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Abstract

This thesis evaluates the suitability \ébronoi ball model{VBM9g as a multipurpose shape representation for
applications in computer graphics, scientific visualization, and computer vision. The effectiveness of VBMs is judged
with respect to six key properties, namely stability, flexibility, accuracy, complexity, efficiency, and intuitiveness.
These properties have a significant impact on the range of applicability of a computational shape model. The ability of
VBMs to support a number of core shape-driven operations, in particular shape extraction, simplification, matching,
interpolation, manipulation, and surface reconstruction, is examined by determining the strength of the key properties
in the representation. The general approach is to use VBMs in a number of representative applications, each requiring
several of the shape operations being considered. These applications include image matching and interpolation, shape
model extraction from image data, two and three-dimensional shape simplification, and polygonal surface reconstruc-
tion. The performance of VBMs in these applications is indicative of the extent to which each key property is present.
The results of the experiments are very positive. They indicate that a VBM-based shape similarity measure can be
effectively applied to quantify 2D shape differences and solve the 2D/3D shape correspondence problem. The findings
also show that the VBM and the medial axis can be used together to take advantage of their complementary properties;
the VBM gives the medial axis greater stability, while the axis adds connectivity and topological information to the
VBM representation. The preservation of the topology of 3D shapes during processing is a particularly strong con-
tribution of the thesis. In addition, the medial axis is shown to enhance the capabilities of the VBM for performing
shape simplification and partitioning an object into parts. The experimental results also reveal that VBMs can be
effectively used to extract shape information from images and reconstruct polygonal surfaces from point sample data.
The primary conclusion made in this thesis is that VBMs are demonstrably capable of supporting a wide variety of

shape operations. Additional research is warranted to further exploit the potential of the representation.
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Chapter 1

Introduction

1.1 Motivation

Shape analysis is a vital aspect of many areas of computer graphics, scientific visualization and computer vision.
The shapes of objects in an image, volume or 3D scene provide high-level information that can be used for many
tasks. Examples of applications that often utilize shape information include segmentation, level-of-detail modelling,
registration and object recognition. The traditional approach to object modelling for shape-related applications focuses
narrowly on the goals of the particular task at hand and often results in models that do not capture many shape
properties that are useful for other applications. For example, in segmentation the model is usually designed to
represent the boundary of the object, because the goal is to separate the object of interest from the rest of the image
(snakeq75] are a classic example). In contrast, when designing a model for use in registetion[L63]), a

representation that includes the interior of the object is usually advantageous.

(>

Segmentation

I Shape Model
y Extraction

Input Data
(Image, Model, etc.)

Registration

Shape Models

Other Applications
(Rendering, Object
Recognition, etc.)

Figure 1.1: The main idea behind this thesis: shape-driven modelling



This thesis takes an alternative approach to object modelling that focuses primarily on shape representation.
The ultimate goal of this project is to develop a shape model that is useful for a broad range of shape-driven tasks.
Figure 1.1 illustrates this approach. Such a shape model has the potential to increase the efficiency of any graphics,
visualization or vision pipeline that consists of more than one shape-related application. For example, a user may
want to segment out an object from an image, register the object with another, then simplify the model before finally
rendering it. A shape model that incorporates the common elements required by multiple applications can effectively

reduce the amount of development time and speed up the functioning of the resulting shape processing pipeline.

1.2 Shape and Shape Models

Although shape is a very intuitive and commonly used property in everyday life, it is difficult to define precisely and
even more difficult to quantify. We adopt a working definition from Lord and Wils@#],[who describe shape as
“the characteristic way in which an object occupies space”. Although seemingly vague, this definition can be used to
elucidate several points. The shape of an object in this sense is a characteristic of both the boundary and the interior of
the object, as the boundary on its own cannot fill space. In addition, this notion of shape is independent of translations,
rotations and uniform scaling. These transformations only have meaning relative to the object’'s environment, so the
location and size of the object are not characteristics of the object alone, and therefore are not shape properties.
Because the definition of shape itself tends to be imprecise, it is difficult to explicate what constitutes a good
shape model. However, by understanding the intended purpose of the model, we can identify key properties that can
contribute to its effectiveness. Our research focuses on the computational aspects of a shape model and the efficiency

with which it can support operations for a variety of shape-based applications.

1.2.1 Common Shape-Driven Operations

There are a number of common shape-driven operations at the core of our research. These operations have been chosen

because of their extensive usage in many applications:

o Extraction. This is the first operation in most shape processing pipelines, and consists of extracting shape
models of objects from raw data such as voxel valeas, CT/MRI scan) or surface samplasd, laser scanner).

o Simplification. Simplification reduces the amount of detail in a given shape, and is frequently applied as a
preprocessing step to increase the efficiency of subsequent operations.

e Matching. This operation is frequently used in applications such as object recognition and registration. The
key component of an effective shape matching algorithm isttape similarity measunesed to quantify the

differences between shapes.



e Interpolation. Shape interpolation provides a way to generate an “average” shape given two or more existing
shapes, and is frequently usechirorphingapplications and statistical shape analysis.
« Manipulation. In many interactive modelling and animation applications, an efficient method for manually
shaping an object is required.
e Surface reconstruction. This operation consists of generating an accurate surface of an object from its shape
model. This process is particularly important for many graphics applications, because most graphics tools
(e.g, OpenGIR) [168) use surface polygons as the primary primitive.
There are many other operations that often require shape processing, such as rendering and object design, that are used
by a smaller number of applications. Although it would be useful to consider these additional operations, we restrict

our focus to the ones listed above in order to maintain a reasonable scope to the thesis.

1.2.2 Key Properties of a Computational Shape Model

We have identified a number of fundamental properties that affect the effectiveness of a multipurpose shape model. As
discussed below, the presence of these properties determines the extent to which a shape model can provide efficient
support for a wide range of data and commonly required operations.

The properties that we focus on are stability, flexibility, accuracy, complexity, efficiency, and intuitiveness.
Among these, stability and flexibility are the most crucial in determining the range of applicability of the shape model,
and therefore receive the most attention. It should be noted that these propertietiadependent. For example, a

representation that has a great deal of domain-specific knowledge built into it is typically both complex and inflexible.

Stability

The stability of a shape model refers to how much the model changes when the input data is altered. Ideally, the
degree of change in the model should correspond to that occurring in the data; that is, a small change in the data
should not cause the model to differ greatly. Stability is important because few sources of data are perfect in their
precision or accuracy. For example, medical image data is often blurry or noisy. Small perturbations in the input data
can cause large changes in an unstable model, and any operations performed on the model are consequently unstable.
In addition, even if the representation itself is stable, instability can still arise from the operation being applied. For
example, when computing the shape distance between two objects, a small change in one of the objects may cause an
unstable similarity measure to output a radically different result.

Figure 1.2 illustrates the tradeoffs in terms of stability between two object representations. A comparison is
done between the Delaunay triangulati®&i][ a common method for tessellating 2D objects, and the set of disks

circumscribing the triangles. In this example, two almost circular objects are reconstructed using eight boundary



Delaunay Triangulation

Voronoi Disks

(2) (b)

Figure 1.2: Stability comparison (the Voronoi disks are more stable than the Delaunay triangles)

points each. The vertices in FiguteZb are the result of perturbing the vertices in Figliréa by small amounts. A
Delaunay triangulation is formed from each set of vertices and a union of disks is then formed from each triangulation
by computing the circumscribing disk of each triangle. These disks are a#ltedoi disksbecause their centres are
Voronoi vertices (more precise definitions are provided in Ch&)térhe two resulting triangulations are clearly quite
different, whereas the two resulting unions of disks appear quite similar. However, the unions of disks clearly have a

significant amount of redundancy. This example is meant to demonstrate several points:

e There are cases in which the Voronoi disk representation is clearly more stable than the triangle representation,
and small changes in the input data result in much greater changes in the triangulation than in the Voronoi disks.
Note that in all cases where the triangulation is stable, the Voronoi disks are stable as well.

+ Even when a shape model appears to be stable, operations performed on it may be unstable. The redundancy
in the two unions of disks can potentially cause instabilities in any similarity measure applied to the models.
Examples of this type of stability are discussed in Chapter

o Simplification can be an important process for increasing the stability of a shape model by reducing the amount
of redundancy and removing the components associated with minor features in the input data. This provides the

motivation for the simplification algorithms discussed in Sectighl, and Chapter§ and?7.

Figure 1.3: Problematic test case for boundary-based similarity measures



Figure 1.3 shows an example that would reveal the instability of many commonly used similarity measures.
Even though the two objects are close in overall shape and differ only in minor perturbations of the boundary, this
would cause problems for most similarity measures that only use boundary curvature or angles to determine shape
differences €.g, measures that employ therning function such as 12, 166]). Curvature or angle-based measures

are often unstable in that even small changes in the boundary can cause the measure to report large differences.

Flexibility

A multipurpose shape model is expected to be able to represent real and virtual objects from a wide variety of data
sources. Because there is no predetermined source of data, the objects represented can be arbitrarily complex. There-
fore, flexibility with respect to shape complexity is an essential property. Flexibility increases the variety of objects

that can be represented as well as the types of operations that can be performed on them. A key to flexibility is to make
as few assumptions as possible about the input data. For example, some shape models impose smoothness constraints

on the object boundaries, which limit the types of objects that can be represented.

(a) (b) (c)

Figure 1.4: Three cases that would test the flexibility of a shape similarity measure

Figurel.4illustrates the flexibility requirement for similarity measures. The three test cases shown require a sim-
ilarity measure that is more flexible than most of the commonly used methods. In Eigare¢he two objects differ
significantly in the amount of curvature in their boundaries and the number of potential landmark points. This makes
comparing the two shapes difficult for measures that are polygan [12]) or landmark-basede(g, [30]). Also,
most primitive-based methods would represent each of these objects with a different number of primitives, which is
problematic for similarity measures that can only operate on models with the same number of priraitiyédig{
ural shape[122)). Figure 1.4b would be a difficult case for similarity measures associated with shape models that
require a certain degree of smoothness, typically defined by differentiability, in the object’s contour. Some deformable
models [L47] fall into this category. In this case the second object has a number of cusps that would contradict the
differentiability requirement. In Figurg.4c, the two objects are of different topology. Most shape similarity measures

only deal with objects of genus zero, and would have trouble with the hole in the second object.



Accuracy

Most shape representations cannot capture the shapes of all objects exactly, and usually they must form an approxima-
tion of the space occupied by the objects instead. For example, deformable niddgteiid to smooth out the sharp
features of an object. Another example are primitive-based models, where the shape of the pemitigelygons

vs. guadric patches) has a strong effect on the amount of approximation error. This error is usually expressed as a
distance between points on the boundary of the object and the corresponding points on the border of the model. The
amount of acceptable error depends on the application, but computable and reasonably tight bounds on the error are
desirable in most cases. Another important consideration is how the amount of error changes as the sampling density
increases. Ideally, as the number of samples gets larger, the resulting model should become an increasingly more
faithful representation of the original object. Sometimes, accuracy can be sacrificed to facilitate certain operations.
For example, a surface may need to be smoothed to make it differentiable.

In addition to approximation error, another important aspect of accuracy is related to the resolution to which
the similarity measure is able to discriminate between shapes. When used for matching tasks, an accurate similarity
measure gives reasonable correspondences with relatively few false matches. Unfortunately, the accuracy of shape
matches is notoriously difficult to validate formally, and the acceptability of the final results is often determined by the

objective judgment of the users.

Complexity

The geometric and/or mathematical complexity of a shape model affects its applicability in a number of important
ways. Very simple models, such as contours used to represent 2D boundaries, have the advantages of adaptability and
low storage requirements, but suffer from a lack of support for shape computations. For example, contours can be used
as a starting point for practically any shape operation, but require augmentation of the model for many (even simple)
applications, particularly those in which the interior of the object is important. Models that are very complicated tend
to be so because they are specially designed for a narrow range of applications and lack adaptability as a result. In
addition, computing complicated models can be a time-consuming task. For example, many component partitioning
schemes have been proposed to compute parts-based models for object recognition (examples ar@2fyvesa).[
Another aspect of a model's complexity is mathematical complexity. In general, the models that are designed to work
with numerical methods are more mathematically compéeg,(levels set$98, 139), whereas the ones designed for
predominantly combinatorial solutions tend to be less complex.

From experience, we are able to derive a few basic guidelines that, when adhered to, should result in a represen-
tation that has a moderate degree of complexity:

o Assuming the source data is clean, generating a model should be automatic. This process should take advantage



of any stability and flexibility properties present in the model.

e There should be basic support for operations such as shape matching, interpolation, and simplification.

* The model and basic operations should be adaptable for a wide variety of applications. For example, the model
should facilitate component partitioning for object recognition if desired. Ideally, the model should allow for
the addition of application-specific features without changing the main features.

e The core model should not have any computationally intensive features that are needed by only a few applica-
tions. For example, hierarchical decomposition schemes that break up an object’s parts and protrusions into a
tree-like structured.g, [89]) are not necessary for most purposes.

e The storage requirements for a shape model are also an important consideration for many applications. For
example, databases that use shape information, such as some designed for facial recegnifi@8); may

store millions of entries, and the compactness or compressibility of the representation is a significant factor.

Efficiency

We use the ternefficiencyto refer to the effect of the model's design on the computing costs and development time

of new applications. An efficient representation results in faster algorithms and is more likely to be adopted for
implementation. The efficiency of a shape model is affected by most of the other key properties discussed. Although
the correctness of our methods takes priority over efficiency, there are a number of primary issues that are of interest

to us:

* The effect of the shape model’s properties on the running times of algorithms is the most common focus of
researchers concerned with efficiency. The stability, flexibility and complexity of the representation can strongly
affect the amount of processing power required to generate and perform operations on the models.

¢ Another aspect of efficiency concerns the ease with which new applications employing the shape model can be
implemented. A representation that requires a large amount of overhead, such as those with high mathematical
complexity or low intuitiveness (defined in the next section), may hinder the development process and be more

difficult to validate.

Intuitiveness

We use the ternmtuitivenesgo refer to the degree that a potential algorithmic designer or end-user will find the shape
model easy to learn and work with. A representation that is parameterized in a way that is descriptive in terms of shape
tends to be more user-friendly. For example, contours are usually parameterized by border length, which is not very

descriptive. In contrast, skeleton models are generally relatively intuitive and easy to use.



A useful resource for enhancing the intuitiveness of a shape model are studies on how humans perceive shape. Al-
though human shape perception is not within the scope of this dissertation, we take into account some well-established
theories of shape perception to guide our research and algorithmic development. The power of the human shape pro-
cessing system makes it an attractive model to use in the design of a computer-based system. However, for a number
of reasons, it is inappropriate to base a computational shape model entirely on human perception. First, even though
visual form has been the subject of research for many yeays[R4, 67, 79, 87, 144, 144), there is still no univer-
sally accepted theory of human shape perception. Therefore, there are aspects of shape perception that are simply not
understood well enough to implement on a computer. In addition, many useful mathematical theories of shape have
been shown to contradict human perceptib®g 160. For these reasons, we only exploit a few high-level theorems

on human shape perception in our work.

1.3 Voronoi Ball Models

Ball models have been used in numerous applications in graphics and visualization, such as collision dééction |
70), surface simplification§1], and molecular modellingd8]. This dissertation presents the results of a number of
experiments performed with a type of ball model we term\tbeonoi disk/ball mode{VDM/VBM). A VDM/VBM
is defined as a subset (not necessarily proper) of the Voronoi disks/balls that are inside of the boundary of the object
being represented. VDMs are typically used for 2D applications, whereas VBMs are used in 3D. There are a number
of methods for classifying a disk/ball as being inside or outside. Also, as shown by the results in this thesis, various
applications require ways to further filter the set of interior disks/balls. Ch8meses the formal definitions of the
primary geometric constructions used for forming VDM/VBMs and discusses the approximation properties of the
resulting models.
Some of the algorithms in this thesis incorporate and extend the work of Ranjan and Fal2gjdr30, 131],
who were the first to investigate the use of VDM/VBMs for shape matching and quantification of shape differences.
We design our experiments to focus on issues undocumented or lightly treated in their work. For example, some of our
test data is selected to test the flexibility of the similarity measure, which is a property that was previously unexamined.
Ranjan and Fournier called their modé&lsions of Circles/Spherewe use the terms “disks” and “balls” instead
of “circles” and “spheres” to be consistent with the terminology commonly used in computational geometry, theories
of which are prevalent in parts of our work, and to emphasize the fact that our representation is intended to include the
interior of the shape. In addition, where confusion is unlikely, we use “VBM” as a general term to include both VDMs

and VBMs, because disks can be viewed as 2D balls.



As a consequence of their work, Ranjan and Fournier made the following observations:

A basic VBM is easy to generate from any data that can be point-sampled.
VBMs arecompleten the sense that they represent the interior of an object as well as the boundary.

The VBM representation is stable with respect to changes in the input data when Ranjan and Fournier’s similarity

measure (defined in Sectidmd.3 is used to mark the changes in the models.

The clusteringsimplification algorithm (defined in Sectiah4.)) is an effective method for reducing the com-

plexity of models while retaining their shape. The simplified models tend to have greater stability.

The VBM representation has well-defined error bounds (discussed in SBidn

However, our research has revealed a number of shortcomings of Ranjan and Fournier’s methods. The findings that

have been used to motivate our own experiments include:

There is no connectivity between primitives, which makes tasks such as parts decomposition, topological oper-

ations, and interpolation control difficult.

Contrary to the common belief at the time, their method for constructing the VBM results in balls that do
not converge to the medial axis transform as the sampling density increases to infinity. As discussed in Sec-
tion 3.1.2 convergence can be usefully exploited for stabilizing VBMs. This is the primary reason for switching

to Amenta’s method of VBM computation, also explained in SecBdn2 for our work with the medial axis.

The similarity measure is dependent on scale, position and orientation. This contradicts the definition of shape
as stated in Sectioh.2 To compensate for this limitation, Ranjan and Fournier used a prealignment procedure

that sometimes needs to be manually performed for complex shapes.
The similarity measure does not make effective use of unmatched primitives.

Simply rendering the balls is an inefficient method of displaying an object represented by a VBM when the goal
is to convey the overall shape to the viewer. Even for modern graphics hardware, any VBM with more than

several thousand balls can cause the frame rate to become non-interactive.

The claim that algorithms developed in 2D for VDMs can be easily extended to 3D is only true under lim-
ited circumstances. For example, as discussed in Chapeand 7, when parts-decomposition or topological

processing is required, the 3D methods tend to be much more complex.



1.4 Primary Goals and Contributions

This thesis explores the relationships between the core operations and key shape model properties introduced above,
as pertained to VBMs. Although the focus is on the shape representation rather any particular application, a compu-
tational shape model can only be considered useful and properly validated when applied in practical implementations.
Therefore, the approach of the thesis is to develop a number of representative applications to investigate the key prop-
erties that we are interested in. Each application requires a subset of the key operations and is designed to expose the
strengths and weaknesses of VBMs in the context of the specified shape model propertiesl. Bgjuramarizes the
relationships explored in this thesis. The remainder of this section describes the applications that we have developed,

along with some examples of the results produced by our algorithms.

Shape Model Properties
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Figure 1.5: Relationship between shape model properties and the applications developed for this thesis (“R” = representation,

“SM” = similarity measure)

1.4.1 Image Matching and Interpolation

In this application, we use VBMs to represent 2D images and use Ranjan and Fournier’s similarity measure to establish

shape-based correspondences between image features. The matches are then used to interpolate or rigidly register the
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images. This application is used to establish a performance baseline for the matching method. This work goes beyond
that by Ranjan and Fournier because they focused largely on matching with 2D models; our application uses 3D VBMs
and more challenging data. The primary goal of the experiment is to determine whether VBMs can be used to form
stable and accurate correspondences between 3D object features. The details of this work are found id Chapter

and [L53. Figure1.6shows an example of an image interpolation produced by our algorithm.
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Figure 1.6: An example of the results produced by our image interpolation algorithm; the firstimage and the last image are original,

the rest are interpolated

1.4.2 Shape Model and Threshold Extraction

This application uses VDMs to extract shape information from 2D images. The algorithm detects and extracts signifi-
cant objects from images with reopriori knowledge of the objects being represented, and is designed to test the ability

of the similarity measure to accurately quantify the differences in 2D shapes in the presence of significant variations
in shape complexity and topology; this is markedly different from Ranjan and Fournier's experiments, in which the
shapes used were largely similard, animal silhouettes of the same topology). While the evaluation of the results of
our image matching experiments is largely based on subjective judgment, a more objective and quantitative analysis
is done for this work. Our experimental results for this application are discussed in Chamtefl54. Figurel.7

shows an MRI image and two shape models extracted by our algorithm.

1.4.3 Shape Simplification Based on the Medial Axis

Our experiments with image interpolation and evidence from Ranjan’s dissertB2grshow that grouping primitives
to provide connectivity and topological information can be an important aspect of shape modelling. To this end, we
implement two applications, one working in 2D and the other in 3D, to explore homéukal axis a shape model

widely used to concisely represent topological information, can be used in conjunction with the VBM. The applications
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Figure 1.7: An MRI image and two shape models extracted by our algorithm

are designed to exploit the properties of the two representations in a complementary manner. In both cases, shape
simplification is performed while preserving the topology of the object. The medial axis is computed from the VBM,
then used to enforce topological constraints while the model is simplified.

In addition, both applications demonstrate how a partitioning scheme can be applied to a VBM to facilitate
operations on groups of primitives. In the 2D case, we use local shape information defined on the VDM of a 2D object
to remove noise-type artifacts from the boundary of the object without sacrificing the fine but significant features. This
algorithm is discussed in Chaptérand [L55. While no explicit partitioning is applied, the medial axis is used to
determine how much of the shape information computed in one area of the object can be used in another area of the

object. Figurel.8shows an example of applying our 2D simplification algorithm to a leaf model.

@ (b) © (d)

Figure 1.8: An example of the results produced by our 2D shape simplification algorithm (a) A leaf and its medial axis (b) Denoised
medial axis (c) Denoised medial axis after feature reconstruction to recover fine details (d) Denoised shape with original boundary

superimposed

In the 3D case, the medial axis is decomposed into distinct components before simplification, which helps to

define the features of the object, and makes maintaining the topology of the axis more efficient. The preservation
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of the topology of 3D shapes during processing is a difficult task in general, and the fact that our representation
incorporates this ability is a particularly strong contribution of the thesis. This algorithm is discussed in Ghapter
and [156. Figure1.9shows an example of how our simplification algorithm is able to effectively reduce the amount

of detail in a bunny model.

Surface Reconstructed Strongly Simplified Surface Reconstructed from

Original Medial Axis Simplified Medial Axis

from Boundary Points Medial Axis Strongly Simplified Axis

Figure 1.9: The results of applying our 3D shape simplification algorithm to a bunny model

1.4.4 Surface Reconstruction

While VBMs can be shown to have good approximation properties (Ch&pter polygonal surface of the model
is often desired to enhance its visual quality and display efficiency. In addition, the goal of applications such as
segmentation is to generate an accurate boundary of the object. In CBaptediscuss the two algorithms that we

use for surface reconstruction from VBMSs:

1. We use Amentat als power crustlgorithm [7] in combination with our medial axis-based shape simplification
method to produce polygonal models of the simplified objects. In addition to the VBM of the object, the power
crust algorithm requires a union of balls covering the outside of the object, typically computed from a set of
sample boundary points, in order to compute a surface.

2. We present a novel, compact algorithm for generating a surface from a VBM without the sample points or other
additional information. Figurd.10shows an example of the results produced by our surface reconstruction

algorithm.

1.4.5 Thesis Statement

The primary goal of this thesis is to show that Voronoi Ball Models, by virtue of the existence of a number of key

properties, have the capabilities to be broadly applicable in shape-driven applications in computer graphics, scientific
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Figure 1.10: (a) VBM of a heart (b) Surface reconstructed from the VBM of a heart

visualization and computer vision. The main approach employed is the development of a number of applications

requiring commonly-used shape operations and designed to be challenging for any shape model.

1.5 Document Overview

This dissertation consists of nine chapters. This chapter is the first. The second chapter provides a broad survey of
the related work in computational shape modelling. Chapteutlines our methods for computing VBMs and the
approximation properties of the resulting models. The fourth chapter presents our work with using VBMs for image
matching and interpolation. The fifth chapter analyzes our use of VDMs for extracting shape information from images.
The sixth and seventh chapters discuss our experiments with using the medial axis and VBM together in 2D and 3D.
Chapter8 explains how we compute polygonal surfaces from VBMs. The final chapter presents a summary and our

conclusions.
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Chapter 2

Related Work

This chapter is an overview of the work done by other researchers on topics that are related to this thesis. There has
been a vast amount of research done in the areas of shape representations, shape similarity measures and shape-related
applications. Therefore, it is impractical to mention every publication specifically and we only summarize a number

of key papers and refer the reader to survey papers for a broader perspective where appropriate. However, for the
five applications that we have developed for this thesis, we provide a more detailed summary of the related work in

the appropriate chapters. For the reader interested in a general overview of shape analysis techniques, a good starting

point is the survey by Loncari®[].

2.1 Shape Representations

The numerous approaches to modelling shape can be roughly divided into two categories. One category deals with the
design and use of shape models to perform certain computational tasks, and the other consists of work that attempts
to replicate how humans perceive shape. These categories overlap significantly and there is much current research
that incorporates both of these elements of shape modelling. It should be noted that some of the models discussed
in this chapter are not, strictly speaking, “shape” models as defined in CHapiey are, however, used to perform

shape-related operations and are therefore included for completeness.

2.1.1 Application-Oriented Models
Point-Based Representations

A point-based model consists of samples on the surface or interior of an object. These models are very simple and

are often converted to other types of modelg( via some method of tessellation) for further processing. Landmark-
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based models are a particular type of point-based representation in which the points are located according to some
application-specific rule. For example, points in an object’s contour where the curvature is high are often used as
landmarks. Some areas of shape analysis, suahaphometricge.g, [30, 137), use landmark-based methods

exclusively.

Boundary Representations

Boundary representations,Bireps only represent the contours (2D) or surfaces (3D) of objects. B-reps are composed

of interconnected vertices, edges and faces. Each face usually has a compact mathematical representation in that it
lies on a single planar, quadratic, or parametric surface. The most common face type is the planar triangle. Triangular
meshes are heavily used in graphics rendering. Saetyh [99] for a more thorough description of B-reps and

associated data structures.

Spatial Subdivision Representations

Spatial subdivision representations are computed by dividing the area or volume occupied by the object into cells.
Hoffmann and Rossigna&§] classify subdivision representations into two typbsundary conformingindbound-

ary approximating Examples of boundary conforming subdivision models include meshgs teétrahedral) and

binary space partitioning tree@BSP’9 [110. Examples of boundary approximating representations are grids and
octrees[133. There is a wide range of applications for spatial subdivision models, including finite element anal-

ysis (tetrahedral meshes), hidden surface removal (BSP’s), collision detection (octrees), and various other graphics

applications €.g, [53)).

Deformable and Implicit Models

Deformable models can be curves, surfaces or solid models, although the amount of research done on deformable
curves and surfaces far exceeds the work done on solid ones. The book byGihdgh47] includes a representative
collection of papers on deformable models. Mclnerney and Terzopoulos provide a comprehensive, though somewhat
outdated, survey of deformable models in medical image anali@%. [

The central idea of these methods is the minimization of energy to satisfy the following Euler-Lagrange equation
(for simplicity, the 2D version of the equation is shown here; the 3D version is similar):

stretching bending

"o v, 92 9%V
L—E(wl(s)a) +ﬁ(w2(5)@) +VP(v(s)) =0

N T external forces
internal forces
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wherev(s) = (x(s),y(s))T is a parameterization of the object’s contour, (s) andw-(s) are variable weights
controlling the contour’s “tension” and “rigidity”, respectivel®},is a scalar potential function defined on the image
plane, andV is the gradient operator. The first two terms of the equation represent the internal stretching and bending
forces, respectively, and the third term represents the external forces that couple the model to the image data.

Snakes (2D)15] and superquadricg3D) [158 are classic examples of deformable models. Although success-
fully used for many applications (especially in medical image analysis, where segmentation, registration and motion
tracking are the primary uses of these models), most deformable models suffer from the drawback of not being able to
handle topological changes during model generation or evolution. Mclnerney and Terzopoulos extend standard snakes
and deformable surfaces to make them topologically adapidg L04].

Implicit models P7] are a class of deformable models that are parameterized implicitly. An example is the
level setapproach98, 139 that is most commonly used for segmentation and surface blending. Implicit models can
overcome some of the limitations of traditional parametric deformable models, because they naturally handle topology
changes well, and can represent surfaces with sharp corners and cusps. The main problem with implicit models is that
the typical formulation makes the imposition of topological and geometric constraints more difficult. In addition, the

parameterization does not correspond to an intuitive notion of shape

Medial Axis Representations

Another group of popular shape models are based medial axis(often calledmedial surfacan 3D) or skeleton
representation pioneered by Blum and Na@@& R9]. In 2D, the medial axis of an object is defined as the closure of
the loci of the centres of disks that are maximally inscribed within the object’s region. The medial surface is similarly
defined with balls. The medial axis and the maximal disks/balls are collectively referred toasdtad axis transform
(MAT). Figure2.1a shows the medial axis and two maximal disks of a rectangle.

There are many papers on the computation and application of 2D skeletons. Examples include the work by
Lee B2 and Ogniewicz 117. The 3D skeleton is not nearly as well-studied. Notable papers include those by
Brandt [31], Attali and Montanvert 13, 15], and Amenta and Kollurig, 10]. Other algorithms for calculating the 3D
medial axis include those by Sheediyal.[141] and Sherbrooket al.[142].

One of the major problems with the medial axis representation is its instability with respect to local perturbations
in the object’'s boundary. These perturbations can result in large branches in the medial axis, even if the changes in
the boundary are small. Figuglb shows the result of changing the boundary in Figida by a small amount.
Consequently, a large branch in the medial axis appears. We summarize the related research on the stabilization and
simplification of the medial axis, as well as present our own algorithms, in Ch&joaeis?.

The most comprehensive medial-based approach for shape analysis to date is &t Rizevho propose a
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Figure 2.1: (a) Medial axis of a rectangle (b) Instability of the medial axis

shape model that can be used for various applications in medical image processing (segmentation, registration and
measurement of shape variatidt?p]) and computer graphics (multiscale modelling and renderii&y]). Pizer's
approach represents shapes using interconnéigiees where a figure is a whole object, the main part of an object,

or a protrusion or indentation in another figure (FigRr8. Notable features of this representation include a measure

for the quantification of shape variation, four levels of coarseness for multiscale processing, and positional tolerance
for enhanced stability. One of the drawbacks of the Pizer model is its mathematical comydlégtsrid consequent
computational costs. Another limitation is that the similarity measure only works with objects having the same number

of figures.

Figure 2.2: Example of Pizer’s figural shape, with four figures

18



Comparison of Shape Models

Table2.1 summarizes the strengths and weaknesses of a number of well-known models. We include the VBM for a
direct comparison. The ratings for the VBM are derived from the results of our experiments, presented in subsequent
chapters, while the ratings for the other representations are estimated from a survey of the related literature. In this
table, stability, flexibility , accuracy, complexity, andintuitiveness are key properties discussed in Sectio.2
Generation refers to the ease with which the model can be generated. This takes into account the theoretical com-
plexity of each model, the computational overhead of the algorithms used to create the model, and the amount of user
intervention normally requiredshape Operationgefers to the amount of support the representation has for the shape
operations discussed in Sectibr2.1 The similarity measure(s) most commonly associated with the model, as well as
the completeness of the modek(, whether the model represents the interior as well as the boundary), are among the
important considerations. It should be noted that of all the models in the table, only the last three (deformable models,

figural shape, and VBMSs) are designed with shape operations in mind.

5 28|
22| |2|3|3|58 | &
s/g £ 2|5 |2|g |a¢®
S|z |8 |3 |8|5 |2 |£2
o | O ) [T < | O = n O
Representation
Surface Points G+ G G+ | P P
Surface Mesh G P G G |G M- | P
Octree G P M M- | M M P
Tetrahedra G M- | G G |G M P
Deformable Superquadric M | M+ | M G| M |M+ | M
Figural Shape M- | M+ | M-| G | M- |G G
Voronoi Ball Model G- | G G G |G M+ | G

‘G’ = Good, ‘M’ = Medium, ‘P’ = Poor

Table 2.1: Comparison of common 3D representations used for shape operations, including the VBM
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2.1.2 Visual Form Representations

There has been much research done into how humans perceive shape visually. In this section, we provide a sparse but
representative sampling of the work done in this field by describing a number of shape models related to perception.
The most common application of the computational modelling of visual form is object recognition, with the most
popular approach being based on the decompoasition of an object into its parts. Therefore, the work cited in this section
reflects an emphasis in this area. Siddigi and Kimia provide an overview of shape partitioning techibiduiesor

a broader perspective of visual perception and recognition, the reader is refert&d2s P1, 94, 100, 173 and the
references therein.

o Biederman’s theory of human perception and recognititsh $tates that objects are represented as an arrange-
ment of simple convex shape primitives caltpebns Examples of geons include bricks, cylinders, wedges, and
cones.

¢ Koenderink and van Doorn observe that a 3D shape is perceived as a composition of elliptical regions and
suggest a decomposition of the shape along parabolic litgs [

¢ Hoffman and Richards propose an approdfj in which the decomposition into parts is not based on the shape

of primitives, but rather on the curvature properties of the object boundaries (Rigure

i
v

Figure 2.3: Example of Hoffman and Richard’s partitioning scheme

o Leyton models parts of objects as historipabcesse$87]; that is, the parts of an objects are the consequences
of the object growing and evolving.

e Burbecket al. provide evidence that humans recognize the shape of a figure by linking opposing boundaries
in the figure B5, 36]. This is part of the motivation for the medial-based representation knownoras This
representation leads naturally to a partitioning of the shape along branch points of the axis.

e Siddiqi et al. propose a model for shape perceptidd4, 146 that is based on a continuum between the
parts (e.g, Biederman) angbrotrusions(e.g, Leyton) extremes. This continuum is part of tsleape triangle
(Figure 2.4a), whose third node is thgendsnode. Their model is based shockq 78], or entropy-satisfying
singularities, formed during the evolution of curves. They present a partitioning scheme that focuses on the parts

node of the shape triangle and involves two types of padsk-base@ndlimb-basedFigures2.4b and2.4c).
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In addition, they propose the use siiock graphg145, which in addition to parts also represent bends and

protrusions, for shape matching.

he
Shape
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Figure 2.4: (a) Siddigi and Kimia’s Shape Triangle (b) Neck-based parts (c) Limb-based parts

2.2 Shape Similarity Measures

The area of shape similarity measures is very broad and in the case of 2D measures, very well-studied. A significant
amount of work has been done in the use of global shape parameters for determining similarity and for matching.
Methods using this approach typically describe an object by decomposing the data into a number of feature vectors.
The similarity measure or matching algorithm then operates in this feature space. Examples of the types of fea-
tures used includenomentge.g, [39]), principal componentgigenvectorge.g, [134]), and curvature scale space

(e.g, [106]). The main problem with these feature vectors is that they provide the user with little geometric intuition.
The similarity measures that we are most interested in are the ones that operate in geometric space. These measures
can be roughly divided into two typestatistical similarity measures angeometricsimilarity measures. Statistical
similarity measures often have little to no basis in human perception, and rely on the large number of samples used
to compensate for their sensitivity to outliers. In contrast, geometric similarity measures, which are the focus of our
research, usually possess more properties such as stability and flexibility that make them more effective for a smaller
number of samples and a wider variety of data. However, the difference between statistical and geometric measures
is not always distinct, as there are a number of similarity measures that are used for both types of analysis. For more
information on statistical shape analysis, the papers by Books€jnLjorenz and Krahnsgiver [93] and Cootes and

Taylor [42] are good starting points.
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2.2.1 2D Similarity Measures

The vast majority of the research on shape similarity measures has been on 2D point sets, curves and polygons. In this
section, we summarize the major issues addressed by other researchers and their approaches for developing similarity
measures.

Basriet al. provide a survey19, 20] of methods for determining the similarity between deformable shapes.
They describe a number of possibly desirable constraints for similarity measures. The authors observe that several
of their constraints are incompatible with each other and cannot all be satisfied at the same time, which points out
the difficulty of formulating a similarity measure that works well in all situations. Some of the proposed constraints
are designed to help capture the parts-based nature of objects without requiring the explicit decomposition of shapes
into parts. Among the other constraints proposed are continudty if the shapes change smoothly, so should the
measure), invariance (with respect to certain classes of transformations), and metric properties. The focus of their
research is oelastic matchinge.qg, [37, 73]), an approach that computes the similarity of two shapes as the sum of
local deformations required to change one shape into the other. They propose several cost functions, using physical
models of the object boundaries that incorposttetchingandbendingcomponents, that meet most of the constraints.

An important question that is brought up by the authors is whether shapes are best compared by their interiors

or their boundaries. Figur2.5, copied from RQ], shows an example of where a similarity measure using the elastic

7330 Sepl

Figure 2.5: Example for which an interior-based similarity measure may be better than a boundary-based one

matching approach may fail. Two different shapes are produced from a single shape by applying the same deformations
to different parts of the object’s contour. In each case, the boundary is vertically stretched in two places. Because the
local distortions required to produce the two shapes are the same, a similarity measure based on local deformations
may report them as being equally different from the original shape, even though perceptually the shape on the right
is likely more distorted for most viewers. In this case, a measure that compares the interiors of the shapes is likely to
have a more accurate result. However, in some cases using the boundary may be a better approa2té, Biguilee

to one shown in2Q], illustrates this point. The left-most object and the middle one differ very little in terms of local
deformations to the interior. There is greater distortion in the interior when comparing the left-most and right-most
objects. A similarity measure that compares shapes based on their interiors may report the middle object to be closer in

shape to the left-most object, even though most observers would say that the right-most object is closer. A boundary-
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Figure 2.6: Example for which a boundary-based similarity measure may be better than an interior-based one

based measure may be preferable in this case. These two examples can be used to illustrate another important point,
which is the fact that local deformations alone are often inadequate for making judgments in shape similarity. Whether
we are using a boundary-based or interior-based measure, taking into account global distortions and properties such
as symmetry and collinearity could affect the results, and may give answers that are more perceptually intuitive.

Mumford gives a summary and comparison of six very different approaches to defining similarity mea-
sures 0§. These approaches are (given thaiB C R? are the shapes to be compared):

1. Hausdorff metric:
Anausdorl A, B) = sup [ inf [[x1 _X2||:| + sup[ inf [lx1 —lel]
x1€A | X2€B x,€B | X1€A
This commonly-used distance is very sensitive to outlier points.

2. Template metrigarea of symmetric differentée.g, [3]):
dtemplad A, B) = ared A — B) + aredB — A)

In contrast to the Hausdorff metric, the template metric is very resistant to outliers.
3. Transport metrid54:
dyanspol A, B) = ian J llx1 — x2ll - dp(x1,x2)
P Jals

wherep is a probability measure aa x B such that

_aredUp)
JA JUB dp(Xl,Xz) = 7&[‘8&3) , Up<B andUB (t A

_aredUyx)
JUA J; dp(Xl,Xz) = 7&'66(14) , UscA andUA (t B

A physical analogy for this metric is to think of shapeas being filled uniformly with a mass and the metric
calculates the amount of work needed to move the mass so that B filliformly. The transport metric is
regarded as a good compromise between the Hausdorff and template metrics.

4. Optimal diffeomorphism
s 2 -1 2
oA, B) = nf UA 1TblI% + L 17(d I ]
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where¢ : A — Bis a 1- 1, onto differentiable map with differentiable inverge® andJ is the matrix of first
derivatives. The mag can be chosen so that the similarity measure models the energy of elastic deformations.
By definition, the shapes to be compared must be topologically equivalent, or the measure reports them to be
infinitely far apart.

5. Maps with tears

Amwit(A,B) = inf aredsS)
SCAXB

whereS is a surface that represents an invertible map betweamdB. S has “tears” where there are mis-
matches between andB. These “tears” allow this similarity measure to compare objects of differing topology.
When comparing objects of equivalent topology, this measure gives similar results to that of the transport metric.
6. Graph matchinde.g, [89)):
dgm (A, B) = bpm(Is,Ip)

wherely is a graph attached to the shaevhere the nodes represent the partXadnd the edges represent
adjacency or inclusion of the parts, and bpm is a measure of the best partial match between the two given graphs.
The main problem with this approach is that the parts decomposition process can be very unstable in that small

changes can result in a major reorganization of the parts-graph.

Mumford asserts that any successful theory of shape description must include considerations of the features of
the boundary as well as the interior of the object. In addition, he emphasizes the importance of multiscale analysis.
He states that satisfying these two conditions tends to give the associated measures the ability to handle much more
effectively the variations in data caused by noise, changes in perspective, partial ocdtesion,

Veltkamp and Hagedoorn summarize a number of similarity measures for 2D polygons, curves and tégjons [

162. The emphasis of this work is on techniques from computational geometry. Among the measures discussed
are relatively popular ones such as fhg-distance(e.g, p = 2 gives the Euclidean distancépttleneck distance
andFréchet distancée.g, [5]), as well as lesser-known ones such asriftection metrid62]. They rate many of
the commonly-used measures on their stability with respect to small deformations, blurring, cracking, and noise. The
authors also provide a list of desirable qualities for similarity measures, and give a set of constructions for manipulating

measures, such as remapping and normalization methods.
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2.2.2 3D Similarity Measures

The amount of research done on 3D similarity measures has been far less than that done for 2D. Some of the 2D
measures described above, such as the bottleneck and Hausdorff distances, extend naturally to 3D, while others, such as
ones based on the turning function, cannot be extended directly because of the lack of an appropriate parameterization.

In this section, we describe a number of notable methods designed to work in 3D.

e Some researchers use a voxel-based approach to defining a similarity measure in order to avoiding the parame-
terization problem. For example, Bribiesca propose a mea8df¢hjat can be seen as a 3D discretized version

of the transport metric.

e Methods for matching deformable models typically consist of the extraction of characteristic contours or curves,
followed by the application of an algorithne.g, elastic matching) to find corresponding pairs of the extracted
parts. This is the most popular approach for the shape matching of volumetric data in medical image analysis.

For example, Bajcsy and Ko®i& use a multiscale techniquéd] for brain scan registration.

e Some measures are based on skeletal models. For exampleetateuse their figural shape representation
to determine shape similaritg 22 by first matching the figures between objects, then summing the differences
in local shape parameter values in the matched figures. They propose this method for use in template-based

segmentation and non-rigid registration.

e Ohbuchiet al. propose a humber of different techniqué4$, 116, 117] for determining the shape similarity
of 3D “polygonal soup” models. One such approach utilizes distances of the object’s surface from the principal

axes to form a feature vector, while another uses alpha shdpgés [derive a multiresolution shape descriptor.

e A number of researchers usgpology matchingo quantify shape differences. The main idea of this approach
is to partition each object in a way such that a graph of the parts can be built to represent the topology of the
object. The nodes of the graphs of the objects to be compared are then matched to estimate the similarity in

shape. Examples of algorithms that use topology matching include that by leilad66] and Bespalowet
al. [22].

e Some methods are designed to facilitate fast similarity estimation, for tasks such as 3D database queries. An
abstractedhape descriptom the form of a function defined on a canonical domain is often used to facilitate
the comparison of various aspects of shape. For example, a number of approaches use spherical functions
(e.g, directional histogranj90], curvature distribution143 171]). Kazhdanet al.[76] usespherical harmonics

to transform rotationally dependent spherical shape descriptors into rotationally invariant ones.
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e Osadaet al.[119 represent the signature of a polygonal object abape distributiorsampled from ahape
functionmeasuring global geometric properties of an object. The shape difference between two objects is then
computed via a comparison of their shape distributions. Examples of shape functions include the distance
between two random points on the surface, the angle between three random points on the surface, and the area

of the triangle formed by three random points on the surface.

2.2.3 Matching Methods

The distance functions described above measure the shape difference between two objects, but some of them do not
solve thecorrespondenc@roblem {.e., provide a matching between parts). There is a wide range of methods for
matching, including some well-known approaches such as graph buitgiogyetric hashin§l67], and thealignment
method[72]. For surveys on matching techniques, the reader is referred to the papers by Alt and @dnas |
Veltkamp and Hagedoorri§1].

2.3 Application-Specific Research

This section gives an overview of the work done in shape modelling for several popular applications in graphics,
visualization and vision. For certain applications, such as segmentation, object recognition, and registration, only
survey papers are cited because a thorough summary is out of the scope of this dissertation. As mentioned previously,
for the five applications that we have developed for this thesis, we provide a more detailed overview of the related

work in the appropriate chapters.

2.3.1 Computer Graphics and Visualization
Object Metamorphosis

o Examples of work on 2D shape blending of polygons include that by Sedezbakg135 136.

¢ Papers on blending of 3D surfaces include that by Kemal. [77] (polyhedral objects) and DeCarlo and
Metaxas £#3] (deformable models).

¢ Alt and Guibas summarize a humber of techniqugsfgr shape matching and interpolation from computer
graphics and computational geometry.

e Lazarus and Verroust survey the major technig&akfpr 3D shape metamorphosis used in computer graphics.
The approaches discussed are categorized based on the object representation (volume-based, boundary-based,

and elevation maps).
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e Treeceet al. propose a methodlp9 to perform voxel-based object metamorphosis using spheres to compute

the correspondences between regions.

Image Matching and Interpolation

¢ Shape interpolation is sometimes utilized by image morphing techniques. Wolberg provides a &6dey [
165 of image morphing methods. Practically all of the techniques discussed require explicit manual feature
matching. A more detailed summary of image interpolation techniques is given in Sé@&ion

e Feature matching and image morphing are often used for panatitetangin image-based rendering applica-
tions .9, [34, 105, 152).

Other Work

o Pizeret al.[125 use figural shape to represent objects for object design, rendering and physically based opera-
tions.

o Storti et al. discuss the use of skeleton-based modelling operations on stid Fuch as level-of-detalil
control, shape interpolation and shape synthesis.

o Free-form deformations are a popular group of methods for the manipulation of object geometry. Early examples
include work by Sederberg and Parfy3[/] and Hsuet al.[69].

e There are a number of papers, such as those by Fretka53] and Adams and Dué[2], that present models
that enable efficient operations such as inside/outside and proximity tests, boolean operations, ldending,
The range of operations supported is typically narrow, and most of these models are not designed to support
shape matching.

e Hart surveys the method63] for controlling connectedness for shape modelling when using recurrent (fractal)

models and implicit surfaces.

2.3.2 Computer Vision
Segmentation

For a broad survey of image segmentation techniques, the reader is referred to the papers by Acharya adfi Menon][
and Phanet al.[121]. Although the focus of these papers is on biomedical images, most of the methods discussed are
generally applicable. Segmentation techniques range from very simple and general techniques, such as thresholding, to

very complex and domain-specific methods, such as expert-systems. Deformable models are the most popular type of

27



shape model used for segmentation.etal. have written a tutorial/reviewd[7(] on the use of deformable models for

medical image segmentation. The use of shape models for segmentation purposes is discussed further3r2Section

Object Recognition

Shape models for recognition are often based on theories of human perception. The general consensus seems to be
that parts-based representations are the most appropriate for matching during recognition, especially in the face of

occlusion, deletion of portions of objecttc

e The survey paper on computational strategies for object recognition by Seet@ingL5Q is well-written but
somewhat outdated now. The methods discussed are divided into four classes: simple strategies that use feature
vector classification, methods that work on reliable data and complex models, methods that work on noisy data

and simple models, and combinations of these strategies.

e Ponceet al. have a paperl2§ discussing the role of shape models in object recognition. This paper focuses on
the use ofyeneralized cylinderandevolving surfaceswhich is an approach that analyzes the singularities of a

surface as it evolves under some family of deformations.

e Dickinson’s survey 85] discusses several key components of an object recognition system (object representa-
tion, feature extraction, database organization, model indexing). He provides a comparison of several major
object representationg.@, points, contours, surfaces, deformable models, superquadrics, geons and general-

ized cylinders), focusing on how their properties such as primitive complexity affect the recognition process.

e Forsythet al. examine the role of primitives and perceptual organization in object recogni@n [They
discuss issues in object recognition such as alignment theories, viewpoint dependence, volumetric primitives for

structural representation, and 2D versus 3D representations.

e Campbell and Flynn survey the major representations and techni@lessgd for the recognition of free-form
objects. They review the construction methods and the strengths and weaknesses of parametric and implicit
surfaces, superquadrics, generalized cylinders, and polygonal meshes. They also discusap@eerasce-

basedrecognition systems, as well as technigues that match objects in range data using geometric features.

Registration

The most exhaustive surveys on image registration are by Br8@mahd Maintz and Viergever9[/]. Maintz and
Viergever focus on medical image data, and mainly discuss papers published after 1993. Brown’s paper summarizes

publications before 1992, and is more general. Brown views registration methods as different combinations of choices
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of four components: a feature space, a search space, a search strategy, and a similarity measure, and she groups
registration methods into four categories: correlation and sequential methods, Fourier methods, point mapping, and

elastic model-based matching. The methods discussed by Maintz and Viergever can be classified as follows:
1. Landmark-based

i. Anatomical

ii. Geometrical
2. Segmentation-based

i. Rigid models

ii. Deformable models
3. Voxel property-based

i. Reduction to scalars/vectors (moments, principal axes)

ii. Using full image content

Because we are focusing on the use of shape models, the approaches that are the most closely related to our work are

segmentation-based methods using non-rigid models.
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Chapter 3

Computation and Approximation Properties of

Voronoi Ball Models

In this chapter, we explain how Voronoi ball models are computed. We discuss the primary methods of construction
used in this thesis and their approximation properties. Many of our algorithms used are grounded in theory from
computational geometry. As evident in later chapters, the result of choosing a geometric approach is that many of
our methods are combinatorial in nature and provably correct, and avoid the problems in precision that plague many

numerically-based methods.

3.1 Computation

VBM computation consists of three basic steps, and starts with a set of sample points on the boundary of an object.
The first step is to compute the Delaunay tessellation (defined in Se&tioh of the point set. The second step
is to compute the circumscribing ball of each tetrahedron (triangle in 2D). The last step is to discard all balls that
are “outside” of the object, which requires an inside/outside test. The remaining balls form the VBM. All of our
algorithms employ this basic procedure for computing VBMs; the only significant differences are in the inside/outside
test. Figure3.lillustrates the process in 2D; a VDM model is computed from the boundary points outlining the shape
of the province of British Columbia. In this case, a disk is considered inside the object if the corresponding Delaunay
triangle is inside.

We assume that the boundary points of a given object are readily available or easily computed. For example,
laser scanners can produce dense points that can be used directly. Other common sources of data include surface

data €.g, polygonal meshes), volumetric daed, CT or MRI scans), and 2D image data. For polygonal meshes,
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Boundary Delaunay Inside Voronoi Disk
Points Triangulation Triangles Model

Figure 3.1: Computation of a Voronoi Disk Model

the vertices of the mesh can be used, with additional points computed by subdivision if necessary. For other types
of surface data, such as those composed of curved patches, points can be generated by ray-casting the model from
different directions. For volumetric data, boundary points are typically computed by interpolation between the inside

and outside voxels. The two types of data primarily used in this thesis are volumetric and laser scan data.

3.1.1 Voronoi Diagram

LetP = {ps,..., px} be afinite set of distinct points iR", with the assumption that no four points are cosphetical.

Letxy,..., Xk be the location vectors of the pointsit The region defined by
V(pi) = IXld(x,x) < d(x,%),Vj =i}

whered is the Euclidean distance function, is called Yfoeonoi regionof the pointp;. Simply put, the Voronoi region
of p; is the set of all points iR™ that are closer tp; than another other point iR. Some researchers choose to

define Voronoi regions as open sets; we choose to define them as closed. The union of the Voronoi regions
k
Ve =Jvip)
i-1

is called the Voronoi diagram of the point g&t Figure3.2a shows the 2D Voronoi diagram of a set of 12 points. A

good overview of Voronoi diagrams and their application in many areas can be found in the work byeD&iafl §.
TheDelaunay tessellatio (P) is defined to be the straight line dual of the Voronoi diagranRelaunay edge

exists between two poings; andp j if and only if V(p;) andV (p ;) share an edge in the Voronoi diagram. FigBu2o

1Where necessary, this constraint can be overcome by numerical or symbolic perturbation of the point le&8tions [

31



@

Figure 3.2: (a) Voronoi diagram (b) Delaunay triangulation

shows the dual of the Voronoi diagram in Fig@@a. A very useful property of the Delaunay triangulation is¢hgty
circle property which states that the circumscribing circle of a Delaunay triangle does not contain any péimthef

than the three vertices of the triangle. This property is also true for the higher dimensions.

Power Diagram

Thepower diagram17] is a generalized Voronoi diagram that is computed on a set of weighted points. The dual of
the power diagram is theeightedor regular Delaunay triangulation. The weighted Delaunay triangulation is used
in the algorithms presented in Chaptérand8, where it is applied to VBMs by using the radii of the balls as weights.

In a power diagram, thpower distanceas used in place of the Euclidean distance. Given a set tflls
iby,..., by} with centres{xy,...,xn} and radii{ry,..., 7y}, the power distancer (b;, b;) between any two balls
b; andbj is defined as

2
(b, bj) = IIx — X I* = % — rj2

Two ballsb; andb; are calledbrthogonalif 7t (b;, bj) = 0. Figure3.3shows a power diagram computed from eight
disks.

The (weighted) Delaunay triangulation has sometimes been avoided because of its theoretically high computa-
tional cost. The tessellation of a setmfpoints in 3D can have size and running time@frn?) in the worst case.
However, in practice, when using surface point data, the size and running time are typically observed to be close
to linear, suggesting a very reasonablén) behaviour in most cases. We use the Computational Geometry Algo-
rithms Library (CGAL), which implements a versio#4] of the randomized incremental algorithi] for Delaunay

triangulations. This implementation has been documented to have linear behd@our [
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Figure 3.3: Power diagram of eight disks

3.1.2 Ball Classification

This process involves filtering out all of the Voronoi balls that should be considered outside of the object’s boundary.
In this section, we describe the two major approaches that we use for classifying balls. One is by R2ghjahd

other by Amentaet al. [6, 9].

Unions of Spheres

Ranjan’s approachlP9 used a different inside/outside test for each type of data. We describe his ball labelling

methods for volumetric data, range data and polygonal meshes:

e For volumetric data, if the computed boundary points are sufficiently dense, then each ball can only contain
either inside or outside voxels, because by the empty sphere property of the Delaunay triangulation no ball can
contain any boundary points in its interior. Therefore, a simple inside/outside test can be performed whereby the
ball receives the same label as any one of its voxels (typically the voxel nearest the centre of the ball is used). We
employ this method for producing the VBMs used in the image interpolation algorithm discussed in @Ghapter

o For range/laser-scanned data, the use of visibility information is required to classify the balls. We do not use
this procedure in our work (we use the polar ball method, described in the next section), but we include it here

for completeness. For each ball, the four points used to define it are processed in the following manner:

1. The scan direction for each point is found.
2. The vector from the centre of the ball to each point is computed. This is an estimated surface normal.
3. For each point, take the dot product of the scan direction with the surface normal. If any of the four dot

products are positive, the ball is classified as outside.
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This process eliminates most of the outside balls, but occasionally a ray-casting procedure is used in a followup
phase to check that any point on the visible surface of the model should be within a certain distance of a sampled
boundary point.

¢ For polygonal meshes, the test is similar to that for range data. The same three steps listed above are followed,
except that instead of the scan direction, the surface normals of the polygons at the four sample points used to
define the ball are used to provide the visibility information. The surface normals are assumed to be oriented

consistently.

Polar Balls

Amentaet al.[6, 9] have developed a robust method for computing a VBM, usingttesof the sample points. The
poles of a boundary sampleare defined as the farthest Voronoi vertex frerim the interior of the object and the
farthest Voronoi vertex from in the exterior of the object. Thus, each sample normally hasreer poleand anouter
pole In 2D, all Voronoi vertices are poles, but not in 3D. The balls centred at the poles are paldedalls To

find the poles, the Voronoi vertex offurthest froms is selected as the first pojg ; the second pole is selected from
the remaining vertices such thatzvsp; > % If the orientation of the object’s surface is known, it can be used to
determine which pole is inside or outside. If the orientation is unknag, Enly the sample points are given), then

they use the following procedure:

1. To avoid dealing with infinity, they add four points to the sample set. The added points form a large bounding
box around the object, and result in polar balls that are known to be outside the object.

2. According to the theory by Amenta and Befj, [given sufficiently dense sampling the interior and exterior polar
balls should intersect only very shallowly, if at all. This condition is defined more precisely in S&cHdh
Therefore, the balls can be labelled by starting with the known exterior balls and their interior counterparts, then

propagating the labels appropriately to their neighbours.

This method of ball labelling is typically more robust and efficient than most of the inside/outside tests mentioned
above. In addition, it has been shown that the interior polar balls actually give a provably better approximation of the
object’s boundary than the full set of interior Voronoi balls computed by most other me@jo#équre3.4illustrates
this difference. The VBM in Figur8.4a uses the entire set of interior balls, and shows the typical artifacts of such a
construction; the “warts” on the foot are the result of discretization, and would appaay fxtite sampling density.
Figure 3.4b, computed from the same data set but composed only of polar balls, has a much smoother appearance,
many fewer balls, and is likely to be more usable for many shape-driven applications.

In addition to giving a better representation of the object’s boundary, the polar balls of an object also allow for

the more accurate approximation of the medial axis of the object. Given sufficient samplingrstiape 47] and
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Figure 3.4: (a) Voronoi balls (10,903) (b) Voronoi polar balls (2,931) (images fréf [

the medial axis of the interior polar balls have both been proven to be homotopy equivalent to the originaBpbject [

In fact, the centres of the balls converge to the true medial axis of the object as the sampling density irgjreases [
A number of previous attempts at using the Voronoi diagram to approximate the medial axis rely on the incorrect
claim [59 that convergence occurs even if the full set of interior balls is used. Because of its robustness, efficiency

and convergence properties, we use the polar ball approach in our algorithm discussed inThapter

3.2 Approximation Properties

It has been shown by a number of researchers that the approximation errors of VBMs are bounded, given certain
conditions on the sampling density of the boundary points with respect to the complexity of the shape. The types of
data used for our work allow us to ensure quite easily that the models are adequately sampled. We provide the error
bounds here in order to show that using VDMs/VBMs in our algorithms does not introduce an undue amount of error,
and to establish a foundation for future work in the detection and handling of undersampling.

For the following discussion, we use this notatioW is the object being approximate, is the boundary of
W,S = {s;,i=1,...,n} is the set ofn sample points o used to construct the VBM, ardiis the approximation

error, defined to be the maximum distance between any point on the boundary of the VBM and its closestlpoint on

3.2.1 Union of Circles/Spheres

The concept of the-regular object, introduced in mathematical morpholodg§, is utilized in Ranjan’s work as a
way to characterize the complexity of the object’s shape. An object is saidneadgular if it is morphologically open

and closed with respect to a disk of radius> 0. Simply put, this means that the curvature of the object’s boundary
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cannot be greater thaih anywhere, and the object cannot have a narrowing smaller thar-@jure 3.5 shows an

example of arr-regular object.

G

Figure 3.5: An r-regular object

For the 2D case, the following result has been proven for VDMs. U8itmdenote the sampling density 8f

(defined to be the maximum distance between sample points):

Theorem 3.1 (Ranjan fLl29) If the underlying object being approximatedsregular, and the sampling density

conditiond < 7 holds, then the erroe in the VDM is less than or equal i®.

Clearly, as the shape complexity increasegyéts smaller)9 must get smaller in order to maintain the same

amount of error. For 3D, the following gives the error bound for a VBM computed from volumetric data:

Theorem 3.2 (Ranjan [L29) Given anr-regular object W, let there be a volumetric sampling 3 on a regular
grid of cell size ¢ x ¢ X ¢), where each voxel is classified as “inside” or “outside”. Let the boundary of the object be
sampled by computing points between all neighbouring (in the six-connected sense) inside and outside pairs of voxels.

If c <= %ér, then the VBM approximation erraris less than or equal te/3c.

Our algorithms presented in Chaptdrand5 use the method described in Sectibd.1to simplify VBMs. The

error introduced by this simplification process is also bounded:

Theorem 3.3 (Ranjan [L29)) Given an objectW, let "V be a VBM representingV with the approximation errok.
Let V' be the simplified VBM computed by clusteribigwith a sphericity ofo. The error bound (maximum distance
between the boundaries of the original and simplified models)fbiis € + 21/11%’, wherer is the radius of the

largest ball inV.
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3.2.2 Polar Balls

This section summarizes the work by Amenta and Béfafd Amenta and Kollurig], who compute the error bounds

for VBMs composed of polar balls. Their approach is based on proving that as sampling density increases, the interior
polar balls become increasingly more accurate approximations of the maximal balls of the medial axis transform. With
infinite sampling, the boundary of the medial balls form the exact boundary the object. Before the error bound is given,
some definitions are needed:

Definition: TheLocal Feature Sizat a pointw € W (LFSw)) is the distance fronw to the nearest poin,, of the

medial axis ofW. TheLFS(w) can also be thought of as the radius of the medial ball centrpg and touchingw .
ThelLFSis a local measure of the “level of detail”. Thé&S decreases when the curvature of the boundary is high or
when two patches of the surface are close together. Amenta and Bern then define their measure of samplirg density
as a function of th&FS;

Definition: The set of point$ < W is called arnv-sampleif the distance from any point € W to its closest sample

in S is at most a constant fractiantimesLFS(x).

Alternatively stated, ag gets smaller, the distance between any point on the boundary of the object and its
closest sample point also gets smaller, relative td_th& For this to be true for all of the points d#f, the sampling
density must increase. The dependence orLEfis Amenta and Bern’s way of specifying the sampling constraint
as a function of the local shape complexity. As thH€S decreases, the sampling should be increased. This use of the
local shape is in contrast to Ranjan’s approach, which imposes a lower limit on the sampling density for the entire
surface.

For the following two theorems, it is assumed that the inner and outer polar balls are computed fra@raple

. 1
S, withr < 5.

Theorem 3.4 (Amenta and Kolluri [9]) LetU; andU, be the boundaries of the unions of the inner and outer polar
balls, respectively. The distaneefrom a pointu € U; or u € U, to its closest pointx on the surfaceV is
O (r)LFS(x).

As mentioned in SectioB.1.2 given sufficient sampling.€., S is anr-sample), the inner and outer polar balls

only intersect shallowly, if at all. This condition is defined more precisely by the following:

Theorem 3.5 (Amentaet al.[8]) Let By be an inside polar ball and3p be an outside polar ball. 1B; and Bp

intersect, andx is the angle of intersection, them = O (7).
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Chapter 4

Image Matching, Interpolation and

Rigid Registration

4.1 Motivation

Shape matching deserves special consideration in the design of a multipurpose shape model, because it is the core
process of many shape-driven applications. The shape model used directly affects the type of similarity measure
that can be applied. For example, landmark-based representations frequently have similarity measures, such as the
Hausdorff distanceg(g, [71]), that are very sensitive to outliers. Because the similarity measure computes the shape
distance between objects or parts of objects, it determines the matches and is therefore critical to the performance of
the matching algorithm.

This chapter describes an algorithm that we have developed to test the capabilities of VBMs for solving the 3D
shape correspondence problem. This algorithm, originally presented with preliminary resab§)iruses Ranjan
and Fournier’s similarity measure to determine the feature matches in order to perform image interpadatioro(-
phing”) and rigid registration. A 3D representation of each image is created by constructing a height field from the
pixel values. We use image interpolation because it is a popular application that has proved challenging for many
methods. In addition, mismatches are usually easily noticed in the images, unlike in VBM model space, where cor-
respondence errors can sometimes be hidden, especially where there is a large number of primitives. Through this
experiment we qualitatively assess the similarity measure’s ability to determine accurate and stable correspondences
between two given shapes.

Our work extends that by Ranjan and Fournier in a number of significant ways. Their work focused largely on

using 2D models for shape matching; although a number of simple 3D experiments were done, the test cases used made
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mismatches difficult to identify. We use 3D models to perform matching, without Ranjan and Fournier’s prealignment
step discussed in Sectigh4.2 In addition, our data is considerably more challenging, especially considering that
image matching is not a purely shape-driven application. We also examine the degree of control the user has over the

matching process via the selection of parameter values.

4.1.1 VBM Properties

A number of properties make the use of VBMs in shape matching and interpolation advantageous as compared to
other representations, and we exploit these properties in our image interpolation algorithm. Ranjan showed that VBM
models are measurably stable with respect to small changes in the input data when using their similarity tr#Ghsure [
Figure4.1 shows an example of how a VBM changes as its boundary points are perturbed. In this case, the model is
computed from 15,277 boundary points. The points are then randomly perturbed by amounts ranging from 0.1% to
1.0% of the shortest side of the bounding box. For each point set, the VBM is computed (resulting in about 40,000
balls each), then simplified to about 100 balls. The similarity measure is then applied to determine the amount of shape

change resulting from the induced noise.

014 | | | | | 1
012 | 1
010 | 1
008 o e e
0.06 | 1
004 | 1

Ranjan-Fournier Distance

0.02 - 1

0'00 1 1 1 1
0.00 5.00 10.00 15.00 20.00 25.00

Average Point Distance (x 1000)

Figure 4.1: Example of VBM stability (data taken fromip9)

In addition to random perturbation of the boundary points, the VBM representation is also measurably stable
with respect to small changes caused by shape-preserving transformations, and distortions such as shearing. Even
though no representation is immune to very large changes (features can actually appear or disappear as a result of
such changes), in most of the cases that we have studied the VBM representation allows for the reliable and intuitive
prediction of how the model will change in response. Having determined that VBMs are generally stable with the given
measure, we focus on testing the accuracy of the correspondences and their stability with respect to the parameters

used in the similarity measure.
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In addition to stability, Ranjan noted several other advantages to using VBMs for shape interpd2on [

e VBMs can be simplified, so the interpolation can be made at various levels of detail.

Using a union of closed primitives eliminates the problems of tearing and self-intersection associated with

surface-based methods.

The number of primitives in the intermediate shapes are on the same order as the original models.

The intermediate shapes are not wildly distorted compared to the original objects.

The similarity measure allows some control over the interpolation.

4.2 Background

The general objective of 2D image interpolation is to derive a number of intermediate images between a beginning
image and an end image. There are numerous applications for image interpolation, ranging from aesthetic purposes
(e.g, morphing) to scientific visualizatiore(g, 3D volumetric reconstruction from 2D slices). Although the require-
ments for an interpolation algorithm vary somewhat with the application, there are a number of elements considered
desirable in most cases. The interpolation of images requires a matching of features that can be humanly identified as
having a certain degree of similarity. Most people would consider the shapes of objects to be an important criterion for
feature matching. Therefore, in order for an algorithm to generate “good” interpolations, it should take into account
similarities in shape. Partly because of their importance to image interpolation, the representation and matching of
shapes have been the focal points of intense study. Many successful algorithms have been developed to interpolate
between objects, but many of these methods rely on the user to specify the features and often the correspondences
between them. Manual specification of features can be a labour-intensive task, especially for complex images. On the
other hand, there are algorithms that attempt to automatically extract all of the matchable features from images. Some
commonly used features include points, edges, corners, and skeletons. A common problem with feature extraction
methods is instability with respect to changes in the input data. For example, rescaling the intensities in a greyscale
image can cause an edge detection algorithm to output a different set of edges. Ideally, an algorithm should require
little or no user assistance in forming a representation of the image features, but should have enough stability to be
able to handle reasonably large variations in input data. We present an approach to image interpolation that focuses on

stability and accurate matching. The main idea is to use VBMs to represent and match image features.
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4.3 Related Work

There is a large amount of literature that is related to image matching and interpolation, so only a summary of the
major techniques is given here. Although some of approaches mentioned are not, strictly speaking, shape-based, they
are included for completeness. A good starting point for information on image morphing techniques are the surveys
by Wolberg [L64, 165; most of the techniques he discusses require manual feature matching.

The most popular methods of image interpolation use specialized matching primitives drawn by the user, such
as points 148, line segmentsd1, 84], or curves B3]. In some casese(g, [83]), energy-minimizing splines are
used to assist the user in marking image features. After the user specifies the matadresuactionis generated to
interpolate the positions of the marked features. Such functions typically operate on a control lattice such as a thin plate
spline €.g, [64]). In general, these algorithms are effective when dealing with object features that are well-defined
and relatively straightforward to specify interactively. The facial images in4=&p. are examples of images with such
features. The CT images in Fig.6b are examples of images for which the interactive specification of features can be
problematic and labour-intensive, because some of the objects are very small and have fuzzy boundaries.

A number of the more recent methods in image interpolation, including ours, aim to minimize the amount of user
input. Many such methods borrow ideas from related fields in computer vision, such as image regiSBa8idn An
example of such an approach is by Gao and Sederb&g $ince the original publication of our algorithrh§3, a
number of powerful techniques for image matching have been proposed. Most recently95bpegents a method
for extracting highly distinctive features from images for use in matching and recognition. These features are invariant

to image scale and rotation, and have been shown to provide robust matching.

4.4 Ranjan and Fournier's Matching Algorithm

In this section, we summarize Ranjan and Fournier's method for shape matching using VBMs. The central idea is
to represent each object by a VBM, and apply the similarity measure to form correspondences between balls in the
two VBMs being matched. The similarity measure has a number of parameters to give the user some control of the
matching process. A simplification process that reduces redundancy is usually applied before the matching in order to

increase stability. More details on the basic approach can be fouda@130.

4.4.1 Simplification Algorithm

The simplification algorithm is aimed at reducing the number of primitives while preserving the shape features as

much as possible. The algorithm, callddstering works by replacing groups of balls within the VBM with larger,
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encompassing balls. The degree of simplification is controlled by a user-set parametesmadigdity which is a
measure of how well a set of balls can be modelled by a single ball. Mathematically, the sphericity of a cluster of balls
is defined as the ratio of the radius of the largest ball in the cluster to the radius of the smallest ball containing all balls

in the cluster. Fig4.2illustrates how sphericity is defined for disks; the extension to balls is trivial.

Figure 4.2: Definition of sphericity %) (a) Large sphericity (b) Low sphericity

The clustering algorithm processes the balls in order of decreasing size. In each iteration, the algorithm takes
the largest unprocessed balland calculates the smallest ball encompasaiagd as many other unprocessed balls as
possible, under the constraint that the cluster must have a sphericity greater than or equal to the user-chosen threshold.
The cluster is then replaced by the newly formed encompassing ball. As discussed in Settiothe distance
between the surface of a simplified VBM and the original point set is bounded; therefore, clustering is guaranteed not
to distort the original shape features beyond what is expected at a given sphericity.

Figure4.3 shows a 2D example of clustering. The original VDM has 425 disks. There is a significant amount
of redundancy caused by the density of the boundary points used for calculating the VDM. In contrast, the simplified
VDM, the result of clustering with a sphericity of 0.95, only has 112 disks, and is a much more efficient representation.

It is worth noting that small disks are still present where necessary to preserve shape, such as in the corners. In areas

of relatively low detail, such as in the centre of the object, the number of disks is greatly reduced.

(a) VDM (b) Simplified VDM

Figure 4.3: Example of clustering (sphericity = 0.95)
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4.4.2 Model Alignment

In order to satisfy the constraint that the results of shape matching be independent of translations, rotations and uniform
scaling, Ranjan and Fournier's method requires an alignment process before applying their similarity measure, which
itself is not independent of the given transformations. The models to be compared are translated so that their centres
of masses coincide and scaled such that their volumes or linear dimensions match. The models are then rotated so that
their local axes established from second om@mentg127 are aligned. This process is useful for simple objects,

and can be done automatically. For more complex objects, manual alignment is usually necessary.

4.4.3 Similarity Measure

In this section, we give the definition of the similarity measure. The shape difference between two VBMs is computed
by matching balls between the two models using a specially defined distance measure. The shape distance between
the two VBM s is taken to be the average of the distances between all matched pairs of balls. This method not only
gives a quantitative shape difference between two VBMs; it also determines a correspondence between the primitives
in the two models.

The first step in the matching process is the calculation of the distaliecgd) between everyt andb, where
a is a ball in the first VBM, and is a ball in the second. Given thathas centrex,, v,) and radiug; andb has

centre fy,, vp) and radiugy, the distance function is given by:
d(a,b) = wypdy(a,b) +wsds(a,b) + wrdy(a,b) (4.1)

whered, (a,b) = (xa—xp)?+ (Ya—¥p)? ds(a,b) = (va—1p)?andd s (a, b) is thefeaturedistance betweesn

andb, as described below. The weights, (position),w; (size), andw s (feature) are chosen by the user, who selects

the values based on the application and data at hand. The definition of a feature in this case is a mathematical relation-
ship between a ball and its four largest neighbours (in 2D, the three largest neighbours are used). Four neighbours are
used because in an unsimplified VBM, each ball has a maximum of four neighbours (corresponding to the humber of
neighbouring Delaunay tetrahedra); we use the same number in a clustered model for the sake of consistency. Between
the ball and each neighbour, we take the grad%u wheredR is the signed difference between the radius of the

ball and the radius of the neighbour, ad@ is the Euclidean distance between the centres of the balls. FHglae
illustrates the definition of a gradient vector in 2D. If a ball has less than four neighbours, the value for each missing
neighbour is set te-co, because in this direction the neighbouring ball shrinks to O for any distance movetﬁ%The

value is then mapped to the range [0,2], where is mapped to 0, 0 to 1, andoo is mapped to 2. The gradients in

the directions of the four largest neighbours form the feature of the ball. The feature distance between two balls can

be best explained using a physical analogy. If the two features have a common centre and are free to rotate around it,
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and between the ends of each pair of gradient vectors (in the directions of the neighbours) there is a spring that has a
pulling force proportional to its length, then the system will be at rest when the potential energy is at a minimum. The
sum of the residual distances between the vector ends in this minimum energy state is taken to be the feature distance
between the two balls. Figuredb shows a 2D example. Thus, the cost function defines the distance between two

balls as a function of the differences in their positions, sizes, and neighbourhood information.

Spring

— > Gradient Vector for Disk 1
dR/dD=(R2-RY)D  —---- > Gradient Vector for Disk 2

(@) (b)

Figure 4.4: (a) Gradient vector from a disk to its neighbour (b) Feature distance (a + b + ¢) between two disks

4.4.4 Matching Method

After the distances between all balls in the two VBMs have been calculated, a weighted bipartite graph is built where
the nodes correspond to the balls, and the weights on the edges are the distances between them. A maximal match is
computed such that the sum of the distances between all matched pairs is a minimum. The final shape distance is the

average distance calculated over all of the matched pairs in the maximal match.

4.5 Image Interpolation Algorithm

4.5.1 Algorithm Overview

As illustrated in Figuret.5, the main steps of our algorithm for image interpolation using VBMs are:

1. (Optional) Preprocess each image for input into the interpolation algorighgn ¢cale pixel intensities, noise
removal,etc).

2. Generate a height field for each image from the pixel intensity data and use the resulting point set as the boundary
points of a volume.

3. Generate VBMs from the two boundary point sets.
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4. Simplify the VBMs by clustering.
5. Match balls between the two simplified VBMs by using the shape similarity measure.
6. Generate intermediate VBMs (one for each intermediate frame in the interpolation).

7. Generate image data from each intermediate VBM.

2D Height Simplified
mage | | Feld || YPM [T vBm \
Grey Value to Z-Value VBM Clusterin Matching and | Interpolated | | | Interpolated
Mapping Generation ) e Interpolation VBM Image
2D Height Simplified Compute Pixel Values
Image | | Field [ | VBM ™ yBM from VBM

Figure 4.5: Main algorithm steps for image interpolation using VBMs

452 TestData

Figure4.6 shows the images used as test cases for our experiments. For simplicity, we are only dealing with greyscale
images. We choose these particular test cases to provide a range of challenging input data for our matching experi-

ments. The data set consists of images from three different imaging modalities.

@ (b)

(©

Figure 4.6: Testimages (a) Faces (b) CT slices (c) Visible Man legs

Fig. 4.6a shows two images of faces; the left image (we call this Face 1) will undergo a morph to become

the right image (Face 2). We use faces because morphing faces is generally considered a difficult task; even minor
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artifacts in the interpolated images are easily noticeable by a human observdraFighows two consecutive slices

from a computed tomography (CT) data set. Each slice shows a cross-section of a blood vessel surrounded by the wire
supports of a stented graft implant. These supports are visible as small, bright white patches around the circumference
of the blood vessel. Comparing the second slice to the first, we can see that some of the wires move closer together,
while others move farther apart. The shapes of some of the wires also changk66g&hows a cross-sectional view

of a man’s upper thighs. This image, from the Visible Malata set, is a photograph of a physical cross-section of

a cadaver. To test the capabilities of the matching method, we take the mirror image of the left leg and allow the

algorithm to automatically register it with the right leg.

4.5.3 Preprocessing

The amount of preprocessing required is dependent on the application and the original image characteristics. For
example, in the facial images shown in Figdtéa, we notice that most of the important featureg( eyes, eyebrows,

outline of the nose, moutletc) are lower in pixel intensity than the rest of the face. To ensure that these features are
well-represented in the VBMs, we invert the pixel values. Figuia shows Face 1 from Figuee6a with the pixel
intensities inverted. The height field generated from this image would have peaks where the important features are. In
contrast, the CT slices in Figure€b do not need to be preprocessed at all for input into our algorithm. In that case,
the most important features to be matched are the graft wire supports that appear as bright white spots, which naturally

become peaks in the height field.

(b)

Figure 4.7: (a) Face 1 with pixel values inverted (b) Boundary points computed from the inverted pixel values

http://iwww.nlm.nih.gov/research/visible/visible_human.html
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4.5.4 Height Field Generation

The generation of the height field is relatively straightforward. All that is required is a mapping from the intensity
value at each pixel to a-value in the height field. A simple linear mapping works well in many cases. The points

in the height field are then used as the boundary points of a volume. This volume is bounded by the image plane.
Figure4.7 shows the boundary points generated from the Face 1 image. The important facial features mentioned

above are visible as peaks in the height field.

455 VBM Generation and Simplification

After the boundary points are generated, the VBM model can be formed using the method described irBSection

In this case, the voxel closest to the centre of each ball is tested to label the ball as being inside or outside. We then
use the clustering process defined in Sedfighlto reduce the number of balls while preserving the features as much

as possible. Eliminating excess balls has a strong stabilizing affect on the model and also increases the speed of the
matching and visualization processes. Fighi@shows the clustered VBMs of Face 1 and Face 2. The clustering

process is able to preserve the smaller details where necessary, such as the areas around the eyes and mouth.

(@ (b)

Figure 4.8: VBMs computed from the face images in Figuréa

4.5.6 VBM Matching and Parameter Selection

The next step is to establish correspondences between the two VBMSs to be interpolated. Eqlisgiemployed as
the distance measure in the matching process. Determining appropriate values for the patametgrsandw ¢ is

more important in this application than in Ranjan and Fournier's experiments, because in their work the models are
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Figure 4.9: VBMs computed from the CT images in Figuteth

prealigned and scaled before the similarity measure is applied. In our case, we are aiming to test the capabilities of the
similarity measure without the preprocessing, as well as to estimate the degree of control that the user can have in the
matching process.

The user selects the weights by experimentation and visualizing the VBMs. For example , &9ghews the
VBMs computed from the CT data shown in Figutéb. In this figure, the two VBMs are superimposed, with the
transparency of one set to 50% to give the user some idea of how the balls should be matched. In this case, we would
like to form correspondences between the peaks, because they represent the centres of the wire supports. For this
examplew, andw; should be relatively large (0.8 to 1.0), with; somewhat lower (0.3 to 0.5), because we can see
the balls that should be matched are quite close in position and size. In contrast, getting the desired matches between
the two VBMs shown in Figured.8a and4.8b would require a higher feature weight, because the neighbourhood
context of the balls is more important for matching in that case. After matching with some initial values for the
weights, a number of interpolated VBMs can be formed and visualized, allowing the user to make adjustments if
necessary. We find that animating the interpolation is especially useful in helping the user find appropriate values.
Normally, suitable values are attained within several iterations.

After all the distances between balls have been calculated, a weighted bipartite graph as described #h &dction
is built. We use the Cost Scaling Algorithm (CSA( to construct the graph. If the numbers of balls in the two
VBMs are not the same, as is usually the case, there will be a number of unmatched balls on one side. These balls
can be dealt with in a number of ways. For example, they can simply be matched to their nearest neighbours. In other
cases, the number and/or locations of the balls may be such that they do not affect the appearance of the derived image;

in such cases the balls can be discarded.
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4.5.7 VBM Interpolation

The interpolation step comes next in our algorithm. For each pair of matcheditrlidb, a number of intermediate

balls are produced. The position and size of each intermediate ball is obtained by linear interpolation from the matched
balls. In addition, because the featuresiafndb have specific orientations, the intermediate ball should be rotated to
reflect the change in orientation. The degree of rotation is also linearly interpolated. We constrain the axis of rotation
of each ball to be coincident with the-axis to prevent gaps in the image that may otherwise appear in the image

generation phase.

4.5.8 Image Generation

The final step in our image interpolation algorithm is the generation of the images from the interpolated VBMs. The
basic idea is to associate a pixel with a particular location on a ball, and track the movement of that pixel as the ball
moves, scales, and rotates across frames in the interpolation. This is done by projecting the image onto the upper
surface of the VBM. For each pixel in the interpolated image, the algorithm finds the corresponding pixels in the
original two images by comparing the locations, sizes, and orientations of the associated balls. The final value for that
pixel is linearly interpolated from the two values in the original images. Figut8shows a simple example of how

this process works. Consider the blot in the centre of the interpolated image. The 2D projection of the ball at that
location is shown as a dotted circle. The 2D projections of the matched balls are shown in Images 1 and 2. The ball
from Image 1 moves to the right and down, gets smaller, and rotates abaubthie as we move through the frames

of the interpolation. The pixel values of the blot in the centre image are interpolated from the blots in Images 1 and 2.

X

»

Image 1 Interpolated Image Image 2

Figure 4.10: Computing an image from an interpolated VBM
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4.6 Results

This section summarizes the results of our image interpolation and registration experiments4.Taes the
parameter values (weights for the similarity measure and the sphericities used for clustering) for the three data sets.
To determine appropriate values for the similarity measure, the parameters are adjusted up or down by a set value
(0.5) in an ordered sequence while observing the effect. We find that for the cases tested changing any number of
the matching weights by 0.05 does not result in any difference in the visible results, and changingraeyf the

matching weights by 0.1 from the specified values does not alter the results appreciably. This gives evidence that

the matches are stable with respect to changes in the parameter values.

Data Wy Ws wy Sphericity
Faces (40+=0.05 050+0.05 080z 0.05 0.65
Aorta 080x0.05 090+0.05 050=+0.05 0.70
Legs 080+0.05 080+0.05 090+ 0.05 0.70

Table 4.1: Parameter values used for our image matching experiments

Figure4.11shows the facial images produced with our interpolation algorithm without any user specification of
features. Frame 1 in the sequence is Face 1, and Frame 11 is Face 2. A viewer normally focuses on areas such as the
eyes, eyebrows, nose, mouth, and curvature of the face, all of which are reasonably well-interpolated, as shown in the
intermediate frames (2-10). For example, the nose gets larger gradually, the eyes get smaller, the eyebrows change
shape and move toward the eyes in a smooth manner, and the face gets thinner without getting jagged. This is a good

result, especially considering that no user-specification of features is used.
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Figure 4.11: Interpolated images from the faces in Figdréa
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However, a number of artifacts are visible. The most noticeable problem is that the upper lip of Face 1 gets
matched to the area between the lips of Face 2, causing a strange “flipping over” of the upper lip in the interpolated
faces. The main reason is that Face 1 has a prominent upper lip but a very small lower lip, and Face 2 has very visible
upper and lower lips that define the area between the lips very well. Most automatic methods would have problems
with this type of situation, because most algorithms do not know the difference between an upper and lower lip. In
our case, the problem can be corrected by a small amount of manual feature specification. The mouth can be forced to
match properly simply by increasing the pixel intensities in the area between the lips to highlight this region in both
faces. In our case, we use an image editing program to “paint” a white line between the lips in the two original faces.

Figure4.12shows the interpolation done with this minor modification. The lips are now interpolated nicely.
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Figure 4.12: Interpolated images from the faces in Figdréa, with manual feature specification for the lips

Another significant artifact in the interpolated frames (especially noticeable in Frame 6) is that some of the finer
features, especially the pupils, do not have well-defined boundaries. The main reason for this fuzziness is that each
pupil (or other feature) is represented by a group of small balls, and some of the balls representing the pupils in Face 1
are getting matched to balls outside of the pupils in Face 2. This “migration” problem is also documented in Ranjan’s
work [129. A potential solution to this problem is a method for partitioning a VBM into parts. In this case, such a
capability would be useful for grouping primitives so that distinct features such as the pupils can be treated as separate
objects, thereby preventing balls from migrating from one object to another. Ranjan briefly explored VBM patrtitioning
in [129; we present our experiments with this concept in Chapter

For the CT data, the most important matches are in the graft wire supports that appear as small, bright white
patches around the circumference of the aorta in the original images. As can be seen id Bigwame of the wires
move toward one another, while others move apart. In addition, the aorta and some of the wires change shape between
the two images. Figuré.13shows the results of applying our algorithm. Frame 1 is the first original slice, Frames 2

to 10 are interpolated images, and Frame 11 is the second original slice. Even with no manual feature specification,
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our algorithm effectively interpolates between the two original slices. However, the fuzziness of the features observed
in some of the interpolated faces is also present here. In this case, these artifacts are most noticeable in the boundaries

of several of the wire supports.

Figure 4.13: Interpolated images from the CT slices in Figdtéb

The data for our third test case is the image of the two legs shown in FgireThe mirror image of the left leg
and the image of the right leg are the input to our algorithm. Our software forms VBM representations of the images,
performs the ball matching, then calculates the transformations that should be applied to the left side to register the
two images. Figurd.14a shows the mirror image of the left leg manually superimposed onto the image of the right
leg. It is evident that one of the transformations should be a clockwise rotation of the left leg abotaxtse The
transformations computed by our algorithm are a translation and a rotatiGh #6@ut thez-axis, which result in the
image shown in Figurd.14. Qualitatively speaking, the two legs are well-registered, with similar features very close

together. As with the CT data, no manual feature specification is required for the matching process.

@ (b)

Figure 4.14: Visible Man legs (a) Unregistered (b) Registered
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4.6.1 Processing Time

This section gives an example of the amount of processing time required by our algorithm to create a simplified VBM
from an image, perform feature matching between two VBMs, and render a number of interpolated frames. The facial
images shown in Figuré.Ga are used for the timing tests. Each image is of sizex 5 x 16 (width X height x

depth) bits. The number of balls in each unsimplified model is about 7,000, and the number of balls in each simplified
model is about 700. The final output of the algorithm consists of eleven images, nine of which are interpolated. The
computer used is a Silicon Graphics Indigo Il Impact workstation with an R10000 CPU. Z2&demmarizes the

timing results. Although the hardware used is now considered obsolete, these statistics should still give the user some
idea of the speed of the algorithm. The main bottleneck are the matching and interpolation processes, because they are
typically repeated a number of times while the user determines suitable parameter values. Although the running times
seem slow, they are competitive for a method that does not require manual feature specification and does not use any

graphics hardware.

Process Time (seconds)
Height field generation 7 (per image)
VBM generation 104 (per image
Clustering 39 (per model
Distance calculation 4

Matching and interpolation 20

Rendering from interpolated VBMs 65 (per frame)

Table 4.2: Timing results for VBM image interpolation algorithm

4.7 Summary

In this chapter we have presented a method for image interpolation and rigid registration using VBMs. In this algo-
rithm, VBMs are used to represent the images and matching is performed with the Ranjan-Fournier similarity measure.
We used three test cases, one of facial images and two of medical data, to demonstrate the capabilities and limitations

of the method. We have shown that this method can interpolate between images effectively with minimal preprocess-

ing.
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4.8 Observations

e The VBM approach to shape matching produces visually accurate results when used for interpolating and rigidly

registering greyscale images of average complexity, even with little or no manual intervention.

e Determining the parameter values (size, position, and feature weights) of the similarity measure requires an
iterative, trial-and-error approach. However, the stability of the matching method with respect to the parameters

makes determining appropriate values straightforward.

e Before clustering, the VBM models generated from our images contain many extra balls, which can cause
mismatches and other problems during the matching process. These problems are significantly reduced by

clustering. This is an example of how simplification can be a useful method for stabilization.

e The lack of topological constraints during matching and interpolation can be problematic in that a feature rep-
resented by a set of balls can split into two or more pieces when a subset of the balls gets matched and migrates
to another feature. A method for grouping primitives and enforcing intra and intergroup topological constraints

would be a useful feature for VBMs. This is partly the motivation for the work presented in Chéedy.

e Although linear interpolation of the matched balls gives reasonable results in our experiments, there is actually
little control over the intermediate shapes. Further investigation into transition control is likely needed for more

complex objects and applications.

e The CSA graph matching routine is computationally intens@é#?) in space,0 (n®) in time, wheren is
the number of balls in one model). As shown by Martinddl@]], using an alternate algorithm, such as that
found in the Library of Efficient Data types and Algorithms (LEDA), can have a significant positive impact on

efficiency.
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Chapter 5

Shape Model and Threshold Extraction

5.1 Motivation

The efficient extraction of shape features from raw data such as pixel or voxel values requires a representation that is
both stable and flexible. In this chapter, we present the results of an experiment in which we use VDMs to explore
and extract shape information from 2D greyscale images. From an image, our algorithm outputs the intensity range
spanned by each significant object as well as a VDM of the object. There are two main purposes for this experiment.
The first is to see if the VDM is a flexible enough representation to be used for shape extraction wiftring
knowledge of the objects in the images. We use data that spans a wide range of shape complexity and topology. This is
in contrast to Ranjan’s experiment?l], which used largely similar shapes.§, fish, calf, cow, giraffe). Our second
primary goal is to perform an analysis of the stability and accuracy of the similarity measure for quantifying shape
differences.

The algorithm discussed in this chapter, originally presented54][with earlier results, is a largely automatic
method that is designed to reveal the strengths and limitations of the VDM representation and similarity measure. The
main idea of the method is to measure the differences in the shapes of objects in an image as we vary the intensity
threshold applied to the image. Abjectin this case can be comprised of two or more spatially distinct components
of the same intensity range. For example, two kidneys in an image would be considered collectively as one object. The
novelty of this method is primarily in the use of theape gradientthe amount of shape difference caused by a given
change in threshold value, to determine the occurrence of significant shape eliantgn the given intensity range.

These events determine the thresholds that we should use for computing VDMs that represent objects of potential

interest to the user.
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Figure5.1 provides a motivating example that illustrates how the shape gradient method compares to the most
commonly used method for determining thresholds, histogram anatygid111]). The ‘E’ on the left has an intensity
of 25, with the background having an intensity of Because the boundary of the ‘E’ is sharp, the intensity histogram
for this image is very simple and finding thresholds for this object is trivial. In contrast, Figulesind5.1c show
a blurred and noisy version of the ‘E’, respectively. The blurring is done with a Gaussian filter of radius 2.5, and the

noise has a double Gaussian distribution, with means at 0 and 25.

3

@) (b) (©)

Figure 5.1: (a) Sharp ‘E’ (b) Blurred ‘E’ (c) Noisy ‘E’

Figure 5.2 shows the histograms of the blurred and noisy images. Even though the images show essentially
the same shape, their histograms are very different, and it is not at all obvious what thresholds would best define the

object’s intensity range, especially if the blurring and noise characteristics are not known.

Blurred ‘E’ Intensity Histogram Noisy ‘E’ Intensity Histogram
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Figure 5.2: (a) Intensity histogram for blurred ‘E’ (b) Intensity histogram for noisy ‘E’

1The pixel intensities of the three images in Figr&have been scaled and inverted to increase visibility for the reader.
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Figure5.3shows the graphs of how the shape gradient varies with intensity for the blurred and noisy ‘E’ images.
As explained in Sectiob.3.4 a minimum in a shape gradient plot marks the lower threshold of a significant object.
The plots in this case have obvious minima at 14 for the blurred ‘E’ and at 16 for the noisy ‘E’. These minima indicate

good lower thresholds to use for extracting shape models of the object.

Gradient-Intensity Plot (Blurred ‘E’) Gradient-Intensity Plot (Noisy ‘E’)
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Figure 5.3: (a) Shape gradient plot for blurred ‘E’ (b) Shape gradient plot for noisy ‘E’

5.2 Related Work

The work presented here is related to many interesting papers dealing with shape modelling for feature extraction.
We list a few representative examples here. At the low end of the complexity spectrum are feature clustering tech-
niques that do not use a higher-level shape model. The idea is to first extract from the image some simple primitives,
most commonly edges, then connect them together to form representations of the objects in the image. Acharya and
Menon [1] and Xuet al. [170 discuss many examples in their reviews of segmentation methods. The advantage of
using only simple primitives is that they incorporate very few assumptions about the objects represented and are thus
very flexible. The most common problem with these techniques is instability. For example, edge-based approaches
depend strongly on the characteristics of the edge detector used.

The most popular and generally effective group of shape models used for feature extraction are deformable
models L02, 147]. Examples include energy minimizing snak&$,[103 and 3D deformable surface$q4, 15§. A
limitation of most of these techniques is that they have to impose smoothness constraints on the models, which limit

the types of objects that can be represented with any given set of parameters. On the other hand, these constraints can
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sometimes help to stabilize the extraction process by bridging gaps or ignoring spurious edges. The main problem is
that if there is little or na priori information about the image, such as in an exploratory application, it may be difficult
to estimate suitable parameter values.
Another group of shape models used for feature extraction are based on the medial axis repres@&aHpn ([
The most significant approach for using the medial axis for segmentation is byeP&emwho propose a shape model
that can be used for various applications in medical image procesk??y [As explained in Sectio2.1.1, Pizer's
approach represents shapes using interconnected figures. One of the significant shortcomings of the Pizer model is
that the similarity measure only works with objects having the same number of figures and medial primitives, which

limits its flexibility.

5.3 Algorithm

This section describes the details of our algorithm for extracting shape models from images. The simple image shown
in Figure5.4a is used as an example to explain the processes involved. This imagel(388 bits per pixel) contains

two objects, one having uniform intensity (100), the other having a linear intensity gradient @2%).

2D Image 3;‘,5'[.]5(
Grey Value to Z-Value Apply
Mapping Thresholds
Height Threshold
Field Levels
Intersect Height Field é?ﬁ‘gﬁ
with Z-Planes Plot
Boundary M Shape
Points Gradients
T :
Calculate
Calculate VDM's Gradients

[H Simplified
a VDM
( ) Clustering VDM

(b)

Figure 5.4: (a) Simple test image (b) Overview of shape model extraction algorithm
As illustrated in Figurés.4b, the main steps of our algorithm are:
1. Generate boundary points.

i. Generate a height field from the image’s intensity data by mapping the value at each pizxevatuz.
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ii. Intersect the height field with planesz = I;, i = 1,...,n, wherel; is an intensity value. This results in

a set of boundary points for eachmfgrey levels.

Calculate a VDM for each set of boundary points.
Simplify each VDM by clustering.
Calculate the shape gradient between successive levels using the 2D Ranjan-Fournier similarity measure.

Determine the thresholds of interest from the maxima and minima in the shape gradient data.

L T

Use the VDMs from Ste and the thresholds from Sté&to compute VDMs of the objects in the image.

5.3.1 Boundary Point Generation

Creating a height field from a greyscale image is relatively straightforward. All that is required is a mapping from
the intensity value at each pixel tozavalue in the height field. The simplest case would be a linear mapping. The
points in the height field are then used as the boundary points of a volume that is bounded below by the image plane.

Figure5.5a shows the volume created from the example in Figdea using a linear mapping. The resulting volume

(@) (b)

Figure 5.5: (a) Volume created from the test image in FigGrda (b) Boundary points created from intersecting the volume with a

z-plane

is then intersected witlm different z-planes. The values used forare {I;, i = 1,...,1n : Iipin < I; < Inax,

Iiv1 = I + Iincy }, wherely, i, andl;, a5 are the minimum and maximum intensity values of the image Jang is

the intensity increment from one level to the next. The intersection of each plane with the volume results in a set of
boundary points at that level. Figubegb shows the boundary points created by intersecting the test volume with the

planez = 50.
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5.3.2 VDM Generation and Simplification

The boundary points are then used to compute a VDM for each level, using the method described in33kection
Figure5.6a shows the VDM generated from the boundary points in Figube. This model has 358 disks. After

(@) (b)
Figure 5.6: (a) VDM (358 disks) generated by intersecting the volume in Figuse with the planez = 50 (b) Simplified version
of the model, with only 46 disks

each VDM is generated, it is simplified using the clustering method described in SéatidnFigure5.6b shows a

simplified version of the VDM shown in Figui®6a. The resulting VDM only has 46 disks.

5.3.3 Shape Gradient Computation

The next step in our algorithm is the computation of shape gradients between VDMs on successive levels. The shape
difference between two VDMs is computed by matching disks between the two models using the similarity measure
discussed in Sectiof.4.3 Figure5.7 shows three VDMs computed from the image in Figbréa at three different

levels.

(@) (b) (©
Figure 5.7: VDMs computed from Figuré.4a at three intensity levels (a) 50 (b) 125 (c) 200
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An analysis of how the shape gradient changes as the threshold varies allows the user to determine the ranges of
intensity where one or more objects in the image are actively changing shape, as well as the ranges where the shapes
are relatively stable. A graph of gradient versus intensity, in which for each thresholdlyaheeshape difference
between the VDMs al; andI;;; is plotted, allows the thresholds of interest to be determined easily. We refer to this
graph as thenatched gradienplot.

In most cases, the number of disks does not remain constant across levels. Therefore, the matching process
can leave a number of disks unmatched at each level. A disk that exists at one level but “disappears” at the next
is considered to have shrunk in place to a radius of zero. A pIaEZoiersus intensity, where? is the average of
the radii squared of unmatched disks at each level, may contain additional shape change information not captured by
the matched gradient plot. Thisimatched gradienplot is especially useful in cases where one or more significant
objects in the image have (close to) uniform intensity, as these objects can disappear between successive levels with-
out affecting the matches in the other objects. An unmatched gradient plot would have very distinct spikes at such
intensities. Thus, even though for many real-world images, the matched gradient plot alone is sufficient for threshold

determination, the unmatched gradient plot is sometimes useful for providing complementary information.

Modification of the Similarity Measure

As mentioned in SectioA.4.2 the Ranjan-Fournier similarity measure is not independent of scale, position, or orien-
tation. This can be problematic in certain situations, particularly where the prealignment procedure cannot be easily
done. Although we expect the similarity measure to perform well for the current application, because the image is not
moved or scaled between thresholds, we conjecture that modifying the similarity measure to be less dependent on the
given transformations may result in more accurate matches and subsequently greater stability.

The original shape distance between two diglkendb, as explained in Sectioh4.3 is:
d(a,b) = wpdy(a,b) + wds(a,b) + wedg(a,b)

whered, (a,b) = (x4 — xp)%+ (Va — ¥b)? is the square of the Euclidean distance between the cedtres, b) =
(ra — 71p)? is the square of the difference in radily(a, b) is the feature distance, and the's are the weights
determined by the user. The feature distance is already independent of the given transformations, so we only need to

modify d, andd;. In place ofd, andd;, we suggest defining two new functions:
dpi(a,b) = (Ix7a] = [x7p)2 + (|37 4] = |y7p1)?

where(x’,4, y7,) and(x’p, y’,,) are the positions of the disk centres relative to the centres of mass of the respective
VDMs, and

ds(a,b) = (rrg —rrpy)?
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wherer’,; andr/;, are the radii of the disks divided by the square root of the areas of the respective VDMs. These
changes make the measure independent of translation and rotation, and reduces the dependencelpnsditiale (
varies with scale). We discuss the results of applying this new measure to a challenging test case in the Results

section.

5.3.4 Shape Gradient Analysis

The following observations are useful when analyzing a matched gradient plot:

« Minima indicate relative stability in the shapes of objects as the threshold is varied.
e Maxima indicate shape change events. A sudden rise in the matched gradient occurs when the threshold reaches
a point where a small increase in intensity causes a significant object to breakdown and/or distort.

e From the above, we can conclude:

1. A minimum or the point at the beginning of a peak marks the lower threshold of a significant object.

2. The point immediately at the end of a local peak marks the upper threshold of a significant object.
« A wide peak indicates the object spans a relatively large intensity range; a sharp spike means the object spans a
narrow intensity range.
Figure5.8shows the shape gradient plot computed from the image in Figdae The matched gradient clearly
shows a significant object, in this case the rectangle, in the rangec1l/'x 225. The unmatched gradient in this

range confirms the result. The matched gradient increases here because as the rectangle gets thinner, the decrease in

width becomes more significant relative to its size. The unmatched gradient decreases because the unmatched disks

Gradient-Intensity Plot

20 ‘ ‘
matched gradient
unmatched gradient -
15} |
5
g 107} |
o
05t |
0.0 i ‘ e ‘
50.0 100.0 150.0 200.0 250.0

Intensity

Figure 5.8: Shape gradient plot computed from the test image in Figule
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are getting smaller. The unmatched gradient also shows a pdéak 400. This means there is an object of uniform
intensity, in this case the disk, at that level. The height of the peak indicates that the object is of significant size.

In this example, the maxima and minima are very obvious and distinct from each other. However, this is often
not the case with real images. This brings into question how we should decide which maxima and minima are to be
considered significant. These decisions currently require user input and are based on the level of detail at which the
user wishes to analyze the image. Applying a Gaussian filter to smooth out small maxima and minima in the plot to is

a helpful step.

5.3.5 Shape Model Generation

Having determined the upper and lower thresholds of a significant object, we can compute a shape model for that
object by using the VDMs generated during the gradient computation process. As demonstrated in the Results section,
for some applications it is best to simply use the VDM at the lower threshold as the object's shape model. In other
cases, we take the lower threshold VDM, and remove from it any disks or parts of disks that would lie within the upper
threshold VDM if the two VDMs were superimposed. If the resulting VDM has partial disks in its boundary, it is

retriangulated to form a new VDM. The result is a VDM of the object in the appropriate intensity range.

5.4 Results

This section presents the results of applying our technique to two of the test cases used in our experiments. We
use a linear mapping for the height field and an increment of 1.0 between threshold levels for both examples. For
simplification, we have found that a sphericity of 0.96 works well for most of the images we have tested to date, which
include a wide variety of CT and MRI images. The three weights ws, andw ¢ in the cost function of the distance
measure are set to 1.0 for the shape gradient calculation.

The first test case, shown in Figlséa, is an MRI image of a human brain. This image has 128 grey levels. Fig-
ure5.% shows the shape gradient plot computed from this image. Using the analysis method outlined ir6Sgdtion
we can clearly identify three significant intensity ranges. The first{d0< 40) is the range for the fluid surrounding
the brain and is of limited interest for shape analysis. The other two ranges, labelled R1 and R2 5 Bigwaee for
the whole brain and the grey matter inside the brain.

Figure5.10shows the two VDMs representing the shapes identified by our algorithm as being stabiedat
andl = 100. The unmatched gradient confirms shape stability at these intensities, which are the lower thresholds for
the whole brain and the grey matter inside. In this case, the VDMs for the upper thresholds are not used. The reason

we do not use the upper threshold for the whole brain is that the VDM=a#13 is a good representation of the shape
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Gradient-Intensity Plot (Brain Image)
1.2

matched grédient
1.0 | , unmatched gradient -~

0.8

0.6

Gradient

04 r

02 r

e

101

20.0 40.0 60.0 80.0

Intensity

0.0 120.0

@ ®

Figure 5.9: (a) Brain MRI image (b) Shape gradient plot computed from the brain MRI image

of the brain as a solid mass, and this is likely to be of more use in the analysis of the overall shape of the brain than the
same model with parts of its interior taken out. We do not need to use an upper threshold for the grey matter, because
R2 is at the top of the image’s intensity range. Therefore, we use the VDMs at the lower thresholds as the final shape

models for the two objects.

@ (b)

Figure 5.10: VDMs computed from the brain MRI (Figu&9) at two levels (a) 43 (whole brain) (b) 100 (grey matter)

The second test case, shown in Figbréla, is a CT image of a person’s lower abdomen. This image has
128 grey levels. The most noticeable structures present are the liver, kidney, small intestine, and spine. This image

is a more challenging case than the brain MRI because it has multiple objects with overlapping intensity ranges. The
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Gradient-Intensity Plot (Abdomen CT Image)
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Figure 5.11: (a) Lower abdomen CT image (b) Shape gradient plot computed from the lower abdomen CT image

matched gradient plot from this test case (Fighr&lb) shows instabilities not present in the brain MRI case. The
many smaller peaks and valleys are a symptom of the complex shape changes that occur in the image as the threshold
is varied, as well as a possible sign that the similarity measure has some instability resulting from mismatches.

In order to extract the most salient features from the shape gradient data, we apply a Gaussian filter to smooth
out the plot. The result, shown in Figusel2 is a graph that reveals only the major shape change events. Dividing the
graph using the minima results in four intensity ranges. The first {5< 30) corresponds to the fluid and soft tissue

surrounding the organs. The second B1 < 51) corresponds to the liver. The third (321 < 76) is associated
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Figure 5.12: Gaussian smoothed version of the shape gradient plot in Figlits
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with the small intestine, and the last (&1 < 109) is the intensity range for the kidney. Fig&d2shows the CT

image with each of the four sets of upper and lower thresholds applied. Again, the algorithm has resulted in effective
thresholds for the significant objects in the image. However, there is not a distinguishable maximum for the spine,
which points out a weakness of the method. The intensity range of the spine overlaps with those of the liver and small
intestine, and because the spine is significantly smaller than the other two structures, it is essentially lost. This kind of
problem is common to all algorithms using global thresholds.

Figure 5.13 shows the extracted shape models of the liver, kidney, and small intestine computed using their

respective upper and lower thresholds, with some manual removal of disks not connected with the objects. Visually

speaking, these VDMs are accurate shape representations of the objects in the image.

@) (b) (©

Figure 5.13: VDMs extracted from the abdomen CT image (a) liver (b) kidney (c) small intestine

For this test case, we also compute the gradients using our modified similarity measure defined irbSe8tion
Figure5.14shows the unfiltered shape gradient plot. Compared to the gradient plot in Bigdipethis graph suggests
that the new similarity measure is more stable while being able to identify the same thresholds within a toletdnce of

While the difference between the two results is not dramatic, it is significant enough to warrant further investigation.
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Figure 5.14: Shape gradient plot computed from the abdomen CT image using our modified similarity measure
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5.5 Summary

We have presented a novel method for exploring shape information in a greyscale image. Our algorithm uses the shape
gradient to effectively extract thresholds and shape models of significant objects. The VDM representation is used to
compute the gradient and represent the extracted shapes. We presented the test results of applying our algorithm to

artificial and real-world images.

5.6 Observations

e The extracted thresholds and VDMs are qualitatively accurate representations of the shape data present in the

test images, which indicates that the similarity measure is forming appropriate correspondences.

e The evidence suggests that our modifications to make the similarity measure less dependent on translation,

rotation, and scaling can further improve the reliability of the shape distance function.

e The flexibility of the VDM and similarity measure are strong advantages in an exploratory application such as
this one. The shapes in our test images undergo many changes in complexity and topology as the threshold is
varied, but the VDMs of the objects are still easily computed at each level without manual intervention, and the

similarity measure is still able to output reasonable results.

e Mismatches in the number of primitives between VDMs being compared can be a significant source of infor-
mation that can be used as an independent measure to augment the data in the matches. Perhaps the information

from the matched and unmatched disks can be incorporated into a single measure.

e While the extracted VDMs appear to be reasonably accurate representations of the objects, further processing
is likely needed for certain applications. For example, for segmentation purposes a method for computing a
polygonal or spline-based boundary from a VDM would be useful. This is partly the motivation for the work

presented in Chapt&
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Chapter 6

Two-Dimensional Shape Simplification

6.1 Motivation

In the work presented in this chapter and the next, we investigate how the medial axis and the VBM can be used
together effectively. The goal is to enhance medial axis and VBM applications by taking advantage of the desirable

and complementary properties of both representations. As mentioned in S2dtilnthe medial axis transform

(MAT) is a shape model that represents an object by the set of maximal balls that are completely contained within

the object. For a continuous object this set is infinite. The medial axis consists of the centres of the balls, and can be
intuitively thought of as the skeleton of the object. Skeletal representations have numerous applications in visualization
(e.0, [109, 120, 122, 157]), computer graphicse(g, [26, 57, 169), and computer visiond.g, [112 145). One of

the main reasons the medial axis is considered an attractive model is that it is a visually intuitive representation, as
evidenced by some studies on human shape percemign[@5, 36, 87]). Another strength of the medial axis is

that it forms a concise representation of the object’s topology, a shape property that is considered important for many
applications such as path planning and molecular modelling.

One of the primary drawbacks of the medial axis is that it is very sensitive to minor perturbations of the object’s
boundary, such as that caused by discretization, segmentation errors, image noise, and so forth. The goal of most
medial axigpruningtechniques is the removal of branches associated with these artifacts, typically resulting in a much
cleaner and more usable medial axis. This chapter discusses a technique, originally presébtgdan D medial
axis pruning. This application is an example of how the VDM and medial axis can be used to mutually enhance the
other’s stability. We use the shape information in the VDM to prune the medial axis, and in turn use the structure of the
medial axis to determine which disks should be preserved in order to maintain the topology of the object. The method

introduced uses a VDM of an object to compute the medial axis, and defines a shapsigag®dnce measure
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based on the VDM to remove the branches generated by noise or other artifacts on the object’'s boundary without
losing the fine features that are often altered or destroyed by other current pruning methods. The algorithm consists
of an intuitive threshold-based pruning process, followed by an automatic feature reconstruction phase that effectively
recovers lost details without reintroducing noise. The result is a technique that is robust and easy to use. Our tests
show that the method works well on a variety of objects with significant differences in shape complexity, topology,

and noise characteristics.

6.2 Background

Most current medial axis pruning algorithms suffer from the problem that when excess branches are removed, other
branches that correspond to fine but perceptually significant features of the object are excessively shortened. This is
primarily due to the fact that most pruning methods use a global significance meagyfiedture size or frequency)

to discern between data and noise. Unfortunately, for most measures there is a significant overlap between what is
considered noise and data, and when the noise is removed some data is taken with it6 Biguweides a simple,
motivating example. The unprocessed medial axis (Figuib) has many spurious branches, largely because of
discretization artifacts. Figuré.lc shows the typical result of pruning with a global threshold. In this case the
significance measure is noise size. The result is that all of the branches associated with noise are gone, but the

remaining branches are also shortened, causing the tip of the pencil to become roundedb(Eigure

@ (b) (© (d)

Figure 6.1: Pencil (a) Original object (b) Original axis (c) Typical pruned axis (d) Object reconstructed from typical pruned axis

So far, proposed solutions to address this issue have proven inadequate. Attempts to overcome the noise/data
overlap problem by developing more complicated global measures frequently result in a fuzzy relationship between
parameter values and how they correspond to changes in object features, thereby making the estimation of an appropri-
ate threshold more difficult. Another general approach is to recover lost detailggoyningthe remaining branches
after the noisy branches are removed. Current algorithms using this approach typically do not work well because they
depend on a global threshold for the unpruning process as well, thereby subjecting it to the same overlap problem.

In this chapter, we summarize a novel approach for medial axis denoising that removes unwanted artifacts while

preserving fine features, such as sharp corners and thin limbs. Our method first prunes the axis by using an intuitive
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global threshold based on noise size, tlaeomatically reconstructthe fine features by extending the remaining
branches. The use of a simple pruning method based on a physically meaningful parameter followed by an effective
feature reconstruction process makes the technique robust and easy to use. The user can determine an appropriate
threshold simply by estimating the size of the noise to be removed and in most cases, rough estimates are adequate
because the reconstruction process can automatically correct many errors caused by overly aggressive pruning.

Our feature reconstruction algorithm extends each branch by using local shape information defined on the VDM
and does not depend on a global threshold. This process localizes the discernment between data and noise to the
feature level which significantly reduces the overlap problem. As demonstrated in our results, this localization allows
each branch to be extended to an appropriate length and in the correct direction so that each feature is reconstructed
accurately without reintroducing noise. For example, Figlufa shows the medial axis of the pencil after processing

with our algorithm; the noise is gone and the tip of the pencil is still sharp.

@ (b)

Figure 6.2: Pencil (a) Medial axis processed by our denoising algorithm (b) Our reconstructed object

Although simple in its design, we can show that our technique works well for removing artifacts of various sizes
and characteristics from objects of arbitrary shape complexity and topology. We have tested our algorithm on a wide
variety of data, a number of examples of which are included in this chapter to demonstrate the effectiveness of our

method.

6.3 Related Work

Our method for the construction of the medial axis is one of a number of algorithms that use the Voronoi diagram of
a set of sample points regularly spaced along the object’s boundary to form a discrete approximation of the skeleton.
The main idea of such algorithms, examples of which includ; 31, 114, is to first compute the Voronoi diagram
of the points, then extract a subgraph to form the skeleton. For example, the subgraph can be extracted by taking only
the Voronoi vertices that are inside the boundary of the object.

Given a model or an image of an object, there are two main approaches for producing a clean medial axis. The
first approach performs some form of preprocessing on the image or model before computation of the medial axis.

Such preprocessing usually consists of blurriag{[124]) or boundary smoothing(g, [107]) of the original object
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to reduce spurious branches. Blurring and smoothing techniques can result in undesirable structural changes to the
medial axis 113 14Q. In addition, these operations typically use a global scale measiwge gize of smoothing
kernel) to filter out noise, and smaller object features are often altered or destroyed during preprocessing.

The other main approach is to start with the complete axis and prune the branches using some leayir[4f; (
31])). The general idea is to have a significance measure that assigns an importance value to each branch. During
pruning, this value is compared to a user-given threshold to determine how much of each branch gets cut. With an
ideal significance measure and threshold, only the parts of the axis associated with noise would be removed, and the
rest of the axis would remain unaltered. However, for currently available measures there is usually an overlap between
data and noise; a threshold value that completely removes the branches associated with noise will usually shorten
the remaining branches as well, often to an undesirable degree. Thus, finding a good threshold value often requires
striking a delicate balance between noise removal and feature preservation. In addition, the complexity of some
measures makes them seem ad hoc and adds to the difficulty of finding an appropriate threshold. In some cases, even
multiple parameters are requiresld, [14]). To overcome the difficulties in estimating parameter values, a completely
automatic method for threshold selection is proposed 2[113. The method is able to determine an appropriate
value for many shapes, but there are instances in which the algorithm strongly oversegments the shape, resulting
in large missing features. Figurés3a and6.3b, generated with the algorithm fro13, show two examples. In
Figure6.3a, the stem of the leaf is missing from the axis; in Figéi@, two of the goat’s legs are among the larger

features not represented.

(@) (b)

Figure 6.3: Examples of medial axis pruning using Ogniewicz’s algorithm, showing large missing features (a) Leaf (b) Goat

A number of researchers have proposed methods that utilize a postprocess to recover small details destroyed by

pruning. Such methods add an unpruning process that extends the branches thatagmdiha 140). The typical
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approach is to use the same significance measure as used for pruning and simply apply a different threshold to extend
the branches. This approach forces the user to select two thresholds, and still the problem of overlap between data
and noise is not solved. This frequently results in some branches being overexiendedige is reintroduced) while
others are still too short.

Our algorithm is designed to address the problems described above, and consists of the following two main

processes:

1. A threshold-based pruning technique with a single parameter and a simple significance measure that gives the
user intuitive control.
2. An automatic feature reconstruction process that extends each branch using local shape information and does

not depend on a global threshold.

The result is an algorithm that gives the user the freedom to select a threshold that completely removes all noise while
providing a reliable feature reconstruction process that brings back the right amount of detail at each branch. This
technique gives the user some control, so that large features are not accidentally removed, but hides the more complex
data/noise discernment algorithm inside an automatic process so that the user is not burdened with a complicated
significance measure.
It should be noted that some pruning methods, suci B4,[are hierarchical in nature and can produce results

at multiple levels of detail. Thus, at coarser levels, the loss of fine features is considered acceptable, even appropriate.
In contrast, our algorithm is designed to remove artifacts of a given size, while preserving as much detail in the rest of

the object as possible. However, at finer levels of detail, the goals of the algorithms are essentially the same.

6.4 Algorithm

Given the boundary points of an object, the main steps of our algorithm for medial axis noise removal are as follows:
1. Construct the medial axis from the boundary points (Fig6réa-c).
2. Prune the spurious branches (Fig6rédd) by using a user-determined global threshold.

3. Extend the remaining branches to recover small details (Figded by using a local measure of shape smooth-

ness to distinguish between data and noise.

4. Reconstruct the object with the clean medial axis (Figu48.
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Figure 6.4: Maple leaf example (a) Delaunay triangulation (b) VDM (c) Original medial axis (d) Pruned medial axis (e) Pruned

medial axis with details recovered (f) Denoised shape

6.4.1 Medial Axis Construction

Like most Voronoi-based methods for medial axis construction, our method assumes that the sample points are spaced
with sufficient density along the boundary of the object. Our method for the computation of the medial axis from a

boundary point set consists of these two main steps:

1. Compute the set of Voronoi disks that are inside the object (Figudasb), as described in Secti@nl
2. Construct the medial axis by connecting the centres of the disks (Fégdoe

We represent the medial axis as a directed gragtose root node is the centre of the largest disk in the VDM.
Construction of the graph begins by creating a line segment (callegiahsegmer)tbetween the root node and each
of its neighbours (two disks areighbourdf their corresponding triangles share an edge). The root node xateat
node and the neighbours arkild nodes. This process is then repeated with the neighbours as parent nodes until all
disks in the VDM are linked. The result is a medial axis that can be traversed recursively by starting at the largest
disk and following the child nodes until they reach the boundary of the object. With this construction method, each
node in the axis has a corresponding disk in the VDM, which in turn has a corresponding triangle in the Delaunay
triangulation. We refer to a node that has no children asrahnode A node that has more than one child is called a
branch node A branchis defined as any chain of nodes that has a single branch node, located at the beginning, and

an end node at the end.

1For objects of genus zero, the graph is naturally a tree. For objects with holes, we break each cycle by imposing an appropriate breakpoint in
the loop. This is only for the purposes of traversing the graph without running into infinite loops. In order to preserve the topology of the original

object, cycles are never pruned.
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6.4.2 Area-Based Pruning

The purpose of the pruning process is to remove parts of the medial axis that are associated with noise on the object’s
boundary. A significance measure is needed for determining whether a feature of the object should be considered as
noise. In the context of pruning, a feature can be defined as the set of triangles associated with any subtree of the
axis graph. Our significance measure assigns an importance value to a feature based on the surface area it covers. An

example is shown in Figuré.5a, which shows a part of the maple leaf from Figérd. In this figure, the shaded

@ (b)

Figure 6.5: Area-based pruning (a) Original axis (b) Pruned axis

regions are the features that are smaller in area than the user-given significance threshold. The significance value of a
feature can be determined by summing the areas of all triangles in the subtree associated with that feature. Any subtree
that has a value below the threshold is pruned. Each feature can be seen asuppogedby the branches of the
subtree, so when the subtree is pruned, the feature is eliminated.

This significance measure has the following two main advantages:

e The pruning is guaranteed not to disconnect the graph, because a parent always has a higher significance value
than its child.

¢ Areais a simple and intuitive significance measure and an appropriate threshold can be estimated via a typically
straightforward analysis of the data acquisition method. Even when knowledge of the acquisition method is
insufficient, a suitable value can be found by visual inspection of the data more easily than most heuristics-

based measures that have a less direct physical meaning.

The result of the pruning process is that all noise below the threshold size is eliminated. With an appropriate
threshold, the only branches that remain are associated with significant features of the object. As mentioned, a side
effect of pruning with a fixed global threshold is that the remaining branches are typically shorter than they should be

and fine but important details are often lost.
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Noise Model and Threshold Selection

Like practically all medial axis pruning methods, our noise model focuses on artifacts in the form of relatively small

protrusions from a larger body. Pruning techniques are the most effective when applied to this type of noise, called
additive noisebecause they work by removing and shortening branches. A common example of additive noise are the
artifacts originating from the dark current in CCD cameras. We define two conditions that must be satisfied in order

for a feature to be classified as noise:

1. The size of the feature is smaller than the user-determined threshold. This is the condition used in the pruning
phase.

2. The feature is nosmoothly connectetb the rest of the object. The transition into a protrusion is considered
smooth if the abruptness of the narrowing does not exceed the changes in width in the parts of the object leading
up to the feature. This condition is used in the feature reconstruction phase and is defined more precisely in the

next section.

To select an appropriate threshold for pruning, consideration must be given to the data and application at hand.
If the noise characteristics are known, an estimate of the artifact size can be made, and selection of the threshold is
relatively simple. Otherwise, the value can be set by visual inspection of the data. Our implementation is such that the
threshold can be set as an absolute size or as a percentage of the total area of the object. In most of our examples, the
value is determined interactively. The feature reconstruction process, as described in the next section, is robust enough
to allow a fairly imprecise threshold selection, and a range of appropriate values exists for most objects.

The most important guiding principle in selecting an appropriate threshold is to ensure that each significant
protrusion in the object has a single supporting branch. The reason for this is best described by Leyton’s Symmetry-

Curvature Duality Theoren8J[/]:

Theorem 6.1 (Symmetry-Curvature Duality) Any section of curve, that has one and only one curvature extremum,

has one and only one symmetry axis. This axis is forced to terminate at the extremum itself.

Figure6.5b shows an example of how each significant feature is supported by a single branch. The result of pruning

should be that each significant extremum in the border has a single remaining branch.

6.4.3 Feature Reconstruction

The purpose of the feature reconstruction process is to recover significant parts of the object that have been pruned
because they fall below the size threshold. For example, Fig@shows part of the maple leaf before and after

reconstruction. The shaded areas show features that would be removed. The axis i6.Bmciearly represents the
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Figure 6.6: Feature reconstruction (a) Before reconstruction (b) After reconstruction

shape of the object better than the axis in FiguGa.

Our reconstruction algorithm works on one branch at a time, and its main idea is to use the shape information
present in the remaining branches and disks to calculate local smoothness constraints that determine how far each
branch can be extended to recover fine features without reintroducing noise. In this scheme, what is classified as noise
varies from branch to branch. Figuse/ shows an example in which the branch in one feature (B) is extended further
than in another (A), even though the tips of the features have the same angle and both branches reach the boundary in
the original axis. In this case, the small sharp point in Feature A is regarded as noise because it falls below the size
threshold and violates the local smoothness constraints.

The measure of smoothness that we use is termeabiégradient which measures the change in the width of
the object per unit length of the axis. Each axial segment has an axial gradient value that is mathematically defined as
the signed difference in radius between the child disk and the parent disk, divided by the Euclidean distance between
the two nodes (Figuré.8). Note that this definition is similar to the gradient used in the feature distance of the
similarity measure described in (Sectiéi.3, with the main difference being that the direction of the axial gradient

is determined by the medial axis, rather than the three largest neighbouring disks.

A B A B A B A B
Original Pruned Reconstructed  Final Shapes

Figure 6.7: Effect of smoothness constraints on feature reconstruction
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Figure 6.8: Axial gradient between two nodeg ¢ ;™)

The reconstruction algorithm works by starting at the root node and following the axis until it reaches the current
end node of the branch in question, while keeping track of the greatest absolute axial gradiengyalilesfhcoun-
tered along the path. This value is used to determine how far the branch can be extended. The reasoning is that if a
feature at the end of the branch is below the threshold size and is marked by a narrowing that is more abrupt than any
other change in width along the path, then the feature is most likely noise. Becgugeis calculated individually
for each branch, the data/noise overlap problem associated with global thresholds is significantly reduced.

When calculatindg,,,,| along a path, special consideration must be given to branch nodes, because the degree of
continuityof a feature across a branch node depends strongly on the branching angles at these nodés9 stigws
an example in which one feature (B) has stronger continuity across a branch node than another (A). In this case, the
shape information along the path before the branch node is more relevant to Branch B than Branch A. For any given
path, the branching angle at a branch node is a good indicator of how much of the maximum gradient encountered
before the node should be “carried over” past the branch node. Intuitively, an angle of 0 degrees (maximum continuity)

should impose no change to the maximum gradient, whereas an angle of 90 degrees or greater (no continuity) should

Figure 6.9: Axial gradient at a branch node (becaysis smaller thanx, g, is more relevant to Branch B than Branch A)
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cause gyl to become 0 at the branch node. For an angle between 0 and 90, we use this formula:

90-9
90

gmax(e) = |gmax| X

where|g,,./ is maximum axial gradient before the branch node gpg(6) is the maximum axial gradient at the
branch node for the segment with an@le

Oncelgn. for a given path has been calculated, the next step is to extend the branch at the end of the path. Two
main issues need to be considered at this point. First, if there is more than one direction for possible ekinsien (
current end node is a branch node in the original axis), a decision needs to be made to determine which segment to
follow. The second issue is how far to extend the branch.

The firstissue is addressed in consideration of the second part of Leyton’s theorem, which says that the symmetry
axis of a feature should terminate at the extremum of that feature. Given that the objects we are considering have many
minor extrema due to noise, we need to distinguish these from the extrema associated with significant features. Again,
we use the axial gradient for this purpose. If there is more than one path for possible extension, the segment with
the lowest axial gradient is chosen. This method is essentially a greedy algorithm for finding the smoothest path. As
shown in the Results section, this gives a high likelihood of reaching the correct extremum. G=lditeistrates an

example.

Original

New

Pruned Reconstructed

Figure 6.10: Branch extension (at each branch node, the segment with the lowest axial gradient is chosen, which extends the branch

toward the appropriate extremum)

The second issue of how far to extend the branch is addressed by comparing the absolute value of the axial
gradient of the chosen candidate segmégyt,(4) with the |gy,4 Of the branch. fig.,nd < 19maxl: the segment is
added to the end of the branch. Note that because our noise model defines noise as smaller protrusions from a larger
body, a feature can be classified as noise ondyjf; < 0. Segments are added uril,,y < 0 and|geand > Gmaxl» OF

there are no more candidate segments.
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As demonstrated by the examples in the Results section, our branch extension algorithm is very effective in

automatically reconstructing features to their appropriate degree of sharpness without reintroducing noise.

6.4.4 Shape Reconstruction

An advantage to using the VDM method for medial axis construction is that there is a one-to-one correspondence
between the nodes of the axis and the set of disks. For densely sampled models, we can simply take the VDM
associated with the new axis to reveal the final object shape after pruning and feature reconstruction. For more sparsely

sampled cases, a boundary reconstruction step may be desirable.

6.5 Results

We have tested our algorithm on many objects with various amounts of noise. Our data sources include map data,
medical images, aerial photographs, and specially designed test models. In this section, a number of examples are
used to illustrate the effectiveness of our method. Some of the current limitations of our algorithm are also discussed.
The examples include four synthetic objects and one object from an MRI image. The characteristics of the objects are

shown in Tableés.1 All thresholds(t) are specified as a percentage of the total area of the original object.

Object Figure Dimensions Threshd(t))
Leaf 6.11  479x 462 0.3%
Goat 6.12 254x 344 0.4%
Lizard 6.13 443x 446 2.0%
Brain 6.14  255x 293 0.1%
Rectangle 6.15  339x 238 2.0%

Table 6.1: Characteristics of our test objects

Figures6.11(Leaf) and6.12(Goat) are good examples of how the algorithm can reconstruct fine features after
removing unwanted artifacts. In the Leaf, the small variations along the border are removed, resulting in a much
smoother shape. However, the fine features such the tips of the leaflets and the thin stem are nicely reconstructed. This
example can be compared to the result by Ogniewicz in Fi§LBee where the stem is missing completely. The Goat
shows how the branch extension method can use local shape information to reconstruct features to differing degrees of
sharpness where appropriate. For the sharper features, such as the horns, goatee, and legs, the branches are extended
to the tips. For the more rounded features, such as the mouth, chest, belly, and tail, the branches are extended enough

to fully reconstruct the features, but not so far as to reintroduce noise.
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(@) (b) (© (d)
Figure 6.11: Leaf (479x 462,t = 0.3%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape with original

boundary superimposed

CY (b) (© (d)
Figure 6.12: Goat (254x 344,t = 0.4%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape

A 4

() (b) (© (d)
Figure 6.13: Lizard (443x 446,t = 2.0%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape with original

boundary superimposed
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Figure6.13(Lizard) is an example where the “noise” artifacts are quite large. Our algorithm still results in a
nicely simplified shape in this case. In the head and the four legs, the reconstructed branches do not extend into any
of the spurious spikes along the border. The shape of the tail causes its supporting branch to be extended to the tip. It
is somewhat debatable whether the spike at the end should be considered as a significant feature or noise, but in this
case its inclusion seems appropriate.

Figure6.14(Brain) shows an object from an MRI image. The noise in this case is a combination of image noise,
segmentation errors, and discretization artifacts. The shape of this object is significantly more complex than in the
other examples. This object is also of a different topology in that it has two holes. Our algorithm is able to effectively

remove the various types of noise from all areas of the object.

3 & 8 7 5 ANYE k A\

P

CY (b) (©) (d)
Figure 6.14: Brain (255x 293,t = 0.1%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape

Figure6.15 (Rectangle) is an example of an object that has a heterogeneous distribution of noise. In this case,
the left side of the rectangle is very noisy, whereas the right side is clean. Again, the reconstruction algorithm is able
to perform well, extending branches to their appropriate lengths so that the corners on the right side are sharp, while

the artifacts on the left side are removed.

>

@) (b) (© (d)
Figure 6.15: Rectangle (33% 238,t = 2.0%) (a) Original axis (b) Pruned axis (c) Features reconstructed (d) Final shape with

original boundary superimposed
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6.5.1 Limitations

Our use of the maximum axial gradient as a local smoothness constraint inherently assumes that the axial gradient
does not vary greatly within a single feature, at least not relative to the gradient of any noise at the end of the branch.
Although such variations are not encountered frequently, they certainly can exist. Bigj@shows an example of

such a situation. In this case, a thiack or local narrowing, in the object causes the branches in the noisy square to

be overextended into the corners. A possible solution to this problem is to impose a limit on the length of the path
used for computing the maximum gradient. For example, instead of only having one root node from which to start,
we can break the graph down into subgraphs using features such as necks to do the division. Although theoretically

straightforward, this has not been implemented at the time of writing of this document.

@ (b) (c)

Figure 6.16: Narrow neck example (a) Original axis (b) Pruned axis (c) Axis after feature reconstruction, with the branches

extended too far

The branch extension algorithm may not work well in the case of a very short branch with a large branching angle,
because there would be very few axial segments and, therefore, a very limited amount of local shape information with
which to calculate an appropriate maximum axial gradient. Increasing the sampling density of the boundary points
may be a possible solution.

Although our tests show it to be largely effective, the greedy algorithm for finding the smoothest path for branch
extension is nojuaranteedo reach the correct extremum. A solution would be to search further into the tree before

making a path selection.

6.6 Summary

We have presented a novel algorithm for 2D noise removal using the VDM and medial axis. Our algorithm consists
of a threshold-based pruning method that uses a simple significance measure, followed by an automatic feature re-

construction process that extends the remaining branches to recover fine features without reintroducing noise. We
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demonstrated the effectiveness of the method with a number of examples varying in shape complexity.

6.7 Observations

e The 2D medial axis can be used effectively to preserve the topology of a VDM during simplification and other

processing.

e The branching angles of the 2D medial axis can be used effectively to determine the degree of continuity of an

object’s features. This can be seen as a method for the “partial partitioning” of a VDM.

e Adding the 2D medial axis makes the visual discernment between noise and data easier to perform, compared

to using only the VDM.

e The 2D medial axis and the VDM can be used effectively in combination.
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Chapter 7

Three-Dimensional Shape Simplification

7.1 Motivation

The work in the last chapter investigates how the 2D medial axis and the VDM can be used in combination. In this
chapter, the study is extended to 3D. Again, the goal is to use the medial axis and the VBM in a complementary
manner. It has been documented that the construction of the 3D medial axis is much more stable when using an
approximating union of balls as an intermediate representation, rather than building the axis directly from the boundary
of the object 15]. In turn, as discussed in Secti@nl.2 convergence of the ball centres to the medial axis is a useful
criterion for computing a VBM that has a relatively small number of balls while attaining an accurate approximation.
We take advantage of this mutually beneficial relationship in our application.

In addition, we explore how the medial axis can be used to preserve the topology of a VBM during processing.
As shown in Sectior?.5.3 this goal is considerably more difficult than in 2D. Also, we experiment with using the
medial axis to partition a VBM, a concept also explored in the 2D case. In this algorithm, the medial axis is explicitly
broken up into components before further processing.

In this chapter, we discuss a method, originally presented5#]] for simplifying the shape of 3D objects by
manipulating a VBM that approximates the medial axis transform (MAT). From an unorganized set of boundary points,
our algorithm computes the VBM and the medial axis, decomposes the axis and VBM into parts, then selectively
removes a subset of these parts in order to reduce the complexity of the overall shape. The result is a simplified medial
axis and VBM that can be used for a variety of shape operations. In addition, a polygonal surface of the resulting
shape can be directly generated from the filtered VBM using a robust surface reconstruction method. The algorithm

presented is shown to have a number of advantages over other existing approaches.
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7.2 Background

Motivated by the usefulness of the medial axis and its unfortunate sensitivity to boundary noise and other artifacts,
manyregularizationmethods have been proposed to filter out the spurious components. Some of these methods also
aim to preserve the topology of the axis during the pruning process. As shown in CBafherpreservation of
topology during processing of the 2D medial axis is relatively easy to achieve because the axis is one-dimensional and
structurally hierarchical, thereby providing a natural processing sequence when progressing from the outer branches
toward the inside. In addition, any cycles in the axis indicate the presence of real loops in the shape of the object
and can be easily preserved. As a result, a number of very effective algorithms exist, and the problem is more or less
considered solved. In 3D, the situation is more complicated. The relationship between components of the medial axis
is much more complex. There are many cycles that do not represent loops in the object. There is no natural processing
order and there are usually many different deletion sequences possible. In addition, there is often a mutual dependency
between skeletal components where the removal of one component can change the topological relationship between
others. The result is that the simplification algorithm must impose a processing order and perform explicit topology
checks as components are removed. A number of regularization schemes have been peapofgdLb, 46, 109),

each with their own advantages and limitations.

We present an algorithm that has a number of advantages over other existing approaches. Our parts-based ap-
proach, described in Sectiah5, allows the medial axis to be simplified to a much greater degree without certain
undesirable effects such as the disintegration caused by some methods that operate on lower order primitives. This
makes the approach suitable for a variety of applications ranging from noise removal to manual modelling. In ad-
dition, we can use the connectivity of the parts to efficiently preserve the topology of the axis during simplification,

a goal unmet by most other 3D medial axis techniques. Also, our method allows the user to control the degree of
simplification using simple, visually intuitive parameters. Finally, we have designed our algorithm to fit very well into
an existing surface reconstruction framework, so that the filtered VBM can be used directly to generate an accurate
polygonal representation. The reconstruction algorithm, callegbdieeer crust([7]), uses an approximate MAT to
compute an interpolating surface from boundary point samples.

It is important to note that the goals of our algorithm differ significantly from the maegh simplification
algorithms (seedb, 96] for examples) whose primary aim is to minimize the number of polygons in a model given
certain constraints such as storage size and image resolution. Such algorithms do not necessarily simplify the shape of
the object. In contrast, our algorithm focuses on the reduction of shape features in the object by removing parts of the
underlying shape modei.€., the VBM). The primary goal of our work is to producdeature-basedimplification

algorithm that does not adversely affect the integrity of the remaining components.
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7.3 Related Work

As in the 2D case, many researchers use the Voronoi diagram (and/or the dual Delaunay tetrahedralization) of a
set of sample points on the object’s boundary to approximate the medial axis. This method is suitable for many
applications as sample points are typically readily availablg, (aser scans) or easily derived. Our algorithm follows
this approach. Other methods for computing the medial axis include volume thimnind%5]) and wave propagation
(e.g, [86)).

There are only a few methods for 3D medial axis regularization that preserve the topology of the object. Because
of the lack of a hierarchical structure,pgelingapproach is usually employed in which the outermost components
are removed one layer at a time. Two of the most notable techniques are by Attali and Montibjvanid Naf et
al. [109. Both of these methods begin with the entire set of interior Delaunay tetrahedra, and delete them one layer at
a time according to some criteria for maintaining topological consistency. The main problem with such an approach
is that unlike in 2D, the Voronoi vertices (circumcentres of the tetrahedra) in 3tmnverge to the medial axis as
the sampling density approaches infini@}.[Therefore, regardless of sampling density, there are many tetrahedra that
are not even close to the medial axis that are being used for enforcing topological constraints. This can often hinder
the regularization process.

A number of recent approaches are designed to guarantee convergence. For example, Dey atf] Eieo |
a method for computing approximations that converge to the medial axis by applying certain filter conditions to the
Voronoi diagram. These filters are also used to eliminate noisy components. The strongest advantage of their technique
is that the filter parameters are independent of scale and density. Another approach is beFaiskEs], who present
an efficient method for computing a simplified medial axis using a spatial subdivision scheme and graphics hardware.
The primary advantage of their approach is speed. The greatest drawback of most of these techniques is that topology
is ignored, and in many cases a disintegration effect is seen in which holes appear in tregxisgure 7.1).
Such errors are particularly prevalent when simplification is being aggressively applied. In addition to being visually

distracting, these artifacts make subsequent use of the axis more difficult.

Fandisk Medial Axis Fandisk Medial Axis
(Dey and Zhao) (Our Algorithm)

Figure 7.1: Example of the holes that are prevented by our algorithm
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As described in SectioB.1.2 Amentaet al. propose an approach that utilizes a relatively small subset of the
Voronoi vertices called the pole§][ They have proven that the inner poles converge to the interior medial axis.
Amentaet al. use the power diagram of the poles (using the polar ball radii as weights) to compute an approximate
medial axis, called thpower shapd7]. The power shape method is robust and gives visually reasonable results.
Unfortunately, for most objects the power shape is largely composed of very flat tetrahedra instead of 2D faces, and
this geometry complicates tasks such as parts decomposition. In addition, their proposed method of simplification can
result in an approximation that can diverge quite dramatically from the true medial axis as the level of detail decreases.

Amenta and Kolluri use the power shape to produce a more accurate axis composed only of 2D comp@nents [
Our experimentation with this algorithm reveals that it produces many duplicate vertices, causing cracks in the result-
ing medial surface. This again makes the axis difficult to work with. Our algorithm for computing the medial axis
builds on the work by Amenta and Kolluri. We make improvements to eliminate the degeneracies and add a simplifica-
tion method that preserves topology. We choose to work with Amenta and Kolluri's method because of its convergence
guarantees and because of the existence of the power crust algorithm, which can take a set of filtered polar balls and

reconstruct a polygonal surface. Figur€ shows how our algorithm complements the power crust pipeline.

Boundary
Points

Y

Voronoi
Poles/VBM

Our Simplification Power Crust
Algorithm Algorithm
A
Simplified - Power - Reconstructed
VBM Diagram Surface
A
Y
Simplified < Medial
Axis Axis

Figure 7.2: Processing pipeline for 3D shape simplification and surface reconstruction

7.3.1 Summary of Amenta and Kolluri’s Algorithm

As mentioned above, our method for computing the medial axis builds on the work by Amenta and Kolluri. We briefly
summarize their algorithm here. As shown in Figdr2 Amenta and Kolluri’s algorithm computes the medial axis

from the power diagram of the Voronoi poles. This computation can be broken down into several steps, as shown in
Figure7.3
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1. The power shape of the object, a subcomplex of the dual of the power diagram, is computed by keeping only
those simplices whose vertices are all inner poles.

2. For each regular triangle in the power shapsingular pointis computed. The three polar balls centred at the
vertices of the triangle form two intersection points. One of these points lies on the surface of the union of polar
balls, and the other lies in the interior. The surface point is the singular point.

3. A Voronoi diagram of the singular points is computed. The subcomplex of the Voronoi diagram that intersects

the power shape is computed as the medial axis.

Power Power Singular Voronoi
Diagram | *| Shape | *| Points | | Diagram
[ ]

Medial
Axis

Figure 7.3: Amenta and Kolluri’s algorithm for computing the medial axis from the power shape
More details on the algorithms by Amenga al, including the theoretical derivation, sampling assumptions, and

convergence guarantees can be found@jn [

7.4 Medial Axis Computation

For use in geometric processing, the most significant limitation of Amenta and Kolluri’s algorithm is that it produces

many duplicate vertices in the medial axis. These vertices cause double edges that show up in the form of cracks in
the medial surface. By solving this problem we can produce a medial axis that has much cleaner geometry for further
processing. We take a combinatorial approach because removing duplicate vertices numerically is computationally
expensive and subject to errors in precision. From our analysis, there are two primary causes of the duplicate vertices:

1. Many duplicate singular points are generated. This results in duplicate vertices in the medial axis because the
vertices of the axis are Voronoi vertices computed from the singular points.

2. Many of the singular points are cospherical. The Voronoi vertices are the circumcentres of the dual Delaunay
tetrahedralization of the singular points, so when more than four points are cospherical, duplicate circumcentres
are produced, resulting in multiple identical medial vertices.

To address the first problem, we note that Amenta and Kolluri’s algorithm computes a singular pewverpr
regular triangle in the power shape. However, we observe that two or more neighbouring triangles can often produce

identical singular points. We use Figuret to illustrate the 2D analogy of a situation that happens frequently in real
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data sets. In this casaE are five boundary points of the object, the dotted lines represent the Delaunay triangulation
of the boundary point®®1-P3 are the polar balls computed from the triangles, 8adS2 are two simplices of the

power shape (edges in 2D, triangles in 3D). The construction lea®ls &amdS2 producing the same singular point,
located at boundary poil, becaus®2 intersects botl?1 andP3 at that point. We can efficiently identify and remove
duplicate singular points produced in this manner by checking which polar balls have corresponding tetrahedra that

share the same boundary point.

Figure 7.4: SimplicesS1 andS2 produce two identical singular points, co-located at pBint
The second problem, cospherical singular points, can be attributed to the simple fact that the points are computed
by intersecting balls in the VBM. So it should not be surprising to find cases in which more than four singular points
lie on the surface of a polar ball. We can quickly identify which singular points are cospherical by keeping track
of which polar balls are intersected to form which singular points. We can thus find and eliminate duplicate medial

vertices very efficiently.

7.5 Simplification

As with most 3D medial axis regularization methods that preserve topology, we utilize a peeling approach in which
the outer layers of components are removed over a number of iterations. At the beginning of each iteration, we
decompose the medial axis into parts. We then assign a significance value to each part that is a candidate for removal.
An ordered pruning process then removes all parts that have a significance value in a given range and can be deleted
while maintaining topological consistency. The number of iterations performed depends on the complexity of the

shape and the degree of simplification required.

7.5.1 Parts Decomposition

After generating the VBM and medial axis, we decompose the axis into parts before further processing. We begin by

triangulating all faces to make implementation easier. We then form parts by grouping triangles. Our decomposition
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scheme takes advantage of the fact that the 3D medial axis can be viewed as a composition of 2D surfaces (sometimes
calledboundary shee}sThe result of the decomposition is a set of connected 2-manifold parts embedded in 3D space.
As shown in Sectiof7.5.3 this is very useful for simplifying the topological representation used during pruning.

The parts creation process begins at the boundaries of the medial axis and works inwardly on a level-by-level
basis. The first level parts are at the boundaries of the axis, the second level parts are inward neighbours of the first
level, and so on. Each first level part starts with a randomly chosen seed triangle that has an edge with no neighbours
(i.e, it is at a boundary of the axis) and does not yet belong to any part. The part begins to grow by gathering
neighbouring triangles of the seed triangle. For each of the triangle’s edges, if that edge is shared with only one other
triangle, then the part grows into that neighbour. This growth process proceeds recursively until no more triangles can
be added to this part. The resulting part is a 2D surface. Another boundary triangle is then selected to begin another
first level part.

After all parts of level 1 have been formeice(, there are no more unused triangles at the axis boundaries), parts
of level 2 are computed. For a part of levglwherei > 1, a randomly chosen triangle that neighbours a part of
level i — 1 is used to begin the part. The growth process is the same as that for level 1. In this manner a number of
levels of parts are created. Figufe illustrates an example using a simple medial axis, in this case computed from

the boundary points of a rectangular box. The numbers in the figure indicate the levels of the respective parts.

.......................

Figure 7.5: Medial axis showing level 1 and level 2 parts (the dotted lines show the boundaries between parts)
The user can limit the number of levels created depending on the application. During each pruning iteration,
only parts of level 1 are removed, and parts of level are only used for enforcing topological constraints. Therefore,
if topological preservation is considered unimportant for the current application, only the first level parts need to be
created.
The decomposition of the medial axis leads naturally to a decomposition of the VBM, because each part of the

axis is associated with a set of polar balls. To make this clear, we make use of two observations:

Observation 1 (Amenta and Kolluri [10]) Every vertex of the power shageg(, an inner pole) must lie on an edge

or a vertex of the medial axis.
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Observation 2 Since the medial axis is the intersection between the power shape and the Voronoi diagram of the

singular points, every part of the axis must contain a subset of the inner poles.

Thus, each part of the axis has a number of inner poles lying on its edges and/or vertices. We can combinatorially
determine the set of poles that lie in a given part by keeping track of which polar balls intersect to produce which

singular points, and tracking which singular points are subsequently used to produce which medial vertices and edges.

7.5.2 Pruning

The general simplification strategy is to remove one layer of the outerinmstdvel 1) parts at a time. This allows

us to check for and prevent undesirable changes in topology. In order to determine which parts are to be removed,
we apply two significance measures to evaluate the importance of any given part. In each iteration, the user selects a
significance measure and a threshold value. Every level 1 part that falls below the threshold and satisfies all topological
constraints is removed.

We have designed our significance measures to be efficient, versatile, and intuitive to the average user. The first
measure is simply the number of triangles in the part. We use triangle count because it allows us to filter out a large
number of insignificant parts with very little computation. The other measure that we use is the volume of the feature
of the object that would be removed as a result of pruning the part. We use the volume because it is an intuitive and
visually meaningful property of each component. Useful thresholds can be easily determined by examining the size
of features that the user wants to remove. To make this measure independent of scale, we divide the volume of each
part by the total volume of the object to give a relative value.

To estimate the volume for each part, we note that the set of Delaunay tetrahedra computed from the object’s
boundary points makes a visually reasonable approximation of the object’s interior. Since these tetrahedra are available
from earlier Voronoi computations, it would be efficient to reuse them for volume estimation. To do so we note from
the previous section that each part is associated with a set of inner poles. Having the set of inner poles immediately
gives us a set of tetrahedra, because each pole is computed as a circumcentre from the Delaunay tetrahedralization.
We use the sum of the volumes of the tetrahedra associated with a part to estimate the volume of the object feature
corresponding to that part. Figure6 shows a feature of an object (the top of the Tweety model in Figurga) and
the group of tetrahedra used to estimate its volume.

Although the two significance measures can theoretically be used in any order or combination, we have found
the process generally more effective and easier to control if the triangle count measure is used first to remove the very
small outer layer parts, followed by using the volume measure to remove the more significant parts underneath. The

reasoning is that for most data sets, practically all of the very small parts in the first few layers are discretization or
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Figure 7.6: Feature of an object and the tetrahedra used to estimate its volume

noise artifacts. After these are removed, the volume measure can be applied iteratively in a manner appropriate for the

data and application. Indeed, as discussed in Settidmour experiments have shown this to be a useful strategy.

7.5.3 Topology Constraints and Pruning Order

Our algorithm is able to preserve the topology of the medial axis during pruning. The topological properties that
concern us are the number of connected components and the number of loops. Each loop in the axis represents a
tunnel going through the object. Given a set of connected parts representing the medial axis, we need to determine
whether any given level 1 part can be safely removed without disconnecting the remaining parts and without changing
the number of existing loops.

We deal first with the loops. The part removal method described in the previous section guarantees that new
loops are never created, because only parts at the borders of the axis are candidates for pruning. In order to save
existing loops, we first determine which parts join together to form loops in the axis. We can then preserve these parts
during pruning. In 3D, finding loops is not just a simple matter of detecting cycles, because there are many cycles that
do not form loops. For example, the three connected parts on the left in Figiftem a cycle A—~B—C—A) but do
not make a loop. Removal of any of the three parts would not change the topology of the object. In contrast, the three

parts on the right in Figur@é.7 do make a loop.

— LT

Figure 7.7: The three parts on the left do not form a loop, while the three parts on the right do.

To detect loops efficiently, we take advantage of the simplicity of our parts-based representation to build a
topology graph that concisely captures the connectivity information between the parts. In this graph, each node

represents a “point” of contact between two neighbouring parts. This “point”, calledtact curvetakes the form of
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an unbroken polyline shared by the touching parts. The edges of the topology graph represent the parts themselves. In
order to eliminate cycles that are not loops, two nodes are collapsed into one if the corresponding contact curves are

connected. For example, Figure8 shows the graphs representing the topology of the two sets of parts in Figure

Figure 7.8: Graphs representing the topology of the parts in Figure
In the first graph, there is only one node because the contact curves betweéhgraad3, B andC, andA and
C are all connected. The edges of this graph do not connect to any other nodes. The second graph has a loop in the
configuration because the contact curves do not touch each other. Figash®ws a less trivial example computed by

our algorithm. The topology graph has four nodes interconnected by six parts.
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Figure 7.9: (a) Object (b) Medial axis (c) Topology graph

With the loops preserved, maintaining topology then becomes a matter of ensuring that the number of connected
components stays the same. We satisfy this constraint by checking that the removal of a part does not disconnect any
of the neighbouring parts.

The lack of a natural processing order and the fact that there are no theoretical results known about the effect of
the deletion sequence on the skeleton mean that we need to impose a pruning order. Our algorithm takes the simple
approach of sorting the parts in order from lowest to highest value, using the significance measures defined in the
previous section. The reasoning is that in general, we want to remove the less important parts first whenever possible

so that they do not prevent the more significant parts that typically represent more salient features from being pruned.
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7.6 Surface Reconstruction

After pruning, we use the power crust algorithi} {o reconstruct a surface of the simplified object. The algorithm
works by computing a piecewise linear boundary between the inner and outer polar balls. Before simplification, each
boundary point sample has an inner and outer pole. Afterwards, only a subset of the inner poles remain, because
we discard the balls associated with the pruned parts of the axis. For most data sets, we only need to remove the
inner poles. However, as mentioned ifj, [for objects with sharp corners, more accurate reconstructions can be had

by removing the corresponding outer poles as well. The polar balls associated with the remaining poles are used to

compute the surface. We discuss the power crust algorithm further in the next chapter, &€ction

7.7 Results

This section describes the results of testing our algorithm with a number of data sets. In all of the examples shown,
it is easily noticed that our approach can greatly reduce the complexity of the axis without creating holes or breaks in
the remaining components. Taliel lists the examples presented, along with the processing times for computing and
simplifying their medial axis. A Pentium 4 processor running at 2.0 Ghz is used. Our implementation makes extensive
use of the CGAL and LEDA libraries. Although some of the models take several minutes to process, we feel confident
that our algorithm is more efficient than the other current topology preserving methgds[15, 109), because of

our use of the convergence property (Seclid) and parts-based topology graph (Secfidn 3 to reduce the number

of topology checks required.

Model Points  Axis Generation (sec.) Pruning (sec.)
Tweety 48668 186 205
Max Planck 25044 57 92
Hip bone 70688 348 354
Bunny 34835 103 136

Table 7.1: Processing times for 3D shape simplification

The typically pruning scheme that we use is to first apply the triangle count significance measure for one to three
iterations with a very low value<( 5 triangles) and without topology checks. This usually removes many very small
and visually unimportant parts with little computation. Then we apply the volume measure with topology checks for
one or more iterations as required to achieve the desired level of detalil.

We use the Bunny model (Figuie10 to demonstrate how our algorithm can automatically remove features
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of various sizes. In this figure, the middle bunny is the result of applying four pruning iterationg(2; = 5,
1X ty,ty = 1.0%, 1x t,,t, = 5.0%) to reduce the overall detail of the model without losing the large features.

The topology graph of the second bunny is shown in Figutd. The third bunny is also the result of four iterations
(@xts, ty =5,1xty,,t, = 1.0%, 1xt,, t, = 10.0%), but with a greater final threshold to remove the larger features.

The resulting object has lost all of its small details, such as the eyes, as well as most of the large features, such as the

ears and tail. The reconstructed surface is considerably simpler than the original.

Surface Reconstructed from Surface Recoﬁstructed from
Simplified Axis/VBM Strongly Simplified Axis/VBM

from Boundary Points

Strongly Simplified
Medial Axis

Simplified Medial Axis

Original Medial Axis
Figure 7.10: Bunny model at three levels of detail
However, this example also shows a limitation of the algorithm: our simple decomposition method does not
always completely divide the parts in the way a human would. In this case, the feet of the bunny are not separated
from the rest of the body, and cannot be thresholded out. Consequently, the feet are only mildly simplified compared
to the rest of the object. In such cases, more sophisticatsth segmentatidechniques€.g, [172]) should prove

useful for further decomposition of the axis.
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Figure 7.11: Topology graph of simplified bunny model (middle bunny of Figdr&0
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The Tweety model and its medial axis are shown in Figiré&a and7.12b, respectively. This example illus-
trates how our algorithm can be used to remove small noise-type artifacts. Figddeshows the medial axis after
five iterations of pruning (X &, & = 5, 2X ty,t, = 1.0%, wheret; is the triangle count threshold, arid is
the volume threshold). The simplified axis is clearly much cleaner, and more useful for applications such as shape
matching. Figure§.1Z and7.12 show a closeup of the original model and the simplified model, respectively. The

simplified model is clean of the small bumps seen on the back and leg of the original model.

(d) (e)

Figure 7.12: (a) Tweety model (b) Medial axis (c) Back of Tweety model, with obvious noise artifacts on the back and leg (d)

Simplified medial axis (e) Back of simplified model, with noise clearly reduced
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The Max Planck model, shown in Figui®l3, is given as an example of how an object can be edited by
manually specifying parts of the medial axis to be removed. After four pruning iterationg;(2; = 5, 2x t,t, =
1.0%), we have a relatively clean axis to work with (Figur&3). We can manually select the left ear and its stump
by simply specifying a single triangle in each part. The medial axis without the left ear is shown in Figjatend
the resulting surface is shown in Figufel3. The ear is removed without appreciable distortion to the surrounding

area.

(d) (e)

Figure 7.13: (a) Max Planck model (b) Medial axis (c) Simplified medial axis (d) Simplified medial axis, ear removed (e) Max

Planck model, ear removed
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The hip bone model (Figuré.14a) is an example of where topology preservation becomes very useful. Fig-
ure7.14 shows the original medial axis, which is full of small details. Figo®4 shows the medial axis after six
pruning iterations (X t;, t; = 5, 3X ty, ty = 5.0%). The algorithm greatly reduces the amount of small details, but
is able to preserve the narrow arch in the axis. Many other existing pruning methods would break or disintegrate this
loop, particular where it is thin. The reconstructed simplified object with the narrow loop clearly intact is shown in
Figure7.14d.

(b)

(©) (d)

Figure 7.14: (a) Hip bone model (b) Medial axis (c) Simplified medial axis (d) Simplified hip bone model, with narrow loop

preserved
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7.8 Summary

In this chapter, we have presented an algorithm for simplifying 3D shapes by pruning their medial axes and associated
VBMs. The approach is particularly novel in that the axis and VBM are decomposed into parts before simplification.
We showed that this feature-based approach has a number of advantages over other existing techniques. Our results
demonstrate that the algorithm is able to greatly reduce the amount of detail in an object without negatively affecting

the remaining components. The power crust method is used to reconstruct a polygonal surface from the filtered VBM.

7.9 Observations

e The medial axis computed using our version of Amenta and Kolluri’'s algorithm can be effectively used to
decompose a VBM into parts for tasks such as shape simplification. However, as mentioned in the Results
section, even though our method of simply using the number of triangle neighbours to divide the axis into parts

works well in general, there are cases that warrant a more advanced parts decomposition technique.

e The connectivity of the medial axis parts can be used to efficiently preserve the topology of the VBM during

processing.
e The 3D medial axis makes it easy to manually specify parts to be removed, compared to using only the VBM.

e The prevention of the disintegration effect shown in Figlukis a positive indication that the use of the medial

axis can keep groups of balls connected during processing.

e We have assumed that the input data is adequately sampled. While this is usually the case for data sources such
as laser scanners, other sources of data may result in undersampled point sets. More research in the detection
of undersampling, based on previous woekg( [6, 45]), should be done to improve the robustness of the

algorithm.

e Using the balls of the VBM instead of the Delaunay tetrahedra to estimate the volume of parts may result in

greater accuracy. Such an approach can make use of previous work on computing properties of unions of balls
(e.g, [88)).
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Chapter 8

Surface Reconstruction

8.1 Motivation

Generating a polygonal surface from a given union of balls can be very useful. For example, if a VBM is used in

a segmentation application, such as that in Chagtarreconstructed boundary may be required as the final output.
Surface models are often desirable even if they are only needed for display purposes, because the balls are sometimes
found to be visually distracting. Although a sufficiently sampled VBM is accurate in terms of approximation error,

a polygonal surface model typically “looks better” to a human viewer. A common criticism of Ranjan’s work is the
lumpy appearance of the model2f. In addition, a high quality rendering of a union of balls typically requires a

large number of approximating polygons. For example, T8ehows the number of polygons used by Geomview,

a popular polygonal model viewer, to render a single ball at different mesh resolutions. These numbers show that

rendering a large union of balls at interactive rates would take substantial processing power.

Patch Dicing Number of Polygons
10 (default) 648

20 (good onscreen quality) 2888

30 (good print quality) 6728

Table 8.1: Number of polygons used by Geomview to render a single ball

In this chapter, we discuss two methods for constructing a polygonal surface from a VBM. The first, called
the power crust, is used in our 3D shape simplification algorithm, as described in Chaftee second is a new

reconstruction method p7 that we have developed.
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8.2 The Power Crust

The main idea of the power crust algorithm is, given a set of boundary points, to first approximate the medial axis
transform of the object, then use it to compute an interpolating surface. Alternatively, the method can be seen as
computing the interface between two unions of balls, one approximating the interior medial balls (VBM) and the other
approximating the exterior medial balls. The algorithm in Chaptéemonstrates how we can remove shape features
by removing the corresponding medial balls.
The main steps for computing a power crust are (Figuteshows a 2D example):

1. Compute the Voronoi diagram of the sample points (Se@idrt).

2. Compute the poles of each sample point (Secddnd.

3. Compute the power diagram of the poles (Sec8dhJ).
4. Classify the poles as inside or outside (Sec8ah2.
5

. Output the power diagram faces separating the cells of inside and outside poles as the power crust.

(a) (d) (e)

Figure 8.1: Power crust algorithm in 2D (figure adapted fro8h)[(a) An object with its medial axis (b) The Voronoi diagram of a
set of sample points on the boundary (c) The inner and outer polar balls (the outer polar balls with centres at infinity are halfspaces)

(d) The power diagram cells of the poles (e) The power crust and approximate medial axis

8.3 Surface Reconstruction Using Singular Points

Although the power crust algorithm is a robust performer, it requires both the inner and outer polar balls to be present
in order to compute a surface. In addition, it produces a large number of faces relative to the number of balls present.
We need a method that can produce a surface given only the interior balls, and we would like the number of polygons
created to be on the same order as the number of balls. In this section, we present a new algorithm for computing a
polygonal surface from a union of balls. The focus is on developing a relatively simple and efficient method.

As mentioned in Sectior.3.1 any location on the surface of a union of balls where three or more balls intersect

is called a singular point. In a reasonably dense union of balls, such as a typical VBM, there are many singular points.
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Figure8.2a shows a union of balls and some of its singular points. Our algorithm connects these points to form a

polygonal surface and incorporates a method for dealing with undersampled areas in which the balls do not intersect.

(@) (b)

Figure 8.2: (a) A union of balls and some of its singular points (b) The dual shape of the union of balls
Our algorithm uses the weighted Delaunay triangulation of the union of balls to compute the surface. Given
adequate sampling, the subcomplex consisting of the interior Delaunay triangles has been proven to be homotopy
equivalent to the medial axis of the union of balls and therefore accurately reflects the topology of theSshajee [

take advantage of this property to compute surfaces that are topologically correct.

8.3.1 Related Work

An algorithm for theskinningof unions of balls has been developed by Edelsbruenhet. [48, 49]. The skins are

typically composed of parts of the balls connected by hyperbolic and spherical patches to make the surface tangent
continuous. The skin is then adaptively triangulated to form a polygonal surface. Kruithof and \&jtextend

the method to approximat€? surfaces. There are two primary drawbacks to the skinning approach. First, even a
small number of balls can generate a complicated skin. Second, there are always concave patches between the balls,
sometimes resulting in a bumpy appearance. Our method is designed to be considerably more lightweight, and is more

suitable for use in applications where speed is a concern.

8.3.2 Algorithm Overview

Our algorithm consists of three main steps:

1. Compute the weighted Delaunay triangulation (Sec8dnl), and discard all triangles that are outside of the

union of balls. The resulting complex is called thgal shapg47] of the union of balls.
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2. For all regular and singular triangles (defined in the next section) in the dual shape, compute the singular points,
except for duplicates.

3. Compute faces from the singular points using the connectivity of the dual shape.

The main idea of the method is to traverse the hull of the dual shape in an ordered fashion, connecting the singular
points on the way. Figur8.3illustrates how the method works in 2Dg,, computing a polyline border from a union
of disks). In this example, thes are the regular and singular simplices of the dual shapep'share the singular
points, and the dotted line is the resulting approximating boundary. The idea is that as we traverse the simplices in
order along the hullfl — s2 — s3 — s4 — ...), we connect the corresponding singular poipistf p2 to p3 to p4,

etc).

Figure 8.3: Connecting the singular points of a union of disks to form a boundary, represented by the dotted line

8.3.3 Singular Point Computation

Each triangle in the dual shape can be classified as one of three ityjgegr, regular, or singular. This classification

is based on the number of tetrahedra to which the triangle belongs. An interior triangle is the interface between two

neighbouring tetrahedra, a regular triangle belongs to only one tetrahedron, and a singular triangle is not part of a

tetrahedron. For most data sets, the majority of triangles are faces of tetrahedra, and therefore are either regular or

interior triangles. Each type of triangle produces a different number of singular points. An interior triangle produces

no singular points, a regular triangle produces one singular point, and a singular triangle produces two singular points.
Given a simplex of dimension one or greater in the triangulationpttiecentreof the simplex is the centre of

the smallest ball that is orthogonal, as defined by the power distance (Sedtidnto each ball of the simplex. For

a given triangle, we compute its singular point(s) by first locating the orthocentre. The intersection points lie on a line

orthogonal to the simplex and going through the orthocentre. Once we find the orthocentre, we only need to compute

the correct distance to find the singular point(s). FigBweshows the 2D analog; the simplexan edge in 2D, a

triangle in 3D) produces two potential singular points, each a distafrocen the orthocentre.
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Singular Point

Orthocentre

Figure 8.4: Computation of the singular points of the simpkex

It is important to note that in order to avoid degenerate faces, we need to prevent duplicate singular points from
being computed. Multiple identical singular points are often produced when four or more balls intersect at the same
point, as is frequently the case when the union of balls is a set of Voronoi balls. This issue is discussed ir¥ Section

with an example shown in Figuié4.

8.3.4 Polygon Computation

After the singular points have been computed, they must be connected properly so that the resulting surface has the
correct topology and well-formed faces. For each vertex in the dual shape, we traverse the incident faces on the hull
and connect the singular points in order around the vertex. F&jdpeshows a projection of the hull of the dual shape
of the union of balls in Figur8.2a. Traversing aroundi (t1 — t2 — t3 — ...) results in connectingl to p2 to p3,
etc.in Figure8.2a. The final result of going around this vertex is the face shown by the dotted line in Bigare

This method of traversing around the vertex is equivalent to taking the ball centred at the vertex, and using the
surface arcs formed by the ball intersecting with its neighbours as “paths” to find the appropriate sequence for the
singular points. For example, the path frpmto p2 in Figure8.2a is determined by the intersection between the balls
b1 andb3. This duality is apparent if we consider the facts that the arcs lie on the Voronoi walls of the power diagram
of the balls, and the singular points lie on the intersections between the Voronoi walls.

While traversing the triangulation, there are two primary issues that need to be addressed. The first is that if a
triangle has more than one neighbour on a given edge, we need a method for determining which neighbour to use in
order to stay on the proper side of the hull. The second is that when we encounter a singular triangle, we need to

decide which of the two singular points is the proper one to use next.

Finding the Right Neighbour

Figure8.5a illustrates a scenario in which we need to decide which neighbour of a triangle we should proceed to next.
In this case, singular poiptl, computed from trianglet, has just been added to the current face. We need to determine

which of t2, t3, or t4 is the correct triangle. Making a wrong choice (eitk@or t4) would cause the traversal to go
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right through the hull. To find the right neighboug), we form a trianglell” using the given edge and the current

singular point p1). The first triangle encountered when rotating in the direction fibto t1’ is the correct neighbour.

() (b)

Figure 8.5: (a) Using the direction fromil to t1’ to find the right neighbourt?) (b) Using the normal vectors to find the right

singular point

Finding the Right Singular Point

When we reach a singular triangle, we need to determine which of the two singular points is the correct one to use.
Choosing the wrong one would cause the constructed face to cut across the interior of the shape. In order to find the
right singular point, we compute a number of vectors to determine if choosing a particular singular point would cause
a flip in orientation to the other side of the hull, relative to the singular point used for the previous triangle.

Figure 8.9 illustrates the vectors used. The normal vectons (2) for the previous ) and current )
triangles are computed. In addition, a vector originating from the centroid of the previous triangle pointing to the
previous singular poinip(l) is computed. Similarly, two vectors directed toward the two singular points of the current
triangle p2a, p2b) are derived. The sign of the dot product between the normal vector and the singular point vector of
the previous trianglél gives us a reference to determine whichp@é or p2b should be used to preserve the current

orientation. In this casp2a is the correct one.

8.3.5 Undersampled Areas

For densely sampled VBMs, such as those computed from laser scans, undersampling is rarely a problem. However,
in some data sets, there are areas in which the balls are close enough for the computed Delaunay triangles to be largely
inside the shape, but the balls do not actually intersect. This happens most frequently when one ball intersects two
other ones, and the other two are close to each other but do not actually intersect. Our method of computing the

singular points using the orthocentre is beneficial in such cases, because the orthocentre can be computed without an
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intersection. This is in contrast to using, for example, great circles for determining intersection points. To compute a
“fake” singular point to add to the surface, we simply estimate an appropriate orthogonal offset from the orthocentre

by averaging the radii of the three balls connected in the triangle.

8.3.6 Results

To demonstrate the effectiveness of our algorithm, we show several examples of varying shape complexity, topology,
and sampling density in Figur@&s6to 8.9. All of the unions of balls are VBMs computed using Amenta’s polar ball
method (Sectiod.1.2. Table8.2shows the processing times to compute the surfaces. The number of balls and faces
are also shown for each case. A Pentium 4 processor running at 2.0 Ghz is used. Our implementation makes extensive
use of the CGAL and LEDA libraries.

Model Balls Time (sec.) Faces
Apple 3095 4.6 4179
Mushroom 3609 5.0 4963
Heart 3405 4.6 3900
Torus 5613 6.2 7154

Table 8.2: Processing times for polygonal surface reconstruction from VBMs

(@ (b)

Figure 8.6: (a) VBM of an apple (3095 balls) (b) Surface reconstructed from the VBM of an apple (4179 faces)
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@) (b)

Figure 8.7: (a) VBM of a mushroom (3609 balls) (b) Surface reconstructed from the VBM of a mushroom (4963 faces)

@) (b)

Figure 8.8: (a) VBM of a heart (3405 balls) (b) Surface reconstructed from the VBM of a heart (3900 faces)
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@) (b)

Figure 8.9: (a) VBM of a two-holed torus (5613 balls) (b) Surface reconstructed from the VBM of a two-holed torus (7154 faces)

8.4 Summary

In this chapter, we have briefly reviewed the power crust algorithm, as well as presented our own novel method for
constructing an approximating boundary of a union of balls. We have shown the results of applying our algorithm to

several VBMs of varying shape complexity and topology.

8.5 Observations

e Our algorithm is robust, and has not failed for the many data sets that we have tried. This is due to the fact that

the algorithm is simple and based on well-established geometric theorems and constructions.

e Our method works for unions of balls in general, not just VBMs, because there are no assumptions made in our

algorithm with regards to the construction method of the ball model.

e While our algorithm produces surfaces that the average viewer would say are faithful reconstructions, geometri-
cally speaking they are only approximations. A derivation of the error bounds would be informative, but judging
by the methods of construction we can probably assume that the amount of error is greater than in the skins ap-
proach. In addition, while we conjecture that the reconstructed surface converges to the envelop of the union of

balls as the sampling density tends to infinity, this has not been rigorously proven.
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e The polygons produced by our algorithm are non-planar in general. Depending on the application, this may be
problematic for subsequent processing. A conversion step to retessellate the surface into plaragfaces (

angles) would be useful.

e \We note that the singular points can be used as input into the power crust algorithm to produce an interpolating
surface. In our experiments, this approach tends to create smoother surfaces. However, as noted earlier, the

power crust produces a large number of faces for the number of balls present.
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Chapter 9

Conclusions and Future Work

This thesis shows that Voronoi Ball Models possess the characteristics to make them broadly-applicable in computer
graphics, scientific visualization and computer vision. Five representative applications are used to demonstrate the
capabilities and limitations of the VBM. The full potential of VBMs is too great to be completely explored in one
thesis, but, as documented in this dissertation, some important steps have been taken. In this last chapter, we summarize

the major conclusions and some directions for future work.

9.1 Summary of Results and Observations

We summarize the applications developed for this thesis, and our main results and observations related to the key
properties that we identified in ChapterSome of the observations have been made from the results of more than one

application, but are only listed once for conciseness.

9.1.1 Image Matching and Interpolation

We presented an algorithm for image interpolation and rigid registration using VBMs. In this approach, VBMs are
used to represent the images and a similarity measure is applied to form feature correspondences between the VBMs
to be matched. A number of interpolated VBMs are then formed, from which the intermediate images are computed.

The major results and observations are:

e The method is able to form correspondences between similar image features, even with no explicit feature

extraction and little or no manual intervention.

e Clustered VBMs are stable with respect to changes in the positions of the sample boundary points.
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e The correspondences formed by the matching method are stable with respect to changes in the user-determined

parameter values (matching weights).

e The appearance of artifacts in the interpolated images indicates that connectivity information between primitives
would be a valuable addition to the representation. This is a motivating factor for our research done on exploring

the use of the medial axis with VBMSs.

9.1.2 Shape Model and Threshold Extraction

We discussed our largely automatic algorithm for extracting thresholds and VDMs of significant objects from greyscale
images. The method entails using a VDM-based similarity measure to quantify the shape changes of the objects in an
image as the intensity threshold is varied. Plots of the shape gradient are then used to detect the intensity ranges in

which significant objects lie. The major results and observations are:

e The extracted thresholds and VDMs are visually accurate representations of the shape information contained in

the test images.

e Our proposed modification to the similarity measure enhances its stability by making it independent of transla-

tion and rotation, and less dependent on scaling.

e When computing the shape distance between two VDMs, the unmatched disks can be used to reveal large

differences not evident in the matches.

e The similarity measure can be used to compare objects of different shape complexity and topology. This flexi-

bility is particularly advantageous in exploratory applications.
e Reconstruction of the object boundaries would be a useful step to add. This points to the need for surface

reconstruction methods such as those discussed in Cl@apter

9.1.3 Two-Dimensional Shape Simplification

We developed an algorithm that uses the VDM and the medial axis in combination to remove noise-type artifacts from
the borders of 2D objects. The method prunes the spurious branches of the axis without sacrificing the fine features

that are usually lost with other techniques. The major results and observations are:

e The 2D medial axis is an efficient representation for preserving the topology of a VDM during processing.
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e The branch nodes of the 2D medial axis make effective partitioning points for localizing shape information
defined on the VDM.

e Adding the 2D medial axis makes visual discernment between noise and significant features easier to perform

compared to using only the VDM.

9.1.4 Three-Dimensional Shape Simplification

We presented a method for simplifying 3D shapes by using the medial axis and VBM together. The algorithm computes
a VBM and medial axis of the object, uses the medial axis to decompose the VBM into distinct components, then
iteratively removes layers of the medial axis and VBM until the desired amount of simplification is achieved. A

surface of the object is then reconstructed from the VBM using the power crust algorithm. The major results and

observations are:

e The convergence of polar balls to the medial axis transform provides a way to filter out many balls resulting

from discretization, thereby enhancing the stability of the VBM.
e The 3D medial axis can be efficiently used to represent and preserve the topology of a VBM during processing.
e The 3D medial axis can be used to partition a VBM into meaningful components.

e The 3D medial axis and our parts-decomposition scheme make the manual selection of features for removal

easier to perform than using only the VBM.

9.1.5 Surface Reconstruction

We developed an efficient algorithm for computing a polygonal surface from a union of balls. Our lightweight approach
connects the singular points of a union of balls to construct surfaces that are topologically correct. The resulting
surfaces have a small number of polygons compared to those produced by other current techniques. The major results

and observations are:

e Our surface reconstruction algorithm is robust and can handle objects of varying shape complexity, topology

and sampling density.

e The technigue works for unions of balls in general, not just VBMs. For example, the method can be used to

compute surfaces from clustered VBMs.

e The amount of processing time to compute a surface for each model is small relative to the gain in display

efficiency.
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9.2 Conclusions

In this section, we summarize our major conclusions regarding the suitability of VBMs for shape-driven applica-
tions. As described below, most of the core shape operations that we are focusirgg eRrt(action, simplification,

matching, interpolation, manipulation, and surface reconstruction) can be performed effectively with VBMs.

e VBMs make stable, accurate, and efficient shape representations of all objects for which a dense sampling of
the entire boundary can be computed. They are most suitable for use with data from which the boundary of each

object can be independently extracted.

e The VBM-based similarity measure forms accurate shape correspondences between 3D object features. The
matches have been shown to be stable with respect to changes in the positions of the sample boundary points,
and to changes in the measure’s parameter values. The method has sufficient capabilities to perform well for

matching tasks such as (rigid/non-rigid) registration.

e VBMs can be used for shape interpolation by using a similarity measure to establish correspondences between
balls, then interpolating the positions and sizes of matched balls to derive intermediate shapes. In our current
interpolation method, the balls are interpolated linearly, and there is no connectivity between primitives, so
there is little control over the intermediate shapes. As a result, the approach is feasible for applications such as

aesthetic morphing, but the interpolation control may require further development for more demanding tasks.

e The VDM-based 2D similarity measure has sufficient discriminatory power to quantify a large range of shape
differences accurately. The makes the method suitable for applications such as shape database queries or tem-
plate matching. Some cases can result in unmatched primitives, which can be a significant source of information
that can be used to complement the data from the matches. More research in the use of unmatched primitives is

likely to further increase the accuracy of the method.

e The VDM-based 2D similarity measure effectively quantifies shape differences between objects that vary sig-
nificantly in topology. The flexibility of the similarity measure makes it well-suited for exploratory applications

such as shape extraction from image data, particularly where manual intervention is impractical.

e The VBM can be used to accurately approximate the medial axis transform, as well as simplify and stabilize the
medial axis by removing components associated with minor features. This makes the VBM applicable to the
large group of shape processing algorithms designed for the medial axis. For example, a number of animation
methods use a skeletal structure as the primary representation. In addition, the VBM can use the medial axis to

efficiently preserve the topology of an object during shape processing.
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e The VBM can be used to partition an object into parts for further processing by using medial segments to link
balls together into groups. We have proven this approach to be particularly effective for shape simplification
via feature size thresholding or manual specification of components for removal. Parts-decomposition is used in
many object recognition systems, because it is a strategy known to improve robustness in the face of occlusion.

Therefore, partitioned VBMs can likely be used for recognition in cluttered environments.

e Using the VBM and the medial axis together theoretically gives the VBM greater visual relevance. Our ex-
periments provide evidence to support this statement. For example, our 2D simplification algorithm shows
that Leyton’s Symmetry-Curvature Duality Theorem, which is based on psychological evidence, can be used to

effectively distinguish between the noise and significant features of an object.

e The VBMis a good intermediate shape representation for reconstructing polygonal surfaces from boundary point
samples. The VBM can be used to stabilize the shape by filtering out spurious components before computation
of the surface. Amenta’s surface reconstruction method is accurate in that it results in a surface that interpolates
the sample points, but requires both inner and outer polar balls. We developed a lightweight algorithm that,
while not as accurate, requires only the inner polar balls, and produces many fewer polygons. Both methods

result in surfaces with provably correct topology.

e Currently, VBMs are most useful for applications in which the final results are either quantitative, or in the form
of balls, points, or polygons. The reason is that the coupling of the VBM with other types ofedgiagxels)
has not been thoroughly researched. In addition, for some applications that are not purely shape-driwen (
age matching), the use of other information to complement shape information would likely enhance accuracy

and robustness.

9.3 Future Work

The results of this thesis motivate further work in many directions. Foremost is the development of other applications
using VBMs, examples of which include non-rigid registration, 3D shape extraction, object recognition, interactive

modelling, and animation. We outline some of other topics for future work in this section.

9.3.1 Representation Properties

e We would like to compare the approximation properties of Amenta’s method for stabilizing VBMs (convergence

to the medial axis) with Ranjan and Fournier’'s approach (clustering).
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e We would like to analyze the approximation properties of Amenta’s polar ball VBMs that have been further sim-
plified by clustering. In particular, we would like to derive tight error bounds and determine whether clustering

preserves the convergence property.

e We would like to further examine the issue of sampling. So far, we have only used densely sampled data. The

detection and handling of undersampled areas would make our algorithms more robust.

e We are interested in doing more work on using the VBM, medial axis and/or other representations together. For
example, “wrapping” a deformable model around a VBM may be useful for shape extraction applications. An

example of an approach that combines medial-based and deformable models is presented=bplpatji

9.3.2 Similarity Measure

e A more rigorous study on how the matching weights affect the correspondences formed by the similarity mea-

sure should be done.

¢ Different methods of handling unmatched balls and incorporating the resulting information into the similarity

measure should be investigated.

e We would like to experiment more with our modifications to the Ranjan-Fournier measure. One of the primary

goals is to make the measure fully independent of scaling, translation and rotation.

e We would like to incorporate the use of the medial axis into the quantification of shape differences. This
approach can be used to add topological and parts-based information, and can make use of the substantial body
of previous related worke(g, [145 151]).

e We would like to further investigate multiscale processing. The results of matching at different levels of detail

can be potentially combined for greater stability.

9.3.3 Validation

e Some of the validation done for this thesis has been subjective and done by visual inspection. More objective

and quantitative validation methods would further strengthen our claims.
e Alternative similarity measures should be used for the validation of our matching results.

e More direct comparisons with other shape models using the same applications and data should be done to

evaluate the relative advantages and limitations of VBMs.
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