems described above, and consists of the following two main

processes:

1. A threshold-based pruning technique with a single parameter and a simple significance measure that gives the

user intuitive control.

2. An automatic feature reconstruction process that extends each branch using local shape information and does

not depend on a global threshold.

The result is an algorithm that gives the user the freedom to select a threshold that completely removes all noise while

providing a reliable feature reconstruction process that brings back the right amount of detail at each branch. This

technique gives the user some control, so that large features are not accidentally removed, but hides the more complex

data/noise discernment algorithm inside an automatic process so that the user is not burdened with a complicated

significance measure.

It should be noted that some pruning methods, such as [112], are hierarchical in nature and can produce results

at multiple levels of detail. Thus, at coarser levels, the loss of fine features is considered acceptable, even appropriate.

In contrast, our algorithm is designed to remove artifacts of a given size, while preserving as much detail in the rest of

the object as possible. However, at finer levels of detail, the goals of the algorithms are essentially the same.

6.4 Algorithm

Given the boundary points of an object, the main steps of our algorithm for medial axis noise removal are as follows:

1. Construct the medial axis from the boundary points (Figures6.4a-c).

2. Prune the spurious branches (Figure6.4d) by using a user-determined global threshold.

3. Extend the remaining branches to recover small details (Figure6.4e) by using a local measure of shape smooth-

ness to distinguish between data and noise.

4. Reconstruct the object with the clean medial axis (Figure6.4f).
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(a) (b) (c) (d) (e) (f)

Figure 6.4: Maple leaf example (a) Delaunay triangulation (b) VDM (c) Original medial axis (d) Pruned medial axis (e) Pruned

medial axis with details recovered (f) Denoised shape

6.4.1 Medial Axis Construction

Like most Voronoi-based methods for medial axis construction, our method assumes that the sample points are spaced

with sufficient density along the boundary of the object. Our method for the computation of the medial axis from a

boundary point set consists of these two main steps:

1. Compute the set of Voronoi disks that are inside the object (Figures6.4a-b), as described in Section3.1.

2. Construct the medial axis by connecting the centres of the disks (Figure6.4c).

We represent the medial axis as a directed graph1 whose root node is the centre of the largest disk in the VDM.

Construction of the graph begins by creating a line segment (called anaxial segment) between the root node and each

of its neighbours (two disks areneighboursif their corresponding triangles share an edge). The root node is theparent

node and the neighbours arechild nodes. This process is then repeated with the neighbours as parent nodes until all

disks in the VDM are linked. The result is a medial axis that can be traversed recursively by starting at the largest

disk and following the child nodes until they reach the boundary of the object. With this construction method, each

node in the axis has a corresponding disk in the VDM, which in turn has a corresponding triangle in the Delaunay

triangulation. We refer to a node that has no children as anend node. A node that has more than one child is called a

branch node. A branchis defined as any chain of nodes that has a single branch node, located at the beginning, and

an end node at the end.
1For objects of genus zero, the graph is naturally a tree. For objects with holes, we break each cycle by imposing an appropriate breakpoint in

the loop. This is only for the purposes of traversing the graph without running into infinite loops. In order to preserve the topology of the original

object, cycles are never pruned.
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6.4.2 Area-Based Pruning

The purpose of the pruning process is to remove parts of the medial axis that are associated with noise on the object’s

boundary. A significance measure is needed for determining whether a feature of the object should be considered as

noise. In the context of pruning, a feature can be defined as the set of triangles associated with any subtree of the

axis graph. Our significance measure assigns an importance value to a feature based on the surface area it covers. An

example is shown in Figure6.5a, which shows a part of the maple leaf from Figure6.4. In this figure, the shaded

(a) (b)

Figure 6.5: Area-based pruning (a) Original axis (b) Pruned axis

regions are the features that are smaller in area than the user-given significance threshold. The significance value of a

feature can be determined by summing the areas of all triangles in the subtree associated with that feature. Any subtree

that has a value below the threshold is pruned. Each feature can be seen as beingsupportedby the branches of the

subtree, so when the subtree is pruned, the feature is eliminated.

This significance measure has the following two main advantages:

• The pruning is guaranteed not to disconnect the graph, because a parent always has a higher significance value

than its child.

• Area is a simple and intuitive significance measure and an appropriate threshold can be estimated via a typically

straightforward analysis of the data acquisition method. Even when knowledge of the acquisition method is

insufficient, a suitable value can be found by visual inspection of the data more easily than most heuristics-

based measures that have a less direct physical meaning.

The result of the pruning process is that all noise below the threshold size is eliminated. With an appropriate

threshold, the only branches that remain are associated with significant features of the object. As mentioned, a side

effect of pruning with a fixed global threshold is that the remaining branches are typically shorter than they should be

and fine but important details are often lost.
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Noise Model and Threshold Selection

Like practically all medial axis pruning methods, our noise model focuses on artifacts in the form of relatively small

protrusions from a larger body. Pruning techniques are the most effective when applied to this type of noise, called

additive noise, because they work by removing and shortening branches. A common example of additive noise are the

artifacts originating from the dark current in CCD cameras. We define two conditions that must be satisfied in order

for a feature to be classified as noise:

1. The size of the feature is smaller than the user-determined threshold. This is the condition used in the pruning

phase.

2. The feature is notsmoothly connectedto the rest of the object. The transition into a protrusion is considered

smooth if the abruptness of the narrowing does not exceed the changes in width in the parts of the object leading

up to the feature. This condition is used in the feature reconstruction phase and is defined more precisely in the

next section.

To select an appropriate threshold for pruning, consideration must be given to the data and application at hand.

If the noise characteristics are known, an estimate of the artifact size can be made, and selection of the threshold is

relatively simple. Otherwise, the value can be set by visual inspection of the data. Our implementation is such that the

threshold can be set as an absolute size or as a percentage of the total area of the object. In most of our examples, the

value is determined interactively. The feature reconstruction process, as described in the next section, is robust enough

to allow a fairly imprecise threshold selection, and a range of appropriate values exists for most objects.

The most important guiding principle in selecting an appropriate threshold is to ensure that each significant

protrusion in the object has a single supporting branch. The reason for this is best described by Leyton’s Symmetry-

Curvature Duality Theorem [87]:

Theorem 6.1 (Symmetry-Curvature Duality) Any section of curve, that has one and only one curvature extremum,

has one and only one symmetry axis. This axis is forced to terminate at the extremum itself.

Figure6.5b shows an example of how each significant feature is supported by a single branch. The result of pruning

should be that each significant extremum in the border has a single remaining branch.

6.4.3 Feature Reconstruction

The purpose of the feature reconstruction process is to recover significant parts of the object that have been pruned

because they fall below the size threshold. For example, Figure6.6 shows part of the maple leaf before and after

reconstruction. The shaded areas show features that would be removed. The axis in Figure6.6b clearly represents the
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(a) (b)

Figure 6.6: Feature reconstruction (a) Before reconstruction (b) After reconstruction

shape of the object better than the axis in Figure6.6a.

Our reconstruction algorithm works on one branch at a time, and its main idea is to use the shape information

present in the remaining branches and disks to calculate local smoothness constraints that determine how far each

branch can be extended to recover fine features without reintroducing noise. In this scheme, what is classified as noise

varies from branch to branch. Figure6.7shows an example in which the branch in one feature (B) is extended further

than in another (A), even though the tips of the features have the same angle and both branches reach the boundary in

the original axis. In this case, the small sharp point in Feature A is regarded as noise because it falls below the size

threshold and violates the local smoothness constraints.

The measure of smoothness that we use is termed theaxial gradient, which measures the change in the width of

the object per unit length of the axis. Each axial segment has an axial gradient value that is mathematically defined as

the signed difference in radius between the child disk and the parent disk, divided by the Euclidean distance between

the two nodes (Figure6.8). Note that this definition is similar to the gradient used in the feature distance of the

similarity measure described in (Section4.4.3), with the main difference being that the direction of the axial gradient

is determined by the medial axis, rather than the three largest neighbouring disks.

Original


A
 B


Pruned


A
 B


Reconstructed


A
 B
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A


Final Shapes


Figure 6.7: Effect of smoothness constraints on feature reconstruction
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Figure 6.8: Axial gradient between two nodes (g= r2−r1
d )

The reconstruction algorithm works by starting at the root node and following the axis until it reaches the current

end node of the branch in question, while keeping track of the greatest absolute axial gradient value (|gmax|) encoun-

tered along the path. This value is used to determine how far the branch can be extended. The reasoning is that if a

feature at the end of the branch is below the threshold size and is marked by a narrowing that is more abrupt than any

other change in width along the path, then the feature is most likely noise. Because|gmax| is calculated individually

for each branch, the data/noise overlap problem associated with global thresholds is significantly reduced.

When calculating|gmax| along a path, special consideration must be given to branch nodes, because the degree of

continuityof a feature across a branch node depends strongly on the branching angles at these nodes. Figure6.9shows

an example in which one feature (B) has stronger continuity across a branch node than another (A). In this case, the

shape information along the path before the branch node is more relevant to Branch B than Branch A. For any given

path, the branching angle at a branch node is a good indicator of how much of the maximum gradient encountered

before the node should be “carried over” past the branch node. Intuitively, an angle of 0 degrees (maximum continuity)

should impose no change to the maximum gradient, whereas an angle of 90 degrees or greater (no continuity) should

α

β|gmax|

A

B

Figure 6.9: Axial gradient at a branch node (becauseβ is smaller thanα, |gmax| is more relevant to Branch B than Branch A)
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cause|gmax| to become 0 at the branch node. For an angle between 0 and 90, we use this formula:

gmax(θ) = |gmax| ×
90− θ

90

where|gmax| is maximum axial gradient before the branch node andgmax(θ) is the maximum axial gradient at the

branch node for the segment with angleθ.

Once|gmax| for a given path has been calculated, the next step is to extend the branch at the end of the path. Two

main issues need to be considered at this point. First, if there is more than one direction for possible extension (i.e., the

current end node is a branch node in the original axis), a decision needs to be made to determine which segment to

follow. The second issue is how far to extend the branch.

The first issue is addressed in consideration of the second part of Leyton’s theorem, which says that the symmetry

axis of a feature should terminate at the extremum of that feature. Given that the objects we are considering have many

minor extrema due to noise, we need to distinguish these from the extrema associated with significant features. Again,

we use the axial gradient for this purpose. If there is more than one path for possible extension, the segment with

the lowest axial gradient is chosen. This method is essentially a greedy algorithm for finding the smoothest path. As

shown in the Results section, this gives a high likelihood of reaching the correct extremum. Figure6.10illustrates an

example.

Pruned Reconstructed

Original

New

Figure 6.10: Branch extension (at each branch node, the segment with the lowest axial gradient is chosen, which extends the branch

toward the appropriate extremum)

The second issue of how far to extend the branch is addressed by comparing the absolute value of the axial

gradient of the chosen candidate segment (|gcand|) with the |gmax| of the branch. If|gcand| ≤ |gmax|, the segment is

added to the end of the branch. Note that because our noise model defines noise as smaller protrusions from a larger

body, a feature can be classified as noise only ifgcand< 0. Segments are added untilgcand< 0 and|gcand| > |gmax|, or

there are no more candidate segments.
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As demonstrated by the examples in the Results section, our branch extension algorithm is very effective in

automatically reconstructing features to their appropriate degree of sharpness without reintroducing noise.

6.4.4 Shape Reconstruction

An advantage to using the VDM method for medial axis construction is that there is a one-to-one correspondence

between the nodes of the axis and the set of disks. For densely sampled models, we can simply take the VDM

associated with the new axis to reveal the final object shape after pruning and feature reconstruction. For more sparsely

sampled cases, a boundary reconstruction step may be desirable.

6.5 Results

We have tested our algorithm on many objects with various amounts of noise. Our data sources include map data,

medical images, aerial photographs, and specially designed test models. In this section, a number of examples are

used to illustrate the effectiveness of our method. Some of the current limitations of our algorithm are also discussed.

The examples include four synthetic objects and one object from an MRI image. The characteristics of the objects are

shown in Table6.1. All thresholds(t) are specified as a percentage of the total area of the original object.

Object Figure Dimensions Threshold(t)

Leaf 6.11 479× 462 0.3%

Goat 6.12 254× 344 0.4%

Lizard 6.13 443× 446 2.0%

Brain 6.14 255× 293 0.1%

Rectangle 6.15 339× 238 2.0%

Table 6.1: Characteristics of our test objects

Figures6.11(Leaf) and6.12(Goat) are good examples of how the algorithm can reconstruct fine features after

removing unwanted artifacts. In the Leaf, the small variations along the border are removed, resulting in a much

smoother shape. However, the fine features such the tips of the leaflets and the thin stem are nicely reconstructed. This

example can be compared to the result by Ogniewicz in Figure6.3a, where the stem is missing completely. The Goat

shows how the branch extension method can use local shape information to reconstruct features to differing degrees of

sharpness where appropriate. For the sharper features, such as the horns, goatee, and legs, the branches are extended

to the tips. For the more rounded features, such as the mouth, chest, belly, and tail, the branches are extended enough

to fully reconstruct the features, but not so far as to reintroduce noise.
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(a) (b) (c) (d)

Figure 6.11: Leaf (479× 462,t = 0.3%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape with original

boundary superimposed

(a) (b) (c) (d)

Figure 6.12: Goat (254× 344,t = 0.4%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape

(a) (b) (c) (d)

Figure 6.13: Lizard (443×446,t = 2.0%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape with original

boundary superimposed
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Figure6.13(Lizard) is an example where the “noise” artifacts are quite large. Our algorithm still results in a

nicely simplified shape in this case. In the head and the four legs, the reconstructed branches do not extend into any

of the spurious spikes along the border. The shape of the tail causes its supporting branch to be extended to the tip. It

is somewhat debatable whether the spike at the end should be considered as a significant feature or noise, but in this

case its inclusion seems appropriate.

Figure6.14(Brain) shows an object from an MRI image. The noise in this case is a combination of image noise,

segmentation errors, and discretization artifacts. The shape of this object is significantly more complex than in the

other examples. This object is also of a different topology in that it has two holes. Our algorithm is able to effectively

remove the various types of noise from all areas of the object.

(a) (b) (c) (d)

Figure 6.14: Brain (255× 293,t = 0.1%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape

Figure6.15(Rectangle) is an example of an object that has a heterogeneous distribution of noise. In this case,

the left side of the rectangle is very noisy, whereas the right side is clean. Again, the reconstruction algorithm is able

to perform well, extending branches to their appropriate lengths so that the corners on the right side are sharp, while

the artifacts on the left side are removed.

(a) (b) (c) (d)

Figure 6.15: Rectangle (339× 238,t = 2.0%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape with

original boundary superimposed
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6.5.1 Limitations

Our use of the maximum axial gradient as a local smoothness constraint inherently assumes that the axial gradient

does not vary greatly within a single feature, at least not relative to the gradient of any noise at the end of the branch.

Although such variations are not encountered frequently, they certainly can exist. Figure6.16shows an example of

such a situation. In this case, a thinneck, or local narrowing, in the object causes the branches in the noisy square to

be overextended into the corners. A possible solution to this problem is to impose a limit on the length of the path

used for computing the maximum gradient. For example, instead of only having one root node from which to start,

we can break the graph down into subgraphs using features such as necks to do the division. Although theoretically

straightforward, this has not been implemented at the time of writing of this document.

(a) (b) (c)

Figure 6.16: Narrow neck example (a) Original axis (b) Pruned axis (c) Axis after feature reconstruction, with the branches

extended too far

The branch extension algorithm may not work well in the case of a very short branch with a large branching angle,

because there would be very few axial segments and, therefore, a very limited amount of local shape information with

which to calculate an appropriate maximum axial gradient. Increasing the sampling density of the boundary points

may be a possible solution.

Although our tests show it to be largely effective, the greedy algorithm for finding the smoothest path for branch

extension is notguaranteedto reach the correct extremum. A solution would be to search further into the tree before

making a path selection.

6.6 Summary

We have presented a novel algorithm for 2D noise removal using the VDM and medial axis. Our algorithm consists

of a threshold-based pruning method that uses a simple significance measure, followed by an automatic feature re-

construction process that extends the remaining branches to recover fine features without reintroducing noise. We
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demonstrated the effectiveness of the method with a number of examples varying in shape complexity.

6.7 Observations

• The 2D medial axis can be used effectively to preserve the topology of a VDM during simplification and other

processing.

• The branching angles of the 2D medial axis can be used effectively to determine the degree of continuity of an

object’s features. This can be seen as a method for the “partial partitioning” of a VDM.

• Adding the 2D medial axis makes the visual discernment between noise and data easier to perform, compared

to using only the VDM.

• The 2D medial axis and the VDM can be used effectively in combination.
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Chapter 7

Three-Dimensional Shape Simplification

7.1 Motivation

The work in the last chapter investigates how the 2D medial axis and the VDM can be used in combination. In this

chapter, the study is extended to 3D. Again, the goal is to use the medial axis and the VBM in a complementary

manner. It has been documented that the construction of the 3D medial axis is much more stable when using an

approximating union of balls as an intermediate representation, rather than building the axis directly from the boundary

of the object [15]. In turn, as discussed in Section3.1.2, convergence of the ball centres to the medial axis is a useful

criterion for computing a VBM that has a relatively small number of balls while attaining an accurate approximation.

We take advantage of this mutually beneficial relationship in our application.

In addition, we explore how the medial axis can be used to preserve the topology of a VBM during processing.

As shown in Section7.5.3, this goal is considerably more difficult than in 2D. Also, we experiment with using the

medial axis to partition a VBM, a concept also explored in the 2D case. In this algorithm, the medial axis is explicitly

broken up into components before further processing.

In this chapter, we discuss a method, originally presented in [156], for simplifying the shape of 3D objects by

manipulating a VBM that approximates the medial axis transform (MAT). From an unorganized set of boundary points,

our algorithm computes the VBM and the medial axis, decomposes the axis and VBM into parts, then selectively

removes a subset of these parts in order to reduce the complexity of the overall shape. The result is a simplified medial

axis and VBM that can be used for a variety of shape operations. In addition, a polygonal surface of the resulting

shape can be directly generated from the filtered VBM using a robust surface reconstruction method. The algorithm

presented is shown to have a number of advantages over other existing approaches.
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7.2 Background

Motivated by the usefulness of the medial axis and its unfortunate sensitivity to boundary noise and other artifacts,

manyregularizationmethods have been proposed to filter out the spurious components. Some of these methods also

aim to preserve the topology of the axis during the pruning process. As shown in Chapter6, the preservation of

topology during processing of the 2D medial axis is relatively easy to achieve because the axis is one-dimensional and

structurally hierarchical, thereby providing a natural processing sequence when progressing from the outer branches

toward the inside. In addition, any cycles in the axis indicate the presence of real loops in the shape of the object

and can be easily preserved. As a result, a number of very effective algorithms exist, and the problem is more or less

considered solved. In 3D, the situation is more complicated. The relationship between components of the medial axis

is much more complex. There are many cycles that do not represent loops in the object. There is no natural processing

order and there are usually many different deletion sequences possible. In addition, there is often a mutual dependency

between skeletal components where the removal of one component can change the topological relationship between

others. The result is that the simplification algorithm must impose a processing order and perform explicit topology

checks as components are removed. A number of regularization schemes have been proposed (e.g., [7, 15, 46, 109]),

each with their own advantages and limitations.

We present an algorithm that has a number of advantages over other existing approaches. Our parts-based ap-

proach, described in Section7.5, allows the medial axis to be simplified to a much greater degree without certain

undesirable effects such as the disintegration caused by some methods that operate on lower order primitives. This

makes the approach suitable for a variety of applications ranging from noise removal to manual modelling. In ad-

dition, we can use the connectivity of the parts to efficiently preserve the topology of the axis during simplification,

a goal unmet by most other 3D medial axis techniques. Also, our method allows the user to control the degree of

simplification using simple, visually intuitive parameters. Finally, we have designed our algorithm to fit very well into

an existing surface reconstruction framework, so that the filtered VBM can be used directly to generate an accurate

polygonal representation. The reconstruction algorithm, called thepower crust([7]), uses an approximate MAT to

compute an interpolating surface from boundary point samples.

It is important to note that the goals of our algorithm differ significantly from the manymesh simplification

algorithms (see [65, 96] for examples) whose primary aim is to minimize the number of polygons in a model given

certain constraints such as storage size and image resolution. Such algorithms do not necessarily simplify the shape of

the object. In contrast, our algorithm focuses on the reduction of shape features in the object by removing parts of the

underlying shape model (i.e., the VBM). The primary goal of our work is to produce afeature-basedsimplification

algorithm that does not adversely affect the integrity of the remaining components.

85



7.3 Related Work

As in the 2D case, many researchers use the Voronoi diagram (and/or the dual Delaunay tetrahedralization) of a

set of sample points on the object’s boundary to approximate the medial axis. This method is suitable for many

applications as sample points are typically readily available (e.g., laser scans) or easily derived. Our algorithm follows

this approach. Other methods for computing the medial axis include volume thinning (e.g., [55]) and wave propagation

(e.g., [86]).

There are only a few methods for 3D medial axis regularization that preserve the topology of the object. Because

of the lack of a hierarchical structure, apeelingapproach is usually employed in which the outermost components

are removed one layer at a time. Two of the most notable techniques are by Attali and Montanvert [15] and N̈af et

al. [109]. Both of these methods begin with the entire set of interior Delaunay tetrahedra, and delete them one layer at

a time according to some criteria for maintaining topological consistency. The main problem with such an approach

is that unlike in 2D, the Voronoi vertices (circumcentres of the tetrahedra) in 3D donot converge to the medial axis as

the sampling density approaches infinity [8]. Therefore, regardless of sampling density, there are many tetrahedra that

are not even close to the medial axis that are being used for enforcing topological constraints. This can often hinder

the regularization process.

A number of recent approaches are designed to guarantee convergence. For example, Dey and Zhao [46] have

a method for computing approximations that converge to the medial axis by applying certain filter conditions to the

Voronoi diagram. These filters are also used to eliminate noisy components. The strongest advantage of their technique

is that the filter parameters are independent of scale and density. Another approach is by Foskeyet al.[52], who present

an efficient method for computing a simplified medial axis using a spatial subdivision scheme and graphics hardware.

The primary advantage of their approach is speed. The greatest drawback of most of these techniques is that topology

is ignored, and in many cases a disintegration effect is seen in which holes appear in the axis (e.g., Figure7.1).

Such errors are particularly prevalent when simplification is being aggressively applied. In addition to being visually

distracting, these artifacts make subsequent use of the axis more difficult.

Fandisk Medial Axis

(Dey and Zhao)

Fandisk Medial Axis

(Our Algorithm)

Figure 7.1: Example of the holes that are prevented by our algorithm
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As described in Section3.1.2, Amentaet al. propose an approach that utilizes a relatively small subset of the

Voronoi vertices called the poles [8]. They have proven that the inner poles converge to the interior medial axis.

Amentaet al. use the power diagram of the poles (using the polar ball radii as weights) to compute an approximate

medial axis, called thepower shape[7]. The power shape method is robust and gives visually reasonable results.

Unfortunately, for most objects the power shape is largely composed of very flat tetrahedra instead of 2D faces, and

this geometry complicates tasks such as parts decomposition. In addition, their proposed method of simplification can

result in an approximation that can diverge quite dramatically from the true medial axis as the level of detail decreases.

Amenta and Kolluri use the power shape to produce a more accurate axis composed only of 2D components [10].

Our experimentation with this algorithm reveals that it produces many duplicate vertices, causing cracks in the result-

ing medial surface. This again makes the axis difficult to work with. Our algorithm for computing the medial axis

builds on the work by Amenta and Kolluri. We make improvements to eliminate the degeneracies and add a simplifica-

tion method that preserves topology. We choose to work with Amenta and Kolluri’s method because of its convergence

guarantees and because of the existence of the power crust algorithm, which can take a set of filtered polar balls and

reconstruct a polygonal surface. Figure7.2shows how our algorithm complements the power crust pipeline.

Boundary

Points

Voronoi

Poles/VBM

Power

Diagram

Reconstructed

Surface

Medial

Axis

Simplified

Axis

Simplified

VBM

Our Simplification

Algorithm

Power Crust 

Algorithm

Figure 7.2: Processing pipeline for 3D shape simplification and surface reconstruction

7.3.1 Summary of Amenta and Kolluri’s Algorithm

As mentioned above, our method for computing the medial axis builds on the work by Amenta and Kolluri. We briefly

summarize their algorithm here. As shown in Figure7.2, Amenta and Kolluri’s algorithm computes the medial axis

from the power diagram of the Voronoi poles. This computation can be broken down into several steps, as shown in

Figure7.3:
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1. The power shape of the object, a subcomplex of the dual of the power diagram, is computed by keeping only

those simplices whose vertices are all inner poles.

2. For each regular triangle in the power shape, asingular pointis computed. The three polar balls centred at the

vertices of the triangle form two intersection points. One of these points lies on the surface of the union of polar

balls, and the other lies in the interior. The surface point is the singular point.

3. A Voronoi diagram of the singular points is computed. The subcomplex of the Voronoi diagram that intersects

the power shape is computed as the medial axis.

Medial

Axis

Power

Diagram

Singular

Points

Power

Shape

Voronoi

Diagram

Figure 7.3: Amenta and Kolluri’s algorithm for computing the medial axis from the power shape

More details on the algorithms by Amentaet al., including the theoretical derivation, sampling assumptions, and

convergence guarantees can be found in [8].

7.4 Medial Axis Computation

For use in geometric processing, the most significant limitation of Amenta and Kolluri’s algorithm is that it produces

many duplicate vertices in the medial axis. These vertices cause double edges that show up in the form of cracks in

the medial surface. By solving this problem we can produce a medial axis that has much cleaner geometry for further

processing. We take a combinatorial approach because removing duplicate vertices numerically is computationally

expensive and subject to errors in precision. From our analysis, there are two primary causes of the duplicate vertices:

1. Many duplicate singular points are generated. This results in duplicate vertices in the medial axis because the

vertices of the axis are Voronoi vertices computed from the singular points.

2. Many of the singular points are cospherical. The Voronoi vertices are the circumcentres of the dual Delaunay

tetrahedralization of the singular points, so when more than four points are cospherical, duplicate circumcentres

are produced, resulting in multiple identical medial vertices.

To address the first problem, we note that Amenta and Kolluri’s algorithm computes a singular point forevery

regular triangle in the power shape. However, we observe that two or more neighbouring triangles can often produce

identical singular points. We use Figure7.4 to illustrate the 2D analogy of a situation that happens frequently in real
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data sets. In this case,A–E are five boundary points of the object, the dotted lines represent the Delaunay triangulation

of the boundary points,P1–P3 are the polar balls computed from the triangles, andS1, S2 are two simplices of the

power shape (edges in 2D, triangles in 3D). The construction leads toS1 andS2 producing the same singular point,

located at boundary pointB, becauseP2 intersects bothP1 andP3 at that point. We can efficiently identify and remove

duplicate singular points produced in this manner by checking which polar balls have corresponding tetrahedra that

share the same boundary point.

P1
P3

P2

S1

S2

A
B

C

E
D

Figure 7.4: SimplicesS1 andS2 produce two identical singular points, co-located at pointB

The second problem, cospherical singular points, can be attributed to the simple fact that the points are computed

by intersecting balls in the VBM. So it should not be surprising to find cases in which more than four singular points

lie on the surface of a polar ball. We can quickly identify which singular points are cospherical by keeping track

of which polar balls are intersected to form which singular points. We can thus find and eliminate duplicate medial

vertices very efficiently.

7.5 Simplification

As with most 3D medial axis regularization methods that preserve topology, we utilize a peeling approach in which

the outer layers of components are removed over a number of iterations. At the beginning of each iteration, we

decompose the medial axis into parts. We then assign a significance value to each part that is a candidate for removal.

An ordered pruning process then removes all parts that have a significance value in a given range and can be deleted

while maintaining topological consistency. The number of iterations performed depends on the complexity of the

shape and the degree of simplification required.

7.5.1 Parts Decomposition

After generating the VBM and medial axis, we decompose the axis into parts before further processing. We begin by

triangulating all faces to make implementation easier. We then form parts by grouping triangles. Our decomposition
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scheme takes advantage of the fact that the 3D medial axis can be viewed as a composition of 2D surfaces (sometimes

calledboundary sheets). The result of the decomposition is a set of connected 2-manifold parts embedded in 3D space.

As shown in Section7.5.3, this is very useful for simplifying the topological representation used during pruning.

The parts creation process begins at the boundaries of the medial axis and works inwardly on a level-by-level

basis. The first level parts are at the boundaries of the axis, the second level parts are inward neighbours of the first

level, and so on. Each first level part starts with a randomly chosen seed triangle that has an edge with no neighbours

(i.e., it is at a boundary of the axis) and does not yet belong to any part. The part begins to grow by gathering

neighbouring triangles of the seed triangle. For each of the triangle’s edges, if that edge is shared with only one other

triangle, then the part grows into that neighbour. This growth process proceeds recursively until no more triangles can

be added to this part. The resulting part is a 2D surface. Another boundary triangle is then selected to begin another

first level part.

After all parts of level 1 have been formed (i.e., there are no more unused triangles at the axis boundaries), parts

of level 2 are computed. For a part of leveli, wherei > 1, a randomly chosen triangle that neighbours a part of

level i − 1 is used to begin the part. The growth process is the same as that for level 1. In this manner a number of

levels of parts are created. Figure7.5 illustrates an example using a simple medial axis, in this case computed from

the boundary points of a rectangular box. The numbers in the figure indicate the levels of the respective parts.

11
1

1

2

Figure 7.5: Medial axis showing level 1 and level 2 parts (the dotted lines show the boundaries between parts)

The user can limit the number of levels created depending on the application. During each pruning iteration,

only parts of level 1 are removed, and parts of level> 1 are only used for enforcing topological constraints. Therefore,

if topological preservation is considered unimportant for the current application, only the first level parts need to be

created.

The decomposition of the medial axis leads naturally to a decomposition of the VBM, because each part of the

axis is associated with a set of polar balls. To make this clear, we make use of two observations:

Observation 1 (Amenta and Kolluri [10]) Every vertex of the power shape (i.e., an inner pole) must lie on an edge

or a vertex of the medial axis.
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Observation 2 Since the medial axis is the intersection between the power shape and the Voronoi diagram of the

singular points, every part of the axis must contain a subset of the inner poles.

Thus, each part of the axis has a number of inner poles lying on its edges and/or vertices. We can combinatorially

determine the set of poles that lie in a given part by keeping track of which polar balls intersect to produce which

singular points, and tracking which singular points are subsequently used to produce which medial vertices and edges.

7.5.2 Pruning

The general simplification strategy is to remove one layer of the outermost (i.e., level 1) parts at a time. This allows

us to check for and prevent undesirable changes in topology. In order to determine which parts are to be removed,

we apply two significance measures to evaluate the importance of any given part. In each iteration, the user selects a

significance measure and a threshold value. Every level 1 part that falls below the threshold and satisfies all topological

constraints is removed.

We have designed our significance measures to be efficient, versatile, and intuitive to the average user. The first

measure is simply the number of triangles in the part. We use triangle count because it allows us to filter out a large

number of insignificant parts with very little computation. The other measure that we use is the volume of the feature

of the object that would be removed as a result of pruning the part. We use the volume because it is an intuitive and

visually meaningful property of each component. Useful thresholds can be easily determined by examining the size

of features that the user wants to remove. To make this measure independent of scale, we divide the volume of each

part by the total volume of the object to give a relative value.

To estimate the volume for each part, we note that the set of Delaunay tetrahedra computed from the object’s

boundary points makes a visually reasonable approximation of the object’s interior. Since these tetrahedra are available

from earlier Voronoi computations, it would be efficient to reuse them for volume estimation. To do so we note from

the previous section that each part is associated with a set of inner poles. Having the set of inner poles immediately

gives us a set of tetrahedra, because each pole is computed as a circumcentre from the Delaunay tetrahedralization.

We use the sum of the volumes of the tetrahedra associated with a part to estimate the volume of the object feature

corresponding to that part. Figure7.6shows a feature of an object (the top of the Tweety model in Figure7.12a) and

the group of tetrahedra used to estimate its volume.

Although the two significance measures can theoretically be used in any order or combination, we have found

the process generally more effective and easier to control if the triangle count measure is used first to remove the very

small outer layer parts, followed by using the volume measure to remove the more significant parts underneath. The

reasoning is that for most data sets, practically all of the very small parts in the first few layers are discretization or
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Figure 7.6: Feature of an object and the tetrahedra used to estimate its volume

noise artifacts. After these are removed, the volume measure can be applied iteratively in a manner appropriate for the

data and application. Indeed, as discussed in Section7.7, our experiments have shown this to be a useful strategy.

7.5.3 Topology Constraints and Pruning Order

Our algorithm is able to preserve the topology of the medial axis during pruning. The topological properties that

concern us are the number of connected components and the number of loops. Each loop in the axis represents a

tunnel going through the object. Given a set of connected parts representing the medial axis, we need to determine

whether any given level 1 part can be safely removed without disconnecting the remaining parts and without changing

the number of existing loops.

We deal first with the loops. The part removal method described in the previous section guarantees that new

loops are never created, because only parts at the borders of the axis are candidates for pruning. In order to save

existing loops, we first determine which parts join together to form loops in the axis. We can then preserve these parts

during pruning. In 3D, finding loops is not just a simple matter of detecting cycles, because there are many cycles that

do not form loops. For example, the three connected parts on the left in Figure7.7form a cycle (A→B→C→A) but do

not make a loop. Removal of any of the three parts would not change the topology of the object. In contrast, the three

parts on the right in Figure7.7do make a loop.

A

B

C

A

B

C

Figure 7.7: The three parts on the left do not form a loop, while the three parts on the right do.

To detect loops efficiently, we take advantage of the simplicity of our parts-based representation to build a

topology graph that concisely captures the connectivity information between the parts. In this graph, each node

represents a “point” of contact between two neighbouring parts. This “point”, called acontact curve, takes the form of
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an unbroken polyline shared by the touching parts. The edges of the topology graph represent the parts themselves. In

order to eliminate cycles that are not loops, two nodes are collapsed into one if the corresponding contact curves are

connected. For example, Figure7.8shows the graphs representing the topology of the two sets of parts in Figure7.7.

C


A
 B

A


C


B


Figure 7.8: Graphs representing the topology of the parts in Figure7.7

In the first graph, there is only one node because the contact curves between partsA andB, B andC, andA and

C are all connected. The edges of this graph do not connect to any other nodes. The second graph has a loop in the

configuration because the contact curves do not touch each other. Figure7.9shows a less trivial example computed by

our algorithm. The topology graph has four nodes interconnected by six parts.
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(c)

Figure 7.9: (a) Object (b) Medial axis (c) Topology graph

With the loops preserved, maintaining topology then becomes a matter of ensuring that the number of connected

components stays the same. We satisfy this constraint by checking that the removal of a part does not disconnect any

of the neighbouring parts.

The lack of a natural processing order and the fact that there are no theoretical results known about the effect of

the deletion sequence on the skeleton mean that we need to impose a pruning order. Our algorithm takes the simple

approach of sorting the parts in order from lowest to highest value, using the significance measures defined in the

previous section. The reasoning is that in general, we want to remove the less important parts first whenever possible

so that they do not prevent the more significant parts that typically represent more salient features from being pruned.
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7.6 Surface Reconstruction

After pruning, we use the power crust algorithm [7] to reconstruct a surface of the simplified object. The algorithm

works by computing a piecewise linear boundary between the inner and outer polar balls. Before simplification, each

boundary point sample has an inner and outer pole. Afterwards, only a subset of the inner poles remain, because

we discard the balls associated with the pruned parts of the axis. For most data sets, we only need to remove the

inner poles. However, as mentioned in [7], for objects with sharp corners, more accurate reconstructions can be had

by removing the corresponding outer poles as well. The polar balls associated with the remaining poles are used to

compute the surface. We discuss the power crust algorithm further in the next chapter, Section8.2.

7.7 Results

This section describes the results of testing our algorithm with a number of data sets. In all of the examples shown,

it is easily noticed that our approach can greatly reduce the complexity of the axis without creating holes or breaks in

the remaining components. Table7.1lists the examples presented, along with the processing times for computing and

simplifying their medial axis. A Pentium 4 processor running at 2.0 Ghz is used. Our implementation makes extensive

use of the CGAL and LEDA libraries. Although some of the models take several minutes to process, we feel confident

that our algorithm is more efficient than the other current topology preserving methods (e.g., [15, 109]), because of

our use of the convergence property (Section7.3) and parts-based topology graph (Section7.5.3) to reduce the number

of topology checks required.

Model Points Axis Generation (sec.) Pruning (sec.)

Tweety 48668 186 205

Max Planck 25044 57 92

Hip bone 70688 348 354

Bunny 34835 103 136

Table 7.1: Processing times for 3D shape simplification

The typically pruning scheme that we use is to first apply the triangle count significance measure for one to three

iterations with a very low value (≤ 5 triangles) and without topology checks. This usually removes many very small

and visually unimportant parts with little computation. Then we apply the volume measure with topology checks for

one or more iterations as required to achieve the desired level of detail.

We use the Bunny model (Figure7.10) to demonstrate how our algorithm can automatically remove features
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of various sizes. In this figure, the middle bunny is the result of applying four pruning iterations (2× tt , tt = 5,

1× tv , tv = 1.0%, 1× tv , tv = 5.0%) to reduce the overall detail of the model without losing the large features.

The topology graph of the second bunny is shown in Figure7.11. The third bunny is also the result of four iterations

(2×tt , tt = 5, 1×tv , tv = 1.0%, 1×tv , tv = 10.0%), but with a greater final threshold to remove the larger features.

The resulting object has lost all of its small details, such as the eyes, as well as most of the large features, such as the

ears and tail. The reconstructed surface is considerably simpler than the original.

Surface Reconstructed from

Strongly Simplified Axis/VBM


Strongly Simplified 

Medial Axis


Original Medial Axis


Surface Reconstructed

from Boundary Points


Simplified Medial Axis


Surface Reconstructed from

Simplified Axis/VBM


Figure 7.10: Bunny model at three levels of detail

However, this example also shows a limitation of the algorithm: our simple decomposition method does not

always completely divide the parts in the way a human would. In this case, the feet of the bunny are not separated

from the rest of the body, and cannot be thresholded out. Consequently, the feet are only mildly simplified compared

to the rest of the object. In such cases, more sophisticatedmesh segmentationtechniques (e.g., [172]) should prove

useful for further decomposition of the axis.
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Figure 7.11: Topology graph of simplified bunny model (middle bunny of Figure7.10)
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The Tweety model and its medial axis are shown in Figures7.12a and7.12b, respectively. This example illus-

trates how our algorithm can be used to remove small noise-type artifacts. Figure7.12d shows the medial axis after

five iterations of pruning (3× tt , tt = 5, 2× tv , tv = 1.0%, wherett is the triangle count threshold, andtv is

the volume threshold). The simplified axis is clearly much cleaner, and more useful for applications such as shape

matching. Figures7.12c and7.12e show a closeup of the original model and the simplified model, respectively. The

simplified model is clean of the small bumps seen on the back and leg of the original model.

(a) (b) (c)

(d) (e)

Figure 7.12: (a) Tweety model (b) Medial axis (c) Back of Tweety model, with obvious noise artifacts on the back and leg (d)

Simplified medial axis (e) Back of simplified model, with noise clearly reduced
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The Max Planck model, shown in Figure7.13a, is given as an example of how an object can be edited by

manually specifying parts of the medial axis to be removed. After four pruning iterations (2× tt , tt = 5, 2× tv , tv =
1.0%), we have a relatively clean axis to work with (Figure7.13c). We can manually select the left ear and its stump

by simply specifying a single triangle in each part. The medial axis without the left ear is shown in Figure7.13d and

the resulting surface is shown in Figure7.13e. The ear is removed without appreciable distortion to the surrounding

area.

(a) (b) (c)

(d) (e)

Figure 7.13: (a) Max Planck model (b) Medial axis (c) Simplified medial axis (d) Simplified medial axis, ear removed (e) Max

Planck model, ear removed
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The hip bone model (Figure7.14a) is an example of where topology preservation becomes very useful. Fig-

ure7.14b shows the original medial axis, which is full of small details. Figure7.14c shows the medial axis after six

pruning iterations (3× tt , tt = 5, 3× tv , tv = 5.0%). The algorithm greatly reduces the amount of small details, but

is able to preserve the narrow arch in the axis. Many other existing pruning methods would break or disintegrate this

loop, particular where it is thin. The reconstructed simplified object with the narrow loop clearly intact is shown in

Figure7.14d.

(a) (b)

(c) (d)

Figure 7.14: (a) Hip bone model (b) Medial axis (c) Simplified medial axis (d) Simplified hip bone model, with narrow loop

preserved
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7.8 Summary

In this chapter, we have presented an algorithm for simplifying 3D shapes by pruning their medial axes and associated

VBMs. The approach is particularly novel in that the axis and VBM are decomposed into parts before simplification.

We showed that this feature-based approach has a number of advantages over other existing techniques. Our results

demonstrate that the algorithm is able to greatly reduce the amount of detail in an object without negatively affecting

the remaining components. The power crust method is used to reconstruct a polygonal surface from the filtered VBM.

7.9 Observations

• The medial axis computed using our version of Amenta and Kolluri’s algorithm can be effectively used to

decompose a VBM into parts for tasks such as shape simplification. However, as mentioned in the Results

section, even though our method of simply using the number of triangle neighbours to divide the axis into parts

works well in general, there are cases that warrant a more advanced parts decomposition technique.

• The connectivity of the medial axis parts can be used to efficiently preserve the topology of the VBM during

processing.

• The 3D medial axis makes it easy to manually specify parts to be removed, compared to using only the VBM.

• The prevention of the disintegration effect shown in Figure7.1is a positive indication that the use of the medial

axis can keep groups of balls connected during processing.

• We have assumed that the input data is adequately sampled. While this is usually the case for data sources such

as laser scanners, other sources of data may result in undersampled point sets. More research in the detection

of undersampling, based on previous work (e.g., [6, 45]), should be done to improve the robustness of the

algorithm.

• Using the balls of the VBM instead of the Delaunay tetrahedra to estimate the volume of parts may result in

greater accuracy. Such an approach can make use of previous work on computing properties of unions of balls

(e.g., [88]).
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Chapter 8

Surface Reconstruction

8.1 Motivation

Generating a polygonal surface from a given union of balls can be very useful. For example, if a VBM is used in

a segmentation application, such as that in Chapter5, a reconstructed boundary may be required as the final output.

Surface models are often desirable even if they are only needed for display purposes, because the balls are sometimes

found to be visually distracting. Although a sufficiently sampled VBM is accurate in terms of approximation error,

a polygonal surface model typically “looks better” to a human viewer. A common criticism of Ranjan’s work is the

lumpy appearance of the models [128]. In addition, a high quality rendering of a union of balls typically requires a

large number of approximating polygons. For example, Table8.1shows the number of polygons used by Geomview,

a popular polygonal model viewer, to render a single ball at different mesh resolutions. These numbers show that

rendering a large union of balls at interactive rates would take substantial processing power.

Patch Dicing Number of Polygons

10 (default) 648

20 (good onscreen quality) 2888

30 (good print quality) 6728

Table 8.1: Number of polygons used by Geomview to render a single ball

In this chapter, we discuss two methods for constructing a polygonal surface from a VBM. The first, called

the power crust, is used in our 3D shape simplification algorithm, as described in Chapter7. The second is a new

reconstruction method [157] that we have developed.

100



8.2 The Power Crust

The main idea of the power crust algorithm is, given a set of boundary points, to first approximate the medial axis

transform of the object, then use it to compute an interpolating surface. Alternatively, the method can be seen as

computing the interface between two unions of balls, one approximating the interior medial balls (VBM) and the other

approximating the exterior medial balls. The algorithm in Chapter7 demonstrates how we can remove shape features

by removing the corresponding medial balls.

The main steps for computing a power crust are (Figure8.1shows a 2D example):

1. Compute the Voronoi diagram of the sample points (Section3.1.1).

2. Compute the poles of each sample point (Section3.1.2).

3. Compute the power diagram of the poles (Section3.1.1).

4. Classify the poles as inside or outside (Section3.1.2).

5. Output the power diagram faces separating the cells of inside and outside poles as the power crust.

(a)
 (b)
 (c)
 (d)
 (e)


Figure 8.1: Power crust algorithm in 2D (figure adapted from [8]) (a) An object with its medial axis (b) The Voronoi diagram of a

set of sample points on the boundary (c) The inner and outer polar balls (the outer polar balls with centres at infinity are halfspaces)

(d) The power diagram cells of the poles (e) The power crust and approximate medial axis

8.3 Surface Reconstruction Using Singular Points

Although the power crust algorithm is a robust performer, it requires both the inner and outer polar balls to be present

in order to compute a surface. In addition, it produces a large number of faces relative to the number of balls present.

We need a method that can produce a surface given only the interior balls, and we would like the number of polygons

created to be on the same order as the number of balls. In this section, we present a new algorithm for computing a

polygonal surface from a union of balls. The focus is on developing a relatively simple and efficient method.

As mentioned in Section7.3.1, any location on the surface of a union of balls where three or more balls intersect

is called a singular point. In a reasonably dense union of balls, such as a typical VBM, there are many singular points.
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Figure8.2a shows a union of balls and some of its singular points. Our algorithm connects these points to form a

polygonal surface and incorporates a method for dealing with undersampled areas in which the balls do not intersect.

b1

p1p2

p3

b2
b3

b4

(a)

t1t2
t3 v1

(b)

Figure 8.2: (a) A union of balls and some of its singular points (b) The dual shape of the union of balls

Our algorithm uses the weighted Delaunay triangulation of the union of balls to compute the surface. Given

adequate sampling, the subcomplex consisting of the interior Delaunay triangles has been proven to be homotopy

equivalent to the medial axis of the union of balls and therefore accurately reflects the topology of the shape [8]. We

take advantage of this property to compute surfaces that are topologically correct.

8.3.1 Related Work

An algorithm for theskinningof unions of balls has been developed by Edelsbrunneret al. [48, 49]. The skins are

typically composed of parts of the balls connected by hyperbolic and spherical patches to make the surface tangent

continuous. The skin is then adaptively triangulated to form a polygonal surface. Kruithof and Vegter [80] extend

the method to approximateC2 surfaces. There are two primary drawbacks to the skinning approach. First, even a

small number of balls can generate a complicated skin. Second, there are always concave patches between the balls,

sometimes resulting in a bumpy appearance. Our method is designed to be considerably more lightweight, and is more

suitable for use in applications where speed is a concern.

8.3.2 Algorithm Overview

Our algorithm consists of three main steps:

1. Compute the weighted Delaunay triangulation (Section3.1.1), and discard all triangles that are outside of the

union of balls. The resulting complex is called thedual shape[47] of the union of balls.
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2. For all regular and singular triangles (defined in the next section) in the dual shape, compute the singular points,

except for duplicates.

3. Compute faces from the singular points using the connectivity of the dual shape.

The main idea of the method is to traverse the hull of the dual shape in an ordered fashion, connecting the singular

points on the way. Figure8.3 illustrates how the method works in 2D (i.e., computing a polyline border from a union

of disks). In this example, thes’s are the regular and singular simplices of the dual shape, thep’s are the singular

points, and the dotted line is the resulting approximating boundary. The idea is that as we traverse the simplices in

order along the hull (s1 → s2 → s3 → s4 → . . . ), we connect the corresponding singular points (p1 to p2 to p3 to p4,

etc.).
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 s3
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Figure 8.3: Connecting the singular points of a union of disks to form a boundary, represented by the dotted line

8.3.3 Singular Point Computation

Each triangle in the dual shape can be classified as one of three types:interior, regular, or singular. This classification

is based on the number of tetrahedra to which the triangle belongs. An interior triangle is the interface between two

neighbouring tetrahedra, a regular triangle belongs to only one tetrahedron, and a singular triangle is not part of a

tetrahedron. For most data sets, the majority of triangles are faces of tetrahedra, and therefore are either regular or

interior triangles. Each type of triangle produces a different number of singular points. An interior triangle produces

no singular points, a regular triangle produces one singular point, and a singular triangle produces two singular points.

Given a simplex of dimension one or greater in the triangulation, theorthocentreof the simplex is the centre of

the smallest ball that is orthogonal, as defined by the power distance (Section3.1.1), to each ball of the simplex. For

a given triangle, we compute its singular point(s) by first locating the orthocentre. The intersection points lie on a line

orthogonal to the simplex and going through the orthocentre. Once we find the orthocentre, we only need to compute

the correct distance to find the singular point(s). Figure8.4 shows the 2D analog; the simplexs (an edge in 2D, a

triangle in 3D) produces two potential singular points, each a distanced from the orthocentre.
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Singular Point
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Figure 8.4: Computation of the singular points of the simplexs

It is important to note that in order to avoid degenerate faces, we need to prevent duplicate singular points from

being computed. Multiple identical singular points are often produced when four or more balls intersect at the same

point, as is frequently the case when the union of balls is a set of Voronoi balls. This issue is discussed in Section7.4,

with an example shown in Figure7.4.

8.3.4 Polygon Computation

After the singular points have been computed, they must be connected properly so that the resulting surface has the

correct topology and well-formed faces. For each vertex in the dual shape, we traverse the incident faces on the hull

and connect the singular points in order around the vertex. Figure8.2b shows a projection of the hull of the dual shape

of the union of balls in Figure8.2a. Traversing aroundv1 (t1 → t2 → t3 → . . . ) results in connectingp1 to p2 to p3,

etc. in Figure8.2a. The final result of going around this vertex is the face shown by the dotted line in Figure8.2a.

This method of traversing around the vertex is equivalent to taking the ball centred at the vertex, and using the

surface arcs formed by the ball intersecting with its neighbours as “paths” to find the appropriate sequence for the

singular points. For example, the path fromp1 to p2 in Figure8.2a is determined by the intersection between the balls

b1 andb3. This duality is apparent if we consider the facts that the arcs lie on the Voronoi walls of the power diagram

of the balls, and the singular points lie on the intersections between the Voronoi walls.

While traversing the triangulation, there are two primary issues that need to be addressed. The first is that if a

triangle has more than one neighbour on a given edge, we need a method for determining which neighbour to use in

order to stay on the proper side of the hull. The second is that when we encounter a singular triangle, we need to

decide which of the two singular points is the proper one to use next.

Finding the Right Neighbour

Figure8.5a illustrates a scenario in which we need to decide which neighbour of a triangle we should proceed to next.

In this case, singular pointp1, computed from trianglet1, has just been added to the current face. We need to determine

which of t2, t3, or t4 is the correct triangle. Making a wrong choice (eithert3 or t4) would cause the traversal to go
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right through the hull. To find the right neighbour (t2), we form a trianglet1′ using the given edge and the current

singular point (p1). The first triangle encountered when rotating in the direction fromt1 to t1′ is the correct neighbour.

t1

t2

t3

t4

p1

t1'

(a)

t1 t2

p1 p2a

p2b

n1
 n2


(b)

Figure 8.5: (a) Using the direction fromt1 to t1′ to find the right neighbour (t2) (b) Using the normal vectors to find the right

singular point

Finding the Right Singular Point

When we reach a singular triangle, we need to determine which of the two singular points is the correct one to use.

Choosing the wrong one would cause the constructed face to cut across the interior of the shape. In order to find the

right singular point, we compute a number of vectors to determine if choosing a particular singular point would cause

a flip in orientation to the other side of the hull, relative to the singular point used for the previous triangle.

Figure 8.5b illustrates the vectors used. The normal vectors (n1, n2) for the previous (t1) and current (t2)

triangles are computed. In addition, a vector originating from the centroid of the previous triangle pointing to the

previous singular point (p1) is computed. Similarly, two vectors directed toward the two singular points of the current

triangle (p2a, p2b) are derived. The sign of the dot product between the normal vector and the singular point vector of

the previous trianglet1 gives us a reference to determine which ofp2a or p2b should be used to preserve the current

orientation. In this casep2a is the correct one.

8.3.5 Undersampled Areas

For densely sampled VBMs, such as those computed from laser scans, undersampling is rarely a problem. However,

in some data sets, there are areas in which the balls are close enough for the computed Delaunay triangles to be largely

inside the shape, but the balls do not actually intersect. This happens most frequently when one ball intersects two

other ones, and the other two are close to each other but do not actually intersect. Our method of computing the

singular points using the orthocentre is beneficial in such cases, because the orthocentre can be computed without an
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intersection. This is in contrast to using, for example, great circles for determining intersection points. To compute a

“fake” singular point to add to the surface, we simply estimate an appropriate orthogonal offset from the orthocentre

by averaging the radii of the three balls connected in the triangle.

8.3.6 Results

To demonstrate the effectiveness of our algorithm, we show several examples of varying shape complexity, topology,

and sampling density in Figures8.6 to 8.9. All of the unions of balls are VBMs computed using Amenta’s polar ball

method (Section3.1.2). Table8.2shows the processing times to compute the surfaces. The number of balls and faces

are also shown for each case. A Pentium 4 processor running at 2.0 Ghz is used. Our implementation makes extensive

use of the CGAL and LEDA libraries.

Model Balls Time (sec.) Faces

Apple 3095 4.6 4179

Mushroom 3609 5.0 4963

Heart 3405 4.6 3900

Torus 5613 6.2 7154

Table 8.2: Processing times for polygonal surface reconstruction from VBMs

(a) (b)

Figure 8.6: (a) VBM of an apple (3095 balls) (b) Surface reconstructed from the VBM of an apple (4179 faces)
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(a) (b)

Figure 8.7: (a) VBM of a mushroom (3609 balls) (b) Surface reconstructed from the VBM of a mushroom (4963 faces)

(a) (b)

Figure 8.8: (a) VBM of a heart (3405 balls) (b) Surface reconstructed from the VBM of a heart (3900 faces)
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(a) (b)

Figure 8.9: (a) VBM of a two-holed torus (5613 balls) (b) Surface reconstructed from the VBM of a two-holed torus (7154 faces)

8.4 Summary

In this chapter, we have briefly reviewed the power crust algorithm, as well as presented our own novel method for

constructing an approximating boundary of a union of balls. We have shown the results of applying our algorithm to

several VBMs of varying shape complexity and topology.

8.5 Observations

• Our algorithm is robust, and has not failed for the many data sets that we have tried. This is due to the fact that

the algorithm is simple and based on well-established geometric theorems and constructions.

• Our method works for unions of balls in general, not just VBMs, because there are no assumptions made in our

algorithm with regards to the construction method of the ball model.

• While our algorithm produces surfaces that the average viewer would say are faithful reconstructions, geometri-

cally speaking they are only approximations. A derivation of the error bounds would be informative, but judging

by the methods of construction we can probably assume that the amount of error is greater than in the skins ap-

proach. In addition, while we conjecture that the reconstructed surface converges to the envelop of the union of

balls as the sampling density tends to infinity, this has not been rigorously proven.
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• The polygons produced by our algorithm are non-planar in general. Depending on the application, this may be

problematic for subsequent processing. A conversion step to retessellate the surface into planar faces (e.g., tri-

angles) would be useful.

• We note that the singular points can be used as input into the power crust algorithm to produce an interpolating

surface. In our experiments, this approach tends to create smoother surfaces. However, as noted earlier, the

power crust produces a large number of faces for the number of balls present.
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Chapter 9

Conclusions and Future Work

This thesis shows that Voronoi Ball Models possess the characteristics to make them broadly-applicable in computer

graphics, scientific visualization and computer vision. Five representative applications are used to demonstrate the

capabilities and limitations of the VBM. The full potential of VBMs is too great to be completely explored in one

thesis, but, as documented in this dissertation, some important steps have been taken. In this last chapter, we summarize

the major conclusions and some directions for future work.

9.1 Summary of Results and Observations

We summarize the applications developed for this thesis, and our main results and observations related to the key

properties that we identified in Chapter1. Some of the observations have been made from the results of more than one

application, but are only listed once for conciseness.

9.1.1 Image Matching and Interpolation

We presented an algorithm for image interpolation and rigid registration using VBMs. In this approach, VBMs are

used to represent the images and a similarity measure is applied to form feature correspondences between the VBMs

to be matched. A number of interpolated VBMs are then formed, from which the intermediate images are computed.

The major results and observations are:

• The method is able to form correspondences between similar image features, even with no explicit feature

extraction and little or no manual intervention.

• Clustered VBMs are stable with respect to changes in the positions of the sample boundary points.
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• The correspondences formed by the matching method are stable with respect to changes in the user-determined

parameter values (matching weights).

• The appearance of artifacts in the interpolated images indicates that connectivity information between primitives

would be a valuable addition to the representation. This is a motivating factor for our research done on exploring

the use of the medial axis with VBMs.

9.1.2 Shape Model and Threshold Extraction

We discussed our largely automatic algorithm for extracting thresholds and VDMs of significant objects from greyscale

images. The method entails using a VDM-based similarity measure to quantify the shape changes of the objects in an

image as the intensity threshold is varied. Plots of the shape gradient are then used to detect the intensity ranges in

which significant objects lie. The major results and observations are:

• The extracted thresholds and VDMs are visually accurate representations of the shape information contained in

the test images.

• Our proposed modification to the similarity measure enhances its stability by making it independent of transla-

tion and rotation, and less dependent on scaling.

• When computing the shape distance between two VDMs, the unmatched disks can be used to reveal large

differences not evident in the matches.

• The similarity measure can be used to compare objects of different shape complexity and topology. This flexi-

bility is particularly advantageous in exploratory applications.

• Reconstruction of the object boundaries would be a useful step to add. This points to the need for surface

reconstruction methods such as those discussed in Chapter8.

9.1.3 Two-Dimensional Shape Simplification

We developed an algorithm that uses the VDM and the medial axis in combination to remove noise-type artifacts from

the borders of 2D objects. The method prunes the spurious branches of the axis without sacrificing the fine features

that are usually lost with other techniques. The major results and observations are:

• The 2D medial axis is an efficient representation for preserving the topology of a VDM during processing.
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• The branch nodes of the 2D medial axis make effective partitioning points for localizing shape information

defined on the VDM.

• Adding the 2D medial axis makes visual discernment between noise and significant features easier to perform

compared to using only the VDM.

9.1.4 Three-Dimensional Shape Simplification

We presented a method for simplifying 3D shapes by using the medial axis and VBM together. The algorithm computes

a VBM and medial axis of the object, uses the medial axis to decompose the VBM into distinct components, then

iteratively removes layers of the medial axis and VBM until the desired amount of simplification is achieved. A

surface of the object is then reconstructed from the VBM using the power crust algorithm. The major results and

observations are:

• The convergence of polar balls to the medial axis transform provides a way to filter out many balls resulting

from discretization, thereby enhancing the stability of the VBM.

• The 3D medial axis can be efficiently used to represent and preserve the topology of a VBM during processing.

• The 3D medial axis can be used to partition a VBM into meaningful components.

• The 3D medial axis and our parts-decomposition scheme make the manual selection of features for removal

easier to perform than using only the VBM.

9.1.5 Surface Reconstruction

We developed an efficient algorithm for computing a polygonal surface from a union of balls. Our lightweight approach

connects the singular points of a union of balls to construct surfaces that are topologically correct. The resulting

surfaces have a small number of polygons compared to those produced by other current techniques. The major results

and observations are:

• Our surface reconstruction algorithm is robust and can handle objects of varying shape complexity, topology

and sampling density.

• The technique works for unions of balls in general, not just VBMs. For example, the method can be used to

compute surfaces from clustered VBMs.

• The amount of processing time to compute a surface for each model is small relative to the gain in display

efficiency.
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9.2 Conclusions

In this section, we summarize our major conclusions regarding the suitability of VBMs for shape-driven applica-

tions. As described below, most of the core shape operations that we are focusing on (i.e., extraction, simplification,

matching, interpolation, manipulation, and surface reconstruction) can be performed effectively with VBMs.

• VBMs make stable, accurate, and efficient shape representations of all objects for which a dense sampling of

the entire boundary can be computed. They are most suitable for use with data from which the boundary of each

object can be independently extracted.

• The VBM-based similarity measure forms accurate shape correspondences between 3D object features. The

matches have been shown to be stable with respect to changes in the positions of the sample boundary points,

and to changes in the measure’s parameter values. The method has sufficient capabilities to perform well for

matching tasks such as (rigid/non-rigid) registration.

• VBMs can be used for shape interpolation by using a similarity measure to establish correspondences between

balls, then interpolating the positions and sizes of matched balls to derive intermediate shapes. In our current

interpolation method, the balls are interpolated linearly, and there is no connectivity between primitives, so

there is little control over the intermediate shapes. As a result, the approach is feasible for applications such as

aesthetic morphing, but the interpolation control may require further development for more demanding tasks.

• The VDM-based 2D similarity measure has sufficient discriminatory power to quantify a large range of shape

differences accurately. The makes the method suitable for applications such as shape database queries or tem-

plate matching. Some cases can result in unmatched primitives, which can be a significant source of information

that can be used to complement the data from the matches. More research in the use of unmatched primitives is

likely to further increase the accuracy of the method.

• The VDM-based 2D similarity measure effectively quantifies shape differences between objects that vary sig-

nificantly in topology. The flexibility of the similarity measure makes it well-suited for exploratory applications

such as shape extraction from image data, particularly where manual intervention is impractical.

• The VBM can be used to accurately approximate the medial axis transform, as well as simplify and stabilize the

medial axis by removing components associated with minor features. This makes the VBM applicable to the

large group of shape processing algorithms designed for the medial axis. For example, a number of animation

methods use a skeletal structure as the primary representation. In addition, the VBM can use the medial axis to

efficiently preserve the topology of an object during shape processing.
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• The VBM can be used to partition an object into parts for further processing by using medial segments to link

balls together into groups. We have proven this approach to be particularly effective for shape simplification

via feature size thresholding or manual specification of components for removal. Parts-decomposition is used in

many object recognition systems, because it is a strategy known to improve robustness in the face of occlusion.

Therefore, partitioned VBMs can likely be used for recognition in cluttered environments.

• Using the VBM and the medial axis together theoretically gives the VBM greater visual relevance. Our ex-

periments provide evidence to support this statement. For example, our 2D simplification algorithm shows

that Leyton’s Symmetry-Curvature Duality Theorem, which is based on psychological evidence, can be used to

effectively distinguish between the noise and significant features of an object.

• The VBM is a good intermediate shape representation for reconstructing polygonal surfaces from boundary point

samples. The VBM can be used to stabilize the shape by filtering out spurious components before computation

of the surface. Amenta’s surface reconstruction method is accurate in that it results in a surface that interpolates

the sample points, but requires both inner and outer polar balls. We developed a lightweight algorithm that,

while not as accurate, requires only the inner polar balls, and produces many fewer polygons. Both methods

result in surfaces with provably correct topology.

• Currently, VBMs are most useful for applications in which the final results are either quantitative, or in the form

of balls, points, or polygons. The reason is that the coupling of the VBM with other types of data (e.g., voxels)

has not been thoroughly researched. In addition, for some applications that are not purely shape-driven (e.g., im-

age matching), the use of other information to complement shape information would likely enhance accuracy

and robustness.

9.3 Future Work

The results of this thesis motivate further work in many directions. Foremost is the development of other applications

using VBMs, examples of which include non-rigid registration, 3D shape extraction, object recognition, interactive

modelling, and animation. We outline some of other topics for future work in this section.

9.3.1 Representation Properties

• We would like to compare the approximation properties of Amenta’s method for stabilizing VBMs (convergence

to the medial axis) with Ranjan and Fournier’s approach (clustering).
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• We would like to analyze the approximation properties of Amenta’s polar ball VBMs that have been further sim-

plified by clustering. In particular, we would like to derive tight error bounds and determine whether clustering

preserves the convergence property.

• We would like to further examine the issue of sampling. So far, we have only used densely sampled data. The

detection and handling of undersampled areas would make our algorithms more robust.

• We are interested in doing more work on using the VBM, medial axis and/or other representations together. For

example, “wrapping” a deformable model around a VBM may be useful for shape extraction applications. An

example of an approach that combines medial-based and deformable models is presented by Joshiet al. [74].

9.3.2 Similarity Measure

• A more rigorous study on how the matching weights affect the correspondences formed by the similarity mea-

sure should be done.

• Different methods of handling unmatched balls and incorporating the resulting information into the similarity

measure should be investigated.

• We would like to experiment more with our modifications to the Ranjan-Fournier measure. One of the primary

goals is to make the measure fully independent of scaling, translation and rotation.

• We would like to incorporate the use of the medial axis into the quantification of shape differences. This

approach can be used to add topological and parts-based information, and can make use of the substantial body

of previous related work (e.g., [145, 151]).

• We would like to further investigate multiscale processing. The results of matching at different levels of detail

can be potentially combined for greater stability.

9.3.3 Validation

• Some of the validation done for this thesis has been subjective and done by visual inspection. More objective

and quantitative validation methods would further strengthen our claims.

• Alternative similarity measures should be used for the validation of our matching results.

• More direct comparisons with other shape models using the same applications and data should be done to

evaluate the relative advantages and limitations of VBMs.
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18th International Symposium on Theoretical Aspects of Computer Science, pages 63–74, 2001. Cited on
page(s): 24

[6] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering.Discrete & Computational Geometry,
22(4):481–504, 1999. Cited on page(s): 33, 34, 37, 99

[7] N. Amenta, S. Choi, and R.K. Kolluri. The power crust. InProceedings of the ACM Symposium on Solid
Modeling and Applications, pages 249–260, Ann Arbor, Michigan, June 2001. Cited on page(s): 13, 85, 87,
94

[8] N. Amenta, S. Choi, and R.K. Kolluri. The power crust, unions of balls, and the medial axis transform.Com-
putational Geometry: Theory and Applications, 19(2-3):127–153, 2001. Cited on page(s): 35, 37, 86, 87, 88,
101, 102

[9] N. Amenta and R.K. Kolluri. Accurate and efficient unions of balls. InProc. ACM Symposium on Computational
Geometry, pages 119–128, Hong Kong, June 2000. Cited on page(s): 17, 33, 34, 35, 37

[10] N. Amenta and R.K. Kolluri. The medial axis of a union of balls. InProc. Canadian Conference on Com-
putational Geometry, pages 111–114, Fredericton, New Brunswick, August 2000. Cited on page(s): 17, 87,
90

116



[11] C. Arcelli, L.P. Cordella, and G. Sanniti di Baja, editors.Visual Form: Analysis and Recognition. Plenum Press,
1992. Cited on page(s): 20

[12] E. Arkin, L. Chew, D. Huttenlocher, K. Kedem, and J. Mitchell. An efficient computable metric for comparing
polygonal shapes.IEEE Trans. Pattern Analysis and Machine Intelligence, 13(3):209–215, March 1991. Cited
on page(s): 5

[13] D. Attali and A. Montanvert. Semicontinuous skeletons of 2D and 3D shapes. InProc. International Workshop
on Visual Form, pages 32–41, Capri, 1994. World Scientific. Cited on page(s): 17, 70

[14] D. Attali and A. Montanvert. Modeling noise for a better simplification of skeletons. InProc. International
Conference on Image Processing, volume III, pages 13–16, Lausanne, Switzerland, 1996. Cited on page(s): 71

[15] D. Attali and A. Montanvert. Computing and simplifying 2D and 3D continuous skeletons.Computer Vision
and Image Understanding, 67(3):161–273, 1997. Cited on page(s): 17, 84, 85, 86, 94

[16] D. Attali, G. Sanniti di Baja, and Thiel E. Pruning discrete and semicontinuous skeletons. In C. De Floriani,
C. Braccini, and G. Vernazza, editors,Lecture Notes in Computer Science, Image Analysis and Processing,
volume 974, pages 488–493. Springer-Verlag, 1995. Cited on page(s): 71

[17] F. Aurenhammer. Power diagrams: properties, algorithms, and applications.SIAM Journal on Computing,
16(1):78–96, 1987. Cited on page(s): 32
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